JPS63200571A - Manufacture of thin film transistor - Google Patents

Manufacture of thin film transistor

Info

Publication number
JPS63200571A
JPS63200571A JP3427287A JP3427287A JPS63200571A JP S63200571 A JPS63200571 A JP S63200571A JP 3427287 A JP3427287 A JP 3427287A JP 3427287 A JP3427287 A JP 3427287A JP S63200571 A JPS63200571 A JP S63200571A
Authority
JP
Japan
Prior art keywords
film
polycrystalline silicon
gate
deposited
silicon oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3427287A
Other languages
Japanese (ja)
Other versions
JP2556850B2 (en
Inventor
Tsukasa Doi
土居 司
Hiroya Sato
浩哉 佐藤
Atsushi Kudo
淳 工藤
Yasushi Kubota
靖 久保田
Masayoshi Koba
木場 正義
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP3427287A priority Critical patent/JP2556850B2/en
Publication of JPS63200571A publication Critical patent/JPS63200571A/en
Application granted granted Critical
Publication of JP2556850B2 publication Critical patent/JP2556850B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film

Abstract

PURPOSE:To manufacture a thin film transistor having a high mobility, a low threshold voltage, and a large ON/OFF ratio by reducing the thickness of a polycrystalline Si film for forming a gate electrode and conducting hydrogenating step. CONSTITUTION:A polycrystalline silicon film 2 is deposited, for example, on a Pyrex substrate 1 as a substrate made of insulating substance at least on the surface, and patterned to form an active layer. Then, a silicon oxide film 3 to become a gate insulating film is deposited, a polycrystalline silicon film 4 is further deposited, and patterned as a gate electrode. After phosphorus ions are implanted, a silicon oxide film 6 to become an interlayer insulating film is deposited, and annealed to activate the ions in a nitrogen atmosphere. Then, the contact holes 7, 8 of source, drain are opened, AlSi is deposited, source, drain electrodes 9, 10 are patterned, annealed in a hydrogen atmosphere, and hydrogenated by a hydrogen plasma. Thus, the polycrystalline silicon film for forming the gate electrode can be reduced in thickness, thereby improving the characteristics of a transistor.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は大面積のアクティブ・マトリックス液晶ディス
プレイ並びに三次元素子等に応用される多結晶シリコン
を用いた薄膜トランジスタに関するものであり、特に多
結晶シリコンゲートの薄膜化によって高性能化を図るよ
うにした薄膜トランジスタの製造方法に関するものであ
る。
[Detailed Description of the Invention] <Industrial Application Field> The present invention relates to thin film transistors using polycrystalline silicon, which are applied to large-area active matrix liquid crystal displays and tertiary element devices, etc. The present invention relates to a method of manufacturing a thin film transistor in which performance is improved by making the gate thinner.

〈従来の技術〉 近年、多結晶シリコン薄膜を能動領域として用いるMI
S型FETはSOI (5illicon onIns
ulator  )デバイスへの適用や、液晶ディスプ
レイ表示素子用の薄膜トランジスタ(TPT)としての
応用などに関し、盛んに研究が進められている。これ等
の素子特性は活性層として用いられる多結晶シリコン薄
膜に大きく影響される。多結晶シリコン薄膜の膜質は主
に薄膜を構成する結晶粒の粒径及び結晶粒界に存在する
ダングリングボンドにより決定され、一般にダングリン
グボンドが少ないほど良好である。膜質を改善する手段
として高温アニールを行なうことで結晶粒の粒径を拡大
し、結晶粒界中のダングリングボンドの密度を低減させ
ることが行なわれるが、これだけでは粒界のダングリン
グボンドを消滅させることはできず、通常さらに水素プ
ラズマによりダングリングボンドを夕〜ミネイトすると
と(水素化)でバンドギャップ中に形成している局在準
位を減少させている。
<Conventional technology> In recent years, MI using a polycrystalline silicon thin film as an active region has been developed.
S-type FET is SOI (5illicon on Ins
Active research is being carried out on applications such as application to ulator) devices and thin film transistors (TPT) for liquid crystal display elements. These device characteristics are greatly influenced by the polycrystalline silicon thin film used as the active layer. The film quality of a polycrystalline silicon thin film is mainly determined by the grain size of the crystal grains constituting the thin film and the dangling bonds present at the grain boundaries, and generally the fewer the dangling bonds, the better. As a means of improving film quality, high-temperature annealing is performed to expand the grain size of the crystal grains and reduce the density of dangling bonds in the grain boundaries, but this alone does not eliminate the dangling bonds in the grain boundaries. However, if the dangling bonds are further amalgamated with hydrogen plasma (hydrogenation), the localized levels formed in the band gap are reduced.

