JPH05121428A - Heterojunction bipolar transistor - Google Patents

Heterojunction bipolar transistor

Info

Publication number
JPH05121428A
JPH05121428A JP27907391A JP27907391A JPH05121428A JP H05121428 A JPH05121428 A JP H05121428A JP 27907391 A JP27907391 A JP 27907391A JP 27907391 A JP27907391 A JP 27907391A JP H05121428 A JPH05121428 A JP H05121428A
Authority
JP
Japan
Prior art keywords
silicon carbide
conductivity type
polycrystalline silicon
type
bipolar transistor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP27907391A
Other languages
Japanese (ja)
Inventor
Shigeyuki Ueda
茂幸 上田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rohm Co Ltd
Original Assignee
Rohm Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rohm Co Ltd filed Critical Rohm Co Ltd
Priority to JP27907391A priority Critical patent/JPH05121428A/en
Priority to US07/952,079 priority patent/US5378921A/en
Publication of JPH05121428A publication Critical patent/JPH05121428A/en
Pending legal-status Critical Current

Links

Landscapes

  • Bipolar Transistors (AREA)

Abstract

PURPOSE:To obtain a bipolar transistor using SiC, which excels in its thermal resistance, by constituting it through using an alpha-type SiC layer of unilateral conductivity type as its emitter region, polycrystalline silicon carbide layers of the other conductivity type as its base region, and polycrystalline silicon carbide layers of the unilateral conductivity type as its collector region. CONSTITUTION:A heterojunction bipolar transistor comprises an alpha-type SiC layer 2 of one conductivity type, polycrystalline silicon carbide layers 3 of the other conductivity type, which are laminated on the alpha-type SiC layer 2 of the unilateral conductivity type, and many independent polycrystalline silicon carbide layers 4 of the unilateral conductivity type, which are laminated on the polycrystalline silicon carbide layers 3 of the other conductive type. The heterojunction bipolar transistor is constituted using the alpha-type SiC 2 of the unilateral conductivity type as its emitter region, the polycrystalline silicon carbide layers 3 of the other conductivity type as its base region, and the polycrystalline silicon carbide layers 4 of the unilateral conductivity type as its collector region. Thereby, this bipolar transistor can be used in the place of high temperature, where no conventional device made of silicon and gallium arsenide can be used, as a bipolar transistor which keeps the high-speed quality caused by its heterojunction and excels in its thermal resistance.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、耐熱性に優れたSiC
を使用したヘテロ接合バイポーラトランジスタに関す
る。
BACKGROUND OF THE INVENTION The present invention relates to SiC having excellent heat resistance.
And a heterojunction bipolar transistor using.

【0002】[0002]

【従来の技術】バイポーラトランジスタは従来から主と
して珪素を用いて製作され、広く実用に供せられてい
る。そして、高速バイポーラトランジスタとしてSi微
細化技術を用いた珪素バイポーラトランジスタの他にヘ
テロ接合バイポーラトランジスタが提起され、アルミニ
ウムガリウム砒素(AlGaAs)/ガリウム砒素(GaAs)
を中心に研究が行われている。また、Siとヘテロ材料
(SiC)との接合によるバイポーラトランジスタの研究
も進んでいる。しかし、これらのバイポーラトランジス
タは耐熱性に欠け、従って、高温の場所では使用が不可
能である問題があった。
2. Description of the Related Art Bipolar transistors have conventionally been manufactured mainly using silicon and have been widely put into practical use. As a high-speed bipolar transistor, a heterojunction bipolar transistor has been proposed in addition to the silicon bipolar transistor using the Si miniaturization technology, and aluminum gallium arsenide (AlGaAs) / gallium arsenide (GaAs) is proposed.
Research is being conducted mainly. Also, Si and hetero materials
Research on bipolar transistors by bonding with (SiC) is also in progress. However, these bipolar transistors lack heat resistance, and thus cannot be used in a high temperature place.

