JPS6319865A - Hybrid circuit element - Google Patents

Hybrid circuit element

Info

Publication number
JPS6319865A
JPS6319865A JP61164198A JP16419886A JPS6319865A JP S6319865 A JPS6319865 A JP S6319865A JP 61164198 A JP61164198 A JP 61164198A JP 16419886 A JP16419886 A JP 16419886A JP S6319865 A JPS6319865 A JP S6319865A
Authority
JP
Japan
Prior art keywords
elements
bioelectric
circuit
hybrid circuit
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61164198A
Other languages
Japanese (ja)
Other versions
JPH0682827B2 (en
Inventor
Satoru Isoda
悟 磯田
Osamu Tomizawa
富沢 治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP61164198A priority Critical patent/JPH0682827B2/en
Priority to DE19873722941 priority patent/DE3722941A1/en
Priority to US07/072,305 priority patent/US4902555A/en
Publication of JPS6319865A publication Critical patent/JPS6319865A/en
Priority to US07/370,940 priority patent/US5011786A/en
Publication of JPH0682827B2 publication Critical patent/JPH0682827B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C13/00Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00
    • G11C13/0002Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00 using resistive RAM [RRAM] elements
    • G11C13/0009RRAM elements whose operation depends upon chemical change
    • G11C13/0014RRAM elements whose operation depends upon chemical change comprising cells based on organic memory material
    • G11C13/0019RRAM elements whose operation depends upon chemical change comprising cells based on organic memory material comprising bio-molecules
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y10/00Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C13/00Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00
    • G11C13/0002Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00 using resistive RAM [RRAM] elements
    • G11C13/0009RRAM elements whose operation depends upon chemical change
    • G11C13/0014RRAM elements whose operation depends upon chemical change comprising cells based on organic memory material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Nanotechnology (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Mathematical Physics (AREA)
  • Theoretical Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Semiconductor Integrated Circuits (AREA)

Abstract

PURPOSE:To produce a hybrid circuit element comprising bioelectric elements and conventional semiconductor elements by a method wherein the bioelectric elements comprising electron transferrable biological material or pseudo living body material and semiconductor elements are integrated with one another to be electrically connected by wirings. CONSTITUTION:A hybrid circuit element is composed of a substrate 1, an Si device layer 2 formed on the substrate 1, an insulating layer 3 formed on a part of the surface of Si device layer 2, a monolithic bioelectric element circuit 4 formed on the insulating layer 3, while said layers 4 and 2 are electrically connected by wirings 5. The monolithic bioelectric element circuit 4 uses rectifying elements D1-D4, switching elements Tr1, Tr2, resistor elements R1, R2 (R1 comprises D1, D2, R2 comprises D3, D4) and a capacitor element C1 to make interconnection in the all directions using the electron transferrable and conductive protein molecules 4 while insulating said elements from one another with protein molecules 5 of low dielectric constant. Through these procedures, a hybrid circuit making the best use of the bioelectric elements and semiconductor elements can be produced.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、生体材料を用いて形成された各種生物電気
素子を含むハイブリッド回路素子に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a hybrid circuit element including various bioelectrical elements formed using biomaterials.

〔従来の技術〕[Conventional technology]

従来、集積回路に用いられている整流素子としては、第
7図に示すMO3構造のものがあった。
Conventionally, rectifying elements used in integrated circuits have had an MO3 structure as shown in FIG.

図において、11はp形シリコン基板、12はn影領域
、13はp影領域、14はn影領域、15はSi0g膜
、16.17は電極であり、これら2つの電極16.1
7間でp−n接合(p影領域13−n影領域14接合)
が形成され、これにより整流特性が実現されている。
In the figure, 11 is a p-type silicon substrate, 12 is an n-shade region, 13 is a p-shade region, 14 is an n-shade region, 15 is a Si0g film, and 16.17 is an electrode, and these two electrodes 16.1
p-n junction between 7 (p shadow area 13 - n shadow area 14 junction)
is formed, thereby realizing rectifying characteristics.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

従来のMO3構造の整流素子は以上のように構成されて
いるため、微細加工が可能であり、現在では上記構造の
整流素子あるいはこれに類似する構造のトランジスタ素
子を用いたLSIとして256にピッ)LS Iが実用
化されている。
Because the conventional MO3 structure rectifier is configured as described above, it can be microfabricated, and currently LSIs using rectifiers with the above structure or transistor elements with a similar structure are suitable for 256 LSI has been put into practical use.