〈発明が解決しようとする問題点〉 しかしながら水素プラズマによる水素化の効果は充分と
は言えない状況にある。
<Problems to be Solved by the Invention> However, the effect of hydrogenation using hydrogen plasma cannot be said to be sufficient.

その理由は水素化すべきチャンネル領域の真上に厚いゲ
ート電極が存在するためにゲート電極である多結晶シリ
コン中の局在準位により水素化の効率が著しく低下する
ことにある。従って、充分な水素化効率を得るためには
ゲート電極を薄膜化することが必要であった。
The reason for this is that since a thick gate electrode exists directly above the channel region to be hydrogenated, the efficiency of hydrogenation is significantly reduced due to localized levels in the polycrystalline silicon that is the gate electrode. Therefore, in order to obtain sufficient hydrogenation efficiency, it was necessary to make the gate electrode thin.

しかしゲート電極の膜厚は(■)ゲート用多結晶シリコ
ンを低抵抗化することが可能な膜厚を有すること、(U
)ソース、ドレイン部形成のための不純物注入に際しチ
ャンネル領域への不純物注入が阻止できる膜厚を有する
こと、等の条件を満たさなくてはならない。
However, the film thickness of the gate electrode must be (■) thick enough to reduce the resistance of the polycrystalline silicon for the gate;
) When implanting impurities to form the source and drain portions, the film must satisfy conditions such as having a film thickness that can prevent impurity implantation into the channel region.

加えて従来のプロセスに於てはゲート表面で不純物濃度
が最大となってゲート電極と配線金属のコンタクト抵抗
を低減しうるように不純物の投影飛程(Project
ion Range  )に相当する深さまでゲート多
結晶シリコン最表面をエツチング除去する必要があった
。このため精度を要するエツチング工程が増えることに
なり、再現性確保のために工程誤差を考慮して多結晶シ
リコンを厚くする必要があり、その薄膜化が困難であっ
た。
In addition, in conventional processes, the projected range of impurities is increased so that the impurity concentration reaches its maximum at the gate surface and reduces the contact resistance between the gate electrode and the wiring metal.
It was necessary to remove the outermost surface of the gate polycrystalline silicon by etching to a depth corresponding to ion range). This increases the number of etching steps that require precision, and it is necessary to thicken the polycrystalline silicon in consideration of process errors in order to ensure reproducibility, making it difficult to reduce the thickness of the polycrystalline silicon film.

本発明は上記の点に鑑みて創案されたものであり、多結
晶シリコンを活性層及びゲート電極とするMIS型電界
効果トランジスタにおいて水素化を容易にすることが可
能な極薄ゲート構造を提供し、ひいては低い閾値電圧と
高い移動度を実現する薄型トランジスタの製造方法を提
供することを目的としている。
The present invention was devised in view of the above points, and provides an ultra-thin gate structure that can facilitate hydrogenation in a MIS field effect transistor using polycrystalline silicon as an active layer and a gate electrode. The present invention aims to provide a method for manufacturing a thin transistor that achieves low threshold voltage and high mobility.