【0003】[0003]

【発明が解決しようとする課題】本発明は、上記従来の
欠点を解消して、耐熱性に優れたSiCを使用したバイ
ポーラトランジスタを提供せんとするものである。
SUMMARY OF THE INVENTION The present invention solves the above-mentioned conventional drawbacks and provides a bipolar transistor using SiC having excellent heat resistance.

【0004】[0004]

【課題を解決するための手段】上記した目的を達成する
ために、本発明にかかるヘテロ接合バイポーラトランジ
スタは、一導電型α型SiC層上に他導電型多結晶炭化
珪素層を積層し、かつ該他導電型多結晶炭化珪素層上に
多数の孤立した一導電型多結晶炭化珪素層を形成して、
前記一導電型α型SiC層をエミッタ領域、他導電型多
結晶炭化珪素をベース領域、一導電型多結晶炭化珪素層
をコレクタ領域に構成してなるものである。
In order to achieve the above-mentioned object, a heterojunction bipolar transistor according to the present invention has a structure in which another conductivity type polycrystalline silicon carbide layer is laminated on one conductivity type α-type SiC layer, and A large number of isolated one-conductivity-type polycrystalline silicon carbide layers are formed on the other-conductivity-type polycrystalline silicon carbide layer,
The one conductivity type α-type SiC layer is formed as an emitter region, the other conductivity type polycrystalline silicon carbide is formed as a base region, and the one conductivity type polycrystalline silicon carbide layer is formed as a collector region.

【0005】[0005]

【作用】したがって、本発明はヘテロ接合による高速性
を保ち、かつ、耐熱性に優れたバイポーラトランジスタ
を得るためにベース領域に多結晶炭化珪素を、エミッタ
領域にα型炭化珪素を使用するもので、炭化珪素は融点
が珪素やガリウム砒素に比べ融点が非常に高く、また、
バンドギャップはα型炭化珪素が2.8〜3.3eV
で、多結晶炭化珪素は約2.2eVであるのでヘテロ接
合が形成でき、このことから、耐熱性に優れ、しかも、
高速のバイポーラトランジスタを提供することができる
ものである。
Therefore, the present invention uses polycrystalline silicon carbide in the base region and α-type silicon carbide in the emitter region in order to obtain a bipolar transistor excellent in heat resistance while maintaining high speed due to the heterojunction. , Silicon carbide has a much higher melting point than silicon or gallium arsenide, and
The band gap is 2.8 to 3.3 eV for α-type silicon carbide
Since polycrystalline silicon carbide has a voltage of about 2.2 eV, a heterojunction can be formed. Therefore, it has excellent heat resistance and
It is possible to provide a high speed bipolar transistor.

【0006】[0006]

【実施例】以下、本発明のバイポーラトランジスタを図
面に示す実施例について説明する。図1に示すヘテロ接
合バイポーラトランジスタは、一導電型α型SiC層
と、該一導電型α型SiC層上に積層した他導電型多結
晶炭化珪素層と、該他導電型多結晶炭化珪素層上に多数
の孤立して形成した一導電型多結晶炭化珪素層とからな
り、前記一導電型α型SiC層をエミッタ領域、他導電
型多結晶炭化珪素をベース領域、一導電型多結晶炭化珪
素層をコレクタ領域としてヘテロ接合バイポーラトラン
ジスタを構成する。
Embodiments of the bipolar transistor of the present invention will be described below with reference to the drawings. The heterojunction bipolar transistor shown in FIG. 1 includes a one-conductivity α-type SiC layer, another conductivity-type polycrystalline silicon carbide layer laminated on the one-conductivity type α-SiC layer, and another conductivity-type polycrystalline silicon carbide layer. And a plurality of isolated one-conductivity-type polycrystalline silicon carbide layers, the one-conductivity-type α-SiC layer being an emitter region, the other-conductivity-type polycrystalline silicon carbide being a base region, and one-conductivity-type polycrystalline carbon carbide. A heterojunction bipolar transistor is formed by using the silicon layer as a collector region.