ところで、集積回路のメモリ容量と演算速度を上昇させ
るには、素子そのものの微細化が不可決であるが、Si
を用いる素子では0.2μm程度の超微細パターンで電
子の平均自由行程と素子サイズとがほぼ等しくなり、素
子の独立性が保たれなるなるという限界を抱えている。
By the way, in order to increase the memory capacity and operation speed of integrated circuits, it is essential to miniaturize the elements themselves, but Si
In devices using ultra-fine patterns of about 0.2 μm, the mean free path of electrons becomes almost equal to the device size, and there is a limit that independence of the devices cannot be maintained.

このように、日々発展を続けているシリコンテクノロジ
ーも、微細化の点ではいずれは壁に突きあたることが予
想され、新しい原理に基づく電気回路素子であって上記
0.2μmの壁を破ることのできるものが求められてい
る。
In this way, silicon technology, which continues to develop day by day, is expected to eventually hit a wall in terms of miniaturization. What we can do is needed.

このような状況において本件発明者らは生体内に存在す
る電子伝達蛋白質を用い、そのレドックス電位の違いを
利用してp、n型半導体を用いたp−n接合と類似した
整流特性を呈する整流素子。
Under these circumstances, the inventors of the present invention have developed a rectifier that uses electron transport proteins that exist in living organisms and utilizes the difference in their redox potential to exhibit rectifying characteristics similar to those of p-n junctions using p- and n-type semiconductors. element.

及びp−n−p接合トランジスタと類似したトランジス
タ特性を呈するトランジスタ素子を開発した。そしてこ
れにより素子サイズを生体分子レベルの超微細な大きさ
とし、回路の高密度化、高速化を可能としている。
We also developed a transistor device that exhibits transistor characteristics similar to those of a p-n-p junction transistor. This allows the device size to be ultra-fine at the level of biomolecules, making it possible to increase the density and speed of circuits.

そしてさらにこのような素子を用いて生物電気素子回路
を構成するため、これらの素子との親和性の良い抵抗、
コンデンサ等の素子を開発したが、次にはこれらを用い
て回路をいかに構成するかが問題となり、これについて
はこれら生体材料を用いた生物電気素子と従来からの半
導体素子とを両方用いて回路を構成することも可能であ
ると考えられる。
Furthermore, in order to construct a bioelectrical element circuit using such elements, resistors with good compatibility with these elements,
Although we have developed elements such as capacitors, the next problem is how to construct circuits using these elements.For this, we have developed circuits using both bioelectric elements using these biomaterials and conventional semiconductor elements. It is also considered possible to configure .

この発明は、かかる状況に鑑みてなされたもので、生物
電気素子と従来の半導体素子とからなるハイブリッド回
路素子を得ることを目的とする。
The present invention was made in view of the above situation, and an object of the present invention is to obtain a hybrid circuit element consisting of a bioelectrical element and a conventional semiconductor element.

〔問題点を解決するための手段〕[Means for solving problems]

この発明に係るハイブリッド回路素子は、電子伝達可能
な生体材料あるいは擬似生体材料を用いて構成された生
物電気素子と、半導体素子とを一体化し、かつ両者を配
線により電気的に接続して構成したものである。
The hybrid circuit device according to the present invention is constructed by integrating a bioelectrical device constructed using a biological material or a pseudo-biological material capable of electron transfer with a semiconductor device, and electrically connecting the two with wiring. It is something.