く問題点を解決するだめの手段及び作用〉上記の目的を
達成するため、本発明においては少なくとも表面が絶縁
物質である基板の一生面上に形成されたシリコン活性層
にMIS型電界効果トランジスタを形成する薄膜トラン
ジスタの製造方法において、ゲート電極を形成する多結
晶シリコン膜を堆積し、この多結晶シリコン膜上にシリ
コン酸化膜を堆積し、しかる後にゲート電極と力る領域
及びその真上のシリコン酸化膜のみを残して剰余のシリ
コン酸化膜及び多結晶シリコン膜を除去し、かかる状態
でソース、ドレイン及びゲート領域に不純物をイオン注
入するように構成している。捷だ本発明の実施態様にあ
っては上記のシリコン酸化膜の膜厚を、不純物注入濃度
がゲート多結晶シリコン表面で最大に近くかり、かつ薄
膜化したゲートの下の活性層中に不純物が1 x 10
13cWV2以上注入されないように選ぶように構成し
ている。
Means and operation for solving the above problems In order to achieve the above object, in the present invention, an MIS field effect transistor is formed on a silicon active layer formed on the entire surface of a substrate whose surface is made of an insulating material. In the manufacturing method of the thin film transistor to be formed, a polycrystalline silicon film forming a gate electrode is deposited, a silicon oxide film is deposited on this polycrystalline silicon film, and then a silicon oxide film is deposited in a region contacting the gate electrode and immediately above the silicon oxide film. The structure is such that the excess silicon oxide film and polycrystalline silicon film are removed leaving only the film, and in this state impurity ions are implanted into the source, drain, and gate regions. In the preferred embodiment of the present invention, the thickness of the silicon oxide film is set so that the impurity implantation concentration is close to the maximum on the gate polycrystalline silicon surface, and the impurity is concentrated in the active layer under the thinned gate. 1 x 10
The configuration is such that it is selected so as not to inject more than 13 cWV2.

即ち、本発明においては少なくとも表面が絶縁物質であ
る基板の一生面上に形成された活性層にMIS型電界効
果トランジスタを形成する薄膜トランジスタにおいて、
ゲート絶縁膜上にゲート用多結晶シリコンを堆積し、次
いでシリコン酸化膜を堆積して、ゲート電極直上に位置
するシリコン酸化膜のみを残してエツチング除去し、さ
らにゲート電極となる多結晶シリコンをパターニングし
、そののちにソース、ドレイン及びゲートへの不純物注
入を行うことで、多結晶シリコンゲート電極の極薄膜化
を実現し、水素化を容易にしてトランジスタ特性を向上
させるものである。
That is, in the present invention, in a thin film transistor in which an MIS type field effect transistor is formed in an active layer formed on the entire surface of a substrate whose surface is at least an insulating material,
Deposit polycrystalline silicon for the gate on the gate insulating film, then deposit a silicon oxide film, remove it by etching leaving only the silicon oxide film located directly above the gate electrode, and then pattern the polycrystalline silicon that will become the gate electrode. Then, by implanting impurities into the source, drain, and gate, it is possible to make the polycrystalline silicon gate electrode extremely thin, facilitating hydrogenation, and improving transistor characteristics.

多結晶シリコン上のシリコン酸化膜の膜厚は、ソース及
びドレイン領域を形成するための不純物注入工程によっ
てゲート多結晶シリコンは最表面近傍において不純物濃
度が最大となるようにドーピングされる。本発明に係る
工程を用いると水素化の阻害要因となる多結晶シリコン
ゲートは以下に示すような理由により不純物注入に対す
る阻止能を低下することなく極薄膜化が可能となる。
The film thickness of the silicon oxide film on the polycrystalline silicon is such that the gate polycrystalline silicon is doped so that the impurity concentration is maximum near the outermost surface by an impurity implantation process for forming source and drain regions. By using the process according to the present invention, the polycrystalline silicon gate, which is a factor inhibiting hydrogenation, can be made extremely thin without reducing the blocking ability against impurity implantation for the following reasons.