【0007】上記の如き構造を製造する手順としては、
まず、6H型(α型)炭化珪素基板上にCVD(気相成長
法)によりP型多結晶炭化珪素を成長させる。ここで6
H型炭化珪素は、無添加でn型である。また、CVDで
は、反応炉内にSi基板を載置した後、ジシラン(Si
)およびアセチレン(C)を原料ガス、水素(H
)をキャリアガスとして流し、約1000℃、20分
間の成長で1000Å程度の膜厚を有する膜を成長させ
る。P型不純物としては、B、Al等が用いられる。
The procedure for manufacturing the above structure is as follows:
First, P-type polycrystalline silicon carbide is grown on a 6H-type (α-type) silicon carbide substrate by CVD (vapor deposition method). 6 here
H-type silicon carbide is n-type with no addition. Further, in CVD, after the Si substrate is placed in the reaction furnace, disilane (Si 2
H 6 ) and acetylene (C 2 H 2 ) as source gas, hydrogen (H
2 ) is flown as a carrier gas to grow a film having a film thickness of about 1000Å by growing at about 1000 ° C. for 20 minutes. B, Al or the like is used as the P-type impurity.

【0008】次に、さらにその上に同様のCVD法によ
り、n型多結晶炭化珪素を成長させる。n型不純物とし
ては、P、Nが用いられる。その後、通常のフォトリソ
グラフィーを用いエッチングを行なう。さらに、全面に
酸化膜を形成し、電極となる部分をフォトリソグラフィ
ーを用いたエッチングにより開口する。
Next, n-type polycrystalline silicon carbide is grown on the same by the same CVD method. P and N are used as the n-type impurities. After that, etching is performed using ordinary photolithography. Further, an oxide film is formed on the entire surface, and a portion to be an electrode is opened by etching using photolithography.

【0009】次に、開口部分に、電極金属(Al−Si等)
を蒸着する。以上6H型炭化珪素をエミッタ、P型多結
晶炭化珪素をベース、n型多結晶炭化珪素をコレクタと
することで、npn型バイポーラトランジスタが構成さ
れる。
Next, an electrode metal (Al-Si, etc.) is formed in the opening.
Vapor deposition. An npn-type bipolar transistor is formed by using 6H-type silicon carbide as the emitter, P-type polycrystalline silicon carbide as the base, and n-type polycrystalline silicon carbide as the collector.

【0010】また、以上の工程において、多結晶炭化珪
素形成には、シリコン酸化膜をマスクとした、選択成長
によっても可能である。また、図1のように、コレクタ
部を複数にすることにより、マルチコレクタバイポーラ
トランジスタを形成できる。
Further, in the above steps, polycrystalline silicon carbide can be formed by selective growth using a silicon oxide film as a mask. Further, as shown in FIG. 1, a multi-collector bipolar transistor can be formed by providing a plurality of collector portions.

【0011】[0011]

【発明の効果】以上の説明から明らかなように、本発明
は、一導電型α型SiC層上に他導電型多結晶炭化珪素
層が積層され、かつ該他導電型半導体層の表面に複数の
一導電型多結晶炭化珪素領域が形成されてなり、該導電
型α型SiC層をエミッタ領域、他導電型α型SiC層を
ベース領域、一導電型多結晶炭化珪素層をコレクタ領域
とするバイポーラトランジスタであり、ヘテロ接合によ
る高速性を保ち、かつ、耐熱性に優れたバイポーラトラ
ンジスタとして、今まで、シリコンやガリウム砒素のデ
バイスでは使用できなかった高温の場所での使用が可能
にし、しかも、高速、高利得の利点を有するものであ
る。
As is apparent from the above description, according to the present invention, another conductivity type polycrystalline silicon carbide layer is laminated on one conductivity type α type SiC layer, and a plurality of layers are formed on the surface of the other conductivity type semiconductor layer. One conductivity type polycrystalline silicon carbide region is formed, the conductivity type α-type SiC layer is used as an emitter region, the other conductivity type α-type SiC layer is used as a base region, and one conductivity type polycrystalline silicon carbide layer is used as a collector region. As a bipolar transistor, which maintains high speed due to the heterojunction, and is excellent in heat resistance, it can be used in high temperature places that could not be used with silicon and gallium arsenide devices until now. It has the advantages of high speed and high gain.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明にかかるバイポーラトランジスタの断
面図である。
FIG. 1 is a cross-sectional view of a bipolar transistor according to the present invention.