〔作用〕[Effect]

この発明においては、生物電気素子と半導体素子とを一
体化してハイブリッド回路素子を形成したので、上記画
素子の長所を生かした回路が得られる。
In this invention, a hybrid circuit element is formed by integrating a bioelectric element and a semiconductor element, so that a circuit that takes advantage of the advantages of the above-described pixel element can be obtained.

〔実施例〕〔Example〕

以下、この発明の実施例を図について説明する。 Embodiments of the present invention will be described below with reference to the drawings.

まず、本発明者らが開発した生物電気素子である、整流
素子、スイッチ素子、抵抗素子、及びコンデンサ素子に
ついて説明する。
First, bioelectrical elements developed by the present inventors, such as a rectifying element, a switching element, a resistive element, and a capacitor element, will be explained.

即ち、本発明者らが開発した整流素子は、第3図(a)
に示すように、異なるレドックス(酸化還元)電位を有
する2種の電子伝達蛋白質、即ち、例えばフラボトキシ
ン分子1とチトクロームC分子2とを接着接合して複合
体を構成し、その各分子に一対の電極4a、4bをそれ
ぞれ接続して構成したものである。そしてこの整流素子
りにおいては、フラボトキシン1とチトクロームC2の
レドックス電位が第3図(b)に示すように異なるため
、この両者間に電圧を印加した場合、電子は、図中実線
なり、これによりn型半導体とp型半導体とを接合した
p−n接合ダイオードと類似の整流特性を示す整流素子
が得られるものである。
That is, the rectifying element developed by the present inventors is shown in Fig. 3(a).
As shown in Figure 2, two types of electron transport proteins with different redox (oxidation-reduction) potentials, for example, flavotoxin molecule 1 and cytochrome C molecule 2, are adhesively bonded to form a complex, and each molecule has a pair of electron transport proteins. The electrodes 4a and 4b are connected to each other. In this rectifying element, the redox potentials of flavotoxin 1 and cytochrome C2 are different as shown in Figure 3 (b), so when a voltage is applied between them, the electrons will form the solid line in the figure. Accordingly, a rectifying element exhibiting rectifying characteristics similar to that of a pn junction diode in which an n-type semiconductor and a p-type semiconductor are joined can be obtained.

また、本発明者らが開発したスイッチ素子は、第4図(
alに示すように、例えば上記チトクロームC分子2の
両側に上記フラボトキシン分子1を接着接合し、それぞ
れに電極4c、4d、4eを接続して構成したものであ
る。そして、このスイッチ素子Trにおいては、各電極
4c、4d、4eに電圧を印加しないときのレドックス
電位状態は第4図(blに示すaの状態となり、一方、
電極4eに対して電極4Cに負電圧■2を印加したとき
、またあるいは該電圧v2に加えて電i4eに対して電
極4dに負電圧■1を印加したときのレドックス電位状
態はそれぞれ第4図(blのす、cの状態となる。そし
て、a、bの状態では電極4C94eの間に電流は流れ
ず、Cの状態では流れる。従って、電極4c、4e間に
電圧■2を印加した状態で、vL掻4d、48間の電圧
v1をオン、オフすることにより、本素子にスイッチン
グ特性を持たせることができる。
In addition, the switch element developed by the present inventors is shown in Fig. 4 (
As shown in al, for example, the flavotoxin molecule 1 is adhesively bonded to both sides of the cytochrome C molecule 2, and electrodes 4c, 4d, and 4e are connected to each side. In this switch element Tr, the redox potential state when no voltage is applied to each electrode 4c, 4d, 4e is the state a shown in FIG.
The redox potential states when applying a negative voltage ``2'' to the electrode 4C with respect to the electrode 4e, or when applying a negative voltage ``1'' to the electrode 4d with respect to the voltage i4e in addition to the voltage v2, are shown in Fig. 4. (The state becomes state c. In state a and b, no current flows between the electrodes 4C94e, but in state C, it flows. Therefore, the state in which voltage 2 is applied between electrodes 4c and 4e By turning on and off the voltage v1 between vL4d and 48, this element can be given switching characteristics.