(I)  多結晶シリコン中の不純物の投影飛程に相当
する厚みを多結晶シリコン上のシリコン酸化膜が担うた
め、該投影飛程の厚みだけ多結晶シリコンは薄くできる
(I) Since the silicon oxide film on the polycrystalline silicon has a thickness corresponding to the projected range of impurities in the polycrystalline silicon, the polycrystalline silicon can be made thinner by the thickness of the projected range.

m)酸化膜の存在によって多結晶シリコン中でのイオン
チャンネリングが減少して更に薄くしても阻止能が低下
しない。
m) The presence of the oxide film reduces ion channeling in polycrystalline silicon so that the stopping power does not decrease even if the film is made thinner.

(転)前述したエソチング工程が不要のため、再現性確
保の為の膜厚余裕が小さくて済む。
(Conversion) Since the above-mentioned ethoching process is unnecessary, the film thickness margin for ensuring reproducibility is small.

以上のような作用、効果により極薄化されたゲート多結
晶シリコンは、水素化処理工程における効率が大幅に向
上し、その結果移動度が高く、閾値電圧が低(またオン
ーオフ比の大きなTPTが実現できる。
Due to the functions and effects described above, the extremely thin gate polycrystalline silicon has greatly improved efficiency in the hydrogenation process, resulting in high mobility and low threshold voltage (and TPT with a large on-off ratio). realizable.

〈実施例〉 従来のプロセス、特に低温プロセスにおいては充分な水
素化効率が得られていない。
<Example> Sufficient hydrogenation efficiency has not been obtained in conventional processes, especially low-temperature processes.

そこで、本発明の一実施例として低温プロセスによる多
結晶薄膜トランジスタの作製で詳細に説明する。
Therefore, as an example of the present invention, manufacturing of a polycrystalline thin film transistor by a low temperature process will be described in detail.

第1図(a)〜(f)はそれぞれ本発明の一実施例とし
ての各製造プロセスにおける素子断面を示す図である。
FIGS. 1(a) to 1(f) are diagrams each showing a cross section of an element in each manufacturing process as an embodiment of the present invention.

本発明を実施するにあたり、少なくとも表面が絶縁物質
である基板として、パイレックスガラス基板1を用−1
第1図(a)に示すように、捷ず有機洗浄及び酸洗浄し
たパイレックスガラス基板1上に真空蒸着法によりxo
ooiの多結晶シリコン薄膜2を蒸着し、活性層部をパ
ターニングして形成した。次いで第1図(b)に示すよ
うに常圧CVD法により420℃でゲート絶縁膜となる
シリコン酸化膜3を500X堆積し、酸素雰囲気中55
0℃で2時間アニールを行ないシリコン酸化膜3の緻密
化をはかった。
In carrying out the present invention, a Pyrex glass substrate 1 is used as a substrate having at least a surface made of an insulating material.
As shown in FIG. 1(a), xo
A polycrystalline silicon thin film 2 of OOI was deposited, and the active layer portion was patterned. Next, as shown in FIG. 1(b), a silicon oxide film 3 which will become a gate insulating film is deposited at 500× at 420° C. by normal pressure CVD method, and then deposited at 500× in an oxygen atmosphere.
Annealing was performed at 0° C. for 2 hours to densify the silicon oxide film 3.