【符号の説明】[Explanation of symbols]

1 n型6HSiC基板 2 P型polySiC 3 n型polySiC 4 絶縁膜 5 電極金属 1 n-type 6 HSiC substrate 2 P-type polySiC 3 n-type polySiC 4 insulating film 5 electrode metal

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 一導電型α型SiC層上に他導電型多結
晶炭化珪素層を積層し、かつ該他導電型多結晶炭化珪素
層上に多数の孤立した一導電型多結晶炭化珪素層を形成
して、前記一導電型α型SiC層をエミッタ領域、他導
電型多結晶炭化珪素をベース領域、一導電型多結晶炭化
珪素層をコレクタ領域に構成してなるヘテロ接合バイポ
ーラトランジスタ。
1. A multi-conductivity polycrystalline silicon carbide layer is laminated on one conductivity type α-type SiC layer, and a large number of isolated one-conductivity type polycrystalline silicon carbide layers are formed on the other conductivity type polycrystalline silicon carbide layer. A heterojunction bipolar transistor having the one conductivity type α-type SiC layer as an emitter region, the other conductivity type polycrystalline silicon carbide as a base region, and the one conductivity type polycrystalline silicon carbide layer as a collector region.
JP27907391A 1991-10-21 1991-10-25 Heterojunction bipolar transistor Pending JPH05121428A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP27907391A JPH05121428A (en) 1991-10-25 1991-10-25 Heterojunction bipolar transistor
US07/952,079 US5378921A (en) 1991-10-21 1992-09-28 Heterojunction multicollector transistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27907391A JPH05121428A (en) 1991-10-25 1991-10-25 Heterojunction bipolar transistor

Publications (1)

Publication Number Publication Date
JPH05121428A true JPH05121428A (en) 1993-05-18

Family

ID=17606040

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27907391A Pending JPH05121428A (en) 1991-10-21 1991-10-25 Heterojunction bipolar transistor

Country Status (1)

Country Link
JP (1) JPH05121428A (en)

Similar Documents

Publication Publication Date Title
JP2611640B2 (en) Heterojunction bipolar transistor
JPH08306700A (en) Semiconductor device and its manufacture
JP3150376B2 (en) Fabrication of heterojunction bipolar transistor
US5442199A (en) Diamond hetero-junction rectifying element
JP3214868B2 (en) Method for manufacturing heterojunction bipolar transistor
JP2519740B2 (en) Heterojunction transistor and manufacturing method thereof
JP2593898B2 (en) Semiconductor element
JPH05121428A (en) Heterojunction bipolar transistor
US5670414A (en) Graded-gap process for growing a SiC/Si heterojunction structure
US5473172A (en) Hetero junction bipolar transistor
JP3209443B2 (en) Manufacturing method of bipolar transistor
JP2707641B2 (en) Semiconductor device
JPH0458691B2 (en)
JPS63285972A (en) Bipolar transistor and manufacture thereof
JPH0249432A (en) Heterojunction bipolar transistor
JPH05129321A (en) Heterojunction transistor
JPH0344937A (en) Bipolar transistor and manufacture thereof
JP2576574B2 (en) Bipolar transistor
JP3300645B2 (en) Semiconductor device and manufacturing method thereof
JP3326378B2 (en) Semiconductor device
JPH02152239A (en) Manufacture of semiconductor device
JPH0195556A (en) Heterojunction bipolar transistor
JPH05109752A (en) Hetero junction multicollector transistor and manufacture thereof
JPH0556849B2 (en)
JPS63202962A (en) Bipolar transistor and manufacture thereof