また、本発明者らが開発した抵抗素子としては、例えば
第5図に示すように、一対の電極4f、4g間に上記複
合体を複数個ここては2個を、逆並列に配置して抵抗素
子Rを構成したものがあり、この素子Rでは、上記複合
体の個数を変えることにより、所望の抵抗値を得ること
ができる。
Furthermore, as shown in FIG. 5, for example, the resistance element developed by the present inventors includes a plurality of the above-mentioned composites, in this case two, arranged in antiparallel between a pair of electrodes 4f and 4g. There is a resistance element R, and in this element R, a desired resistance value can be obtained by changing the number of the above-mentioned composites.

また、同じくコンデンサ素子Cとしては、例えば第6図
に示すように、電子伝達′活性のない誘電率の高い蛋白
質分子3を誘電体として用い、これを一対の電極4h、
4i間に配置して構成したものがある。
Similarly, as the capacitor element C, for example, as shown in FIG.
There is one configured by placing it between 4i.

また上記整流素子の実際の構成は第9図に示す通りとな
る。
Further, the actual configuration of the rectifying element is as shown in FIG.

即ち、第9図において、76はkfi縁特性を持つ基板
、77はAg、Au、A1などの金属製電極で、基板7
6上に複数条が平行に形成されている。
That is, in FIG. 9, 76 is a substrate with kfi edge characteristics, 77 is a metal electrode such as Ag, Au, A1, etc.
A plurality of strips are formed in parallel on 6.

78は基+反76上にL B (Langmuir−B
lodgett)法等により作成されたチトクロームC
からなる第1電子伝達蛋白質膜、79は同じ<LB法等
により作成されたフラボトキシンからなる第2電子伝達
蛋白質膜で、上記第1ii1子伝達蛋白質膜78に累積
して接着接合されている。80は複数条の平行電極77
と直角方向に形成された複数条の平行電極で、第2電子
伝達蛋白質膜79上に形成されている。
78 is a group + anti-76 on L B (Langmuir-B
Cytochrome C prepared by the Rodgett method etc.
79 is a second electron transfer protein membrane made of flavotoxin prepared by the same <LB method, etc., and is cumulatively adhesively bonded to the first ii1 child transfer protein membrane 78. 80 is a plurality of parallel electrodes 77
A plurality of parallel electrodes are formed perpendicularly to the second electron transfer protein membrane 79.

また上記スイッチ素子の実際の構成は第10図に示す通
りとなる。
Further, the actual configuration of the above switch element is as shown in FIG.

即ち、第10図において、86は絶縁特性を持つ基板、
87はAg、Au、A1などの金属製電極で、基板86
上に複数条が平行に形成されている。88は基板86上
にLB法等により作成されたフラボトキシンからなる第
1電子伝達蛋白質膜で、上記複数条の電極87上に形成
されている。
That is, in FIG. 10, 86 is a substrate with insulating properties;
87 is a metal electrode such as Ag, Au, A1, etc., and the substrate 86
Multiple stripes are formed in parallel on the top. Reference numeral 88 denotes a first electron transfer protein film made of flavotoxin, which is formed on the substrate 86 by the LB method or the like, and is formed on the plurality of electrodes 87 described above.