次いで第1図(c)に示すように、前述の真空蒸着法で
多結晶シリコン膜4を500X堆積した後、この上に常
圧CVD法でシリコン酸化膜5を500X堆積した後パ
ターニングしてゲート電極を形成した。次に第1図(d
)に示すようにリンイオン(3I P+ )を50 k
eVで1.5XI915個/12注入した。そののち層
間絶縁膜となるシリコン酸化膜6を常圧CVD法で5o
ooX堆積し、リンイオン(31P+)活性化のために
窒素雰囲気中550 ’Cで70時間アニールを行なっ
た。次に第1図(e)に示すようにソース及びドレイン
部のコンタクトホール7及び8を開孔し、スパッタ法で
AfSiを5000人堆積した後、第1図(f)に示す
ようにソース電極9及びドレイン電極10をパターニン
グした。最後に水素雰囲気中440℃で30分間アニー
ルを行なった後、水素プラズマで水素化を行なった。水
素化は基板温度300℃水素/窒素比1:1.圧力1’
rorr、Rfpower280mW/−1,処理時間
5時間で行々った〇第2図1は上記のようにして作製し
た薄膜トランジスタのゲート電圧対ドレイン電流特性を
示したものであり、同図においてAはゲート電極の膜厚
が1500Xで水素化を施して々bもの、Bはゲート電
極の膜厚が1500Xで水素化を施しているもの、Cは
上記の実施例で作製したゲート電極の膜厚が500Xで
水素化を施しているものである。尚この薄膜トランジス
タのチャンネル長及びチャンネル幅は共に10/1mで
あり、ソースに対するドレインのバイアス電圧は+IV
である。
Next, as shown in FIG. 1(c), a polycrystalline silicon film 4 is deposited at 500X using the vacuum evaporation method described above, and then a silicon oxide film 5 is deposited at 500X using the normal pressure CVD method and patterned to form a gate. An electrode was formed. Next, Figure 1 (d
), phosphorus ion (3I P+ ) was
1.5XI915/12 injections were performed at eV. After that, a silicon oxide film 6, which will become an interlayer insulating film, is deposited at a 50°C using the normal pressure CVD method.
ooX was deposited and annealed for 70 hours at 550'C in a nitrogen atmosphere for phosphorus ion (31P+) activation. Next, as shown in FIG. 1(e), contact holes 7 and 8 are opened for the source and drain parts, and 5,000 layers of AfSi are deposited by sputtering. 9 and the drain electrode 10 were patterned. Finally, annealing was performed at 440° C. for 30 minutes in a hydrogen atmosphere, and then hydrogenation was performed using hydrogen plasma. Hydrogenation was performed at a substrate temperature of 300°C and a hydrogen/nitrogen ratio of 1:1. pressure 1'
rorr, Rfpower 280mW/-1, processing time 5 hours. Figure 2 shows the gate voltage vs. drain current characteristics of the thin film transistor fabricated as described above. In the figure, A indicates the gate voltage. B is a gate electrode with a thickness of 1500X and hydrogenated, B is a gate electrode with a thickness of 1500X and hydrogenated, and C is a gate electrode prepared in the above example with a thickness of 500X. It is hydrogenated using The channel length and channel width of this thin film transistor are both 10/1 m, and the drain bias voltage with respect to the source is +IV.
It is.

この第2図より明らかなようにゲート電極を薄膜化する
ことにより水素化が容易になり閾値電圧が減少し、オン
電流が増大していることがわかる。
As is clear from FIG. 2, by making the gate electrode thinner, hydrogenation becomes easier, the threshold voltage decreases, and the on-current increases.

なお、上記実施例ではゲート電極の膜厚に500人を採
ったが、ゲート電極の膜質また要求されるトランジスタ
特性に応じてゲート電極及びその上のシリコン酸化膜の
膜厚を最適化する必要がある。
In the above example, the film thickness of the gate electrode was set at 500, but it is necessary to optimize the film thickness of the gate electrode and the silicon oxide film thereon depending on the film quality of the gate electrode and the required transistor characteristics. be.