90は上記複数条の平行電極87と直角方向に形成され
た複数条の平行電極で、上記第1電子伝達蛋白質膜88
上に形成されている。89は同じくLB法等により作成
されたチトクロームCからなる第2電子伝達蛋白質膜で
、第1電子伝達蛋白質膜88に累積して接着接合され、
電極90に接合されている。91は同じ<LB法等によ
り作成されたフラボトキシンからなる第3電子伝達蛋白
質膜で、上記第2電子伝達蛋白質膜8つに累積して接着
接合されている。92は上記複数条の平行電極90と直
角方向に形成された複数条の平行電極で、第3電子伝達
蛋白質膜91上に形成されている。
Reference numeral 90 denotes a plurality of parallel electrodes formed perpendicularly to the plurality of parallel electrodes 87, which are connected to the first electron transfer protein membrane 88.
formed on top. Reference numeral 89 denotes a second electron transfer protein film made of cytochrome C, which was also created by the LB method, etc., and is cumulatively adhesively bonded to the first electron transfer protein film 88.
It is joined to the electrode 90. Reference numeral 91 denotes a third electron transfer protein film made of flavotoxin prepared by the same <LB method, etc., which is cumulatively adhesively bonded to the eight second electron transfer protein films. A plurality of parallel electrodes 92 are formed perpendicularly to the plurality of parallel electrodes 90, and are formed on the third electron transfer protein membrane 91.

そして、上記各種の素子を用い、さらに配線に全方向に
電子伝達可能な導電性蛋白質を、絶縁体に電子伝達機能
のない蛋白質を用いることにより、蛋白質分子のみを用
いたモノリシックな生物電気素子回路を構成することが
できる。
By using the various elements mentioned above, and by using a conductive protein that can transfer electrons in all directions for the wiring and a protein that does not have an electron transfer function for the insulator, we have created a monolithic bioelectric device circuit using only protein molecules. can be configured.

即ち、第8図(C)は上記第3.4,5.6図のように
して整流素子り、−D、、スイッチ素子Tr、。
That is, FIG. 8(C) shows the rectifying elements -D, and the switching elements Tr as shown in FIGS. 3.4 and 5.6.

Tr2.抵抗素子R+ 、Rz  (R+ はり、、D
Tr2. Resistance element R+, Rz (R+ beam, D
.

からなり、R2はD! 、Daからなる)、コンデンサ
素子C4を用い、これらの間を第1図(a)、 (bl
に示す回路を構成するよう、誘電率の低い蛋白質分子(
絶縁性蛋白質分子)gにより絶縁しながら、全方向に電
子伝達可能な導電性蛋白質分子4を用いて配線すること
により、第8図(a)、 (b)の等価回路で表わされ
る回路を蛋白質のみからなるモノリシック回路素子とし
て構成したものであり、このようにして素子サイズが生
体分子レベルの超微細な大きさで高密度化、高速化の可
能な回路を得ることができる。
, R2 is D! , Da), and a capacitor element C4 is used, and the capacitor element C4 is used, and the capacitor element C4 is
Protein molecules with a low dielectric constant (
By wiring using conductive protein molecules 4 that can transfer electrons in all directions while being insulated by insulating protein molecules (g), the circuits represented by the equivalent circuits in Figures 8(a) and (b) can be constructed using protein molecules. In this way, it is possible to obtain a circuit whose element size is ultra-fine at the level of biomolecules and which is capable of high density and high speed.

第1図はこの発明の第1実施例によるハイブリッド回路
素子を示し、図において、1は基板、2は基vil上に
形成されたStデバイス層、3はSiデバイス層2表面
上の一部に形成された絶縁層、4は絶縁層3上に形成さ
れた、第8図に示したようなモノリシック生物電気素子
回路そある。ただしこれは勿論より簡単な構成の素子で
あってもよい。5は生物電気素子回路4とSiデバイス
層2とを電気的に接続するための配線である。そして本
実施例では、Siデバイス層2上に絶縁N3を介して生
物電気素子回路4を形成し、両者を配線により電気的に
接続している。
FIG. 1 shows a hybrid circuit element according to a first embodiment of the present invention. In the figure, 1 is a substrate, 2 is an St device layer formed on the base vil, and 3 is a part on the surface of the Si device layer 2. The formed insulating layer 4 is a monolithic bioelectrical device circuit as shown in FIG. 8 formed on the insulating layer 3. However, this may of course be an element with a simpler configuration. Reference numeral 5 denotes wiring for electrically connecting the bioelectric element circuit 4 and the Si device layer 2. In this embodiment, a bioelectric element circuit 4 is formed on the Si device layer 2 via an insulator N3, and the two are electrically connected by wiring.

このような本実施例では、同一基板上に生物電気素子回
路とSiデバイスを組み合わせて構成したので、生′#
J電気素子回路の高密度、高速度の素子特性と半導体素
子の特性とを併せ持った回路を得ることができる。
In this example, the bioelectrical element circuit and the Si device are combined on the same substrate, so the raw
It is possible to obtain a circuit that has both the high-density and high-speed device characteristics of a J electric device circuit and the characteristics of a semiconductor device.

第2図はこの発明の第2実施例によるバイブリフト回路
素子を示し、図において、第1図と同一符号は同じもの
を示す。本実施例では、Siデバイス層2表面全面上に
絶縁層3を介して生物電気素子回路4を形成し、絶8i
層3を通して配線5により両者3.4を接続し、生物電
気素子回路4とSiデバイス層2からなる多層構造を形
成している。
FIG. 2 shows a vibe lift circuit element according to a second embodiment of the present invention, in which the same reference numerals as in FIG. 1 indicate the same elements. In this example, a bioelectrical element circuit 4 is formed on the entire surface of the Si device layer 2 with an insulating layer 3 interposed therebetween.
Both 3.4 are connected by wiring 5 through layer 3, forming a multilayer structure consisting of bioelectrical element circuit 4 and Si device layer 2.

本実施例では、上記第1実施例と同様、画素子の長所を
生かした回路を得ることができるとともに、該回路の集
積度を向上させることができる。
In this embodiment, as in the first embodiment, it is possible to obtain a circuit that takes advantage of the advantages of the pixel element, and it is also possible to improve the degree of integration of the circuit.

〔発明の効果〕〔Effect of the invention〕

以上のようにこの発明によれば、生物電気素子と半導体
素子とからなるハイブリッド回路素子を構成したので、
生物電気素子と半導体素子の高密度、高速度の素子特性
と半導体素子の特性とを併せ持った回路を構成できる効
果がある。
As described above, according to the present invention, a hybrid circuit element consisting of a bioelectric element and a semiconductor element is constructed, so that
This has the effect of making it possible to construct a circuit that has both the high-density and high-speed characteristics of bioelectric devices and semiconductor devices, and the characteristics of semiconductor devices.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図、第2図はそれぞれこの発明の第1実施例及び第
2実施例によるハイブリッド回路素子を示す模式図、第
3図+a)は本発明者らが開発した整流素子の一例を示
す模式図、第3図(b)はそのレドックス電位状態を示
す図、第4図は本発明者らが開発したスイッチ素子の一
例を示す模式図、第5図は本発明者らが開発した抵抗素
子の一例を示す模式図、第6図は本発明者らが開発した
コンデンサ素子の一例を示す模式図、第7図は従来のM
O3構成の整流素子の一例を示す図、第8図は本発明者
らが開発したモノリシック生物電気素子回路を示す図、
第9図は本発明者らが開発した整流素子が組み込まれた
装置を示す模式的断面構成図、第10図は本発明者らが
開発したスイッチ素子かは絶縁層、4は生物電気素子回
路、5は配線である。 なお図中同一符号は同−又は相当部分を示す。
Fig. 1 and Fig. 2 are schematic diagrams showing hybrid circuit elements according to the first and second embodiments of the present invention, respectively, and Fig. 3 +a) is a schematic diagram showing an example of a rectifying element developed by the present inventors. 3(b) is a diagram showing the redox potential state, FIG. 4 is a schematic diagram showing an example of the switch element developed by the present inventors, and FIG. 5 is a diagram showing the resistance element developed by the present inventors. FIG. 6 is a schematic diagram showing an example of a capacitor element developed by the present inventors, and FIG. 7 is a schematic diagram showing an example of a capacitor element developed by the present inventors.
A diagram showing an example of a rectifying element with an O3 configuration, FIG. 8 is a diagram showing a monolithic bioelectric element circuit developed by the present inventors,
Fig. 9 is a schematic cross-sectional configuration diagram showing a device incorporating a rectifying element developed by the present inventors, Fig. 10 is an insulating layer of the switch element developed by the present inventors, and 4 is a bioelectric element circuit. , 5 is wiring. Note that the same reference numerals in the figures indicate the same or equivalent parts.