また多結晶シリコンは真空蒸着法に限らず、他の成膜法
或いは低温で形成した微結晶状態のシリコン膜、アモル
ファスシリコン膜、多結晶シリコン膜にシリコンイオン
(28Si+)を注入して一部アモルファス化したシリ
コン膜を固相成長させたものを用いてもよい。捷だアニ
ール温度に関しては基板及び素子に悪影響を及ぼさ々い
限りにおいてできるだけ高温で行なうことが望ましい。
In addition, polycrystalline silicon is not limited to the vacuum evaporation method, but can also be formed using other film formation methods, or by implanting silicon ions (28Si+) into a microcrystalline silicon film formed at a low temperature, an amorphous silicon film, or a polycrystalline silicon film to form a partially amorphous silicon film. A solid-phase grown silicon film may also be used. Regarding the temperature of the annealing, it is desirable to perform the annealing at as high a temperature as possible without adversely affecting the substrate and the device.

ぐ発明の効果〉 以上のように本発明によれば表面が絶縁物質である基板
上に薄膜トランジスタを形成するにあたって、ゲート電
極を形成する多結晶シリコン膜を薄膜化することが可能
となり、水素化工程の効率化を上げトランジスタの特性
を向上させることができる。これにより良好な特性を有
するTPTの製造が可能とカリSJIデバイスや液晶デ
ィスプレイ表示素子用の薄膜トランジスタへの応用が期
待される。
Effects of the Invention> As described above, according to the present invention, when forming a thin film transistor on a substrate whose surface is an insulating material, it is possible to reduce the thickness of the polycrystalline silicon film forming the gate electrode, and the hydrogenation process is It is possible to increase the efficiency of the transistor and improve the characteristics of the transistor. This makes it possible to manufacture TPT with good characteristics, and is expected to be applied to thin film transistors for potassium SJI devices and liquid crystal display elements.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a)〜(f)はそれぞれ本発明の一実施例とし
ての多結晶シリコン薄膜トランジスタの作製の各プロセ
スに於ける素子断面を示す図、第2図は本発明の一実施
例として作製した薄膜トランジスタ及び比較として作製
したトランジスタのゲート電圧対ドレイン電流特性を示
した図である1、トパイレックスガラス(絶縁基板)、 2・・・多結晶シリコン薄膜(活性層)、3・・シリコ
ン酸化膜(ゲート絶縁膜)、4・・多結晶シリコン膜(
ゲート電極)、5・・・シリコン酸化膜(不純物注入深
さ制御酸化膜)、 6・・・シリコン酸化膜(層間絶縁膜)、7・・・コン
タクトホール(ソース部)、8・・コンタクトホール(
ドレイン部)、9・・AI!Si  (ソース電極)、
10・・・AlSi  (ドレイン電極)。
FIGS. 1(a) to (f) are diagrams showing device cross sections in each process of manufacturing a polycrystalline silicon thin film transistor as an embodiment of the present invention, and FIG. 2 is a diagram showing a cross section of a device manufactured as an embodiment of the present invention 1. Topyrex glass (insulating substrate), 2. Polycrystalline silicon thin film (active layer), 3. Silicon oxide film. (gate insulating film), 4... polycrystalline silicon film (
gate electrode), 5... silicon oxide film (impurity implantation depth control oxide film), 6... silicon oxide film (interlayer insulating film), 7... contact hole (source part), 8... contact hole (
Drain part), 9...AI! Si (source electrode),
10...AlSi (drain electrode).

Claims (1)