Claims (1)

【特許請求の範囲】[Claims] (1)電子伝達可能な生体材料あるいは擬似生体材料を
用いて構成された生物電気素子と、半導体素子とを一体
化し、かつ両者を配線により電気的に接続してなること
を特徴とするハイブリッド回路素子。
(1) A hybrid circuit characterized by integrating a bioelectrical element constructed using a biological material or pseudo-biological material capable of electron transfer and a semiconductor element, and electrically connecting the two with wiring. element.
JP61164198A 1986-07-11 1986-07-11 Hybrid circuit element Expired - Lifetime JPH0682827B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP61164198A JPH0682827B2 (en) 1986-07-11 1986-07-11 Hybrid circuit element
DE19873722941 DE3722941A1 (en) 1986-07-11 1987-07-10 HYBRID CIRCUIT ELEMENT AND METHOD FOR THE PRODUCTION THEREOF
US07/072,305 US4902555A (en) 1986-07-11 1987-07-13 Hybrid circuit element and method of manufacturing the same
US07/370,940 US5011786A (en) 1986-07-11 1989-06-23 Method of manufacturing a hybrid circuit element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61164198A JPH0682827B2 (en) 1986-07-11 1986-07-11 Hybrid circuit element

Publications (2)

Publication Number Publication Date
JPS6319865A true JPS6319865A (en) 1988-01-27
JPH0682827B2 JPH0682827B2 (en) 1994-10-19

Family

ID=15788538

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61164198A Expired - Lifetime JPH0682827B2 (en) 1986-07-11 1986-07-11 Hybrid circuit element

Country Status (1)

Country Link
JP (1) JPH0682827B2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5286077A (en) * 1976-01-09 1977-07-16 Dios Inc Supercompact device and method of manufacture thereof
JPS61141883A (en) * 1984-12-14 1986-06-28 Ajinomoto Co Inc Functional element coated with electrically conductive protein

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5286077A (en) * 1976-01-09 1977-07-16 Dios Inc Supercompact device and method of manufacture thereof
JPS61141883A (en) * 1984-12-14 1986-06-28 Ajinomoto Co Inc Functional element coated with electrically conductive protein

Also Published As

Publication number Publication date
JPH0682827B2 (en) 1994-10-19

Similar Documents

Publication Publication Date Title
US4902555A (en) Hybrid circuit element and method of manufacturing the same
JPS6319865A (en) Hybrid circuit element
JPS6319867A (en) Resistance element
JP2824329B2 (en) Variable capacitance diode device
JPS6319853A (en) Monolithic circuit element
JPH02304963A (en) Semiconductor integrated circuit
JPS63108763A (en) Semiconductor integrated circuit
US4646125A (en) Semiconductor device including Darlington connections
JPH02126665A (en) Semiconductor device
JPS6319859A (en) Bioelectric element circuit
JPS62244160A (en) Semiconductor device
JPS5857909B2 (en) Bipolar hand grip
JPS6319864A (en) Composite functional circuit
JPS6319858A (en) Bioelectric element circuit
JPS6319851A (en) Biological electric elements circuit
JPS63168051A (en) Complementary soi lateral insulated gate rectifier
JPS6319862A (en) Capacitor element
JPS6319861A (en) Resistance element
JPS6319852A (en) Biological electric element circuit
JPH036858A (en) Master-slice type semiconductor integrated circuit device
JPS6211257A (en) Microwave integrated circuit
JPS6112056A (en) Semiconductor device
JPS6319863A (en) Capacitor element
JPH05501479A (en) semiconductor switch
JPH01187965A (en) Protective circuit against surge voltage