【特許請求の範囲】 1、少なくとも表面が絶縁物質である基板の一主面上に
形成されたシリコン活性層にMIS型電界効果トランジ
スタを形成する薄膜トランジスタの製造方法において、 ゲート電極を形成する多結晶シリコン膜を堆積し、 該多結晶シリコン膜上にシリコン酸化膜を堆積し、 しかる後にゲート電極となる領域及びその直上のシリコ
ン酸化膜のみを残して剰余のシリコン酸化膜及び多結晶
シリコン膜を除去し、 かかる状態でソース、ドレイン及びゲート領域に不純物
をイオン注入する ことを特徴とする薄膜トランジスタの製造方法。 2、前記シリコン酸化膜の膜厚を、不純物注入濃度がゲ
ート多結晶シリコン表面で最大に近くなり、かつ薄膜化
したゲートの下の活性層中に不純物が1×10^1^3
cm^−^2以上注入されないように選ぶことを特徴と
する特許請求の範囲第1項記載の薄膜トランジスタの製
造方法。
[Claims] 1. A method for manufacturing a thin film transistor in which an MIS field effect transistor is formed in a silicon active layer formed on one main surface of a substrate whose surface is made of an insulating material, comprising the steps of: Deposit a silicon film, deposit a silicon oxide film on the polycrystalline silicon film, and then remove the excess silicon oxide film and polycrystalline silicon film, leaving only the region that will become the gate electrode and the silicon oxide film directly above it. A method for manufacturing a thin film transistor, characterized in that impurity ions are implanted into the source, drain, and gate regions in such a state. 2. The thickness of the silicon oxide film is adjusted so that the impurity implantation concentration is close to the maximum on the gate polycrystalline silicon surface, and the impurity concentration is 1×10^1^3 in the active layer under the thinned gate.
2. The method of manufacturing a thin film transistor according to claim 1, wherein the implantation is selected so as not to exceed cm^-^2.
JP3427287A 1987-02-16 1987-02-16 Method for manufacturing thin film transistor Expired - Fee Related JP2556850B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3427287A JP2556850B2 (en) 1987-02-16 1987-02-16 Method for manufacturing thin film transistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3427287A JP2556850B2 (en) 1987-02-16 1987-02-16 Method for manufacturing thin film transistor

Publications (2)

Publication Number Publication Date
JPS63200571A true JPS63200571A (en) 1988-08-18
JP2556850B2 JP2556850B2 (en) 1996-11-27

Family

ID=12409523

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3427287A Expired - Fee Related JP2556850B2 (en) 1987-02-16 1987-02-16 Method for manufacturing thin film transistor

Country Status (1)

Country Link
JP (1) JP2556850B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63221679A (en) * 1987-03-11 1988-09-14 Hitachi Ltd Thin-film semiconductor device and manufacture thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63221679A (en) * 1987-03-11 1988-09-14 Hitachi Ltd Thin-film semiconductor device and manufacture thereof

Also Published As

Publication number Publication date
JP2556850B2 (en) 1996-11-27

Similar Documents

Publication Publication Date Title
US5595944A (en) Transistor and process for fabricating the same
US5946560A (en) Transistor and method of forming the same
JPH05102483A (en) Film transistor and its manufacturing method
JPH0590586A (en) Thin film transistor
KR20000074450A (en) Thin film transistor and the method of fabricating the same
JPH09129889A (en) Manufacture of semiconductor device
JP3359691B2 (en) Method for manufacturing thin film transistor
KR100252926B1 (en) Polysilicon thin-film transistor using silicide and manufacturing method thereof
JPS63200571A (en) Manufacture of thin film transistor
JPH06260644A (en) Manufacture of semiconductor device
JP2987987B2 (en) Method of forming crystalline semiconductor thin film and method of manufacturing thin film transistor
KR20000074449A (en) Thin film transistor and the method of fabricating the same
JP3535465B2 (en) Method for manufacturing semiconductor device
JP2864623B2 (en) Method for manufacturing semiconductor device
JPH0714849A (en) Manufacture of thin film transistor
JPS63283068A (en) Manufacture of thin-film transistor
JP3333489B2 (en) Method for manufacturing thin film transistor
JPH02189935A (en) Manufacture of thin-film transistor
JPS6329978A (en) Manufacture of thin-film transistor
JPH04186634A (en) Manufacture of thin film semiconductor device
JPH06163580A (en) Manufacture of thin-film transistor
JPH03200319A (en) Formation of poly-crystalline silicon
KR100323736B1 (en) Thin film transistor and fabricating method thereof
JP3346060B2 (en) Method for manufacturing thin film semiconductor device
JP2960742B2 (en) Thin film transistor element

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees