JPS63190929A - Magnetic bearing control device - Google Patents

Magnetic bearing control device

Info

Publication number
JPS63190929A
JPS63190929A JP62021076A JP2107687A JPS63190929A JP S63190929 A JPS63190929 A JP S63190929A JP 62021076 A JP62021076 A JP 62021076A JP 2107687 A JP2107687 A JP 2107687A JP S63190929 A JPS63190929 A JP S63190929A
Authority
JP
Japan
Prior art keywords
signal
magnetic bearing
circuit
frequency band
proportional
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62021076A
Other languages
Japanese (ja)
Other versions
JPH0730790B2 (en
Inventor
Shigeki Morii
茂樹 森井
Keiichi Katayama
圭一 片山
Yoshitaka Ikeda
池田 嘉隆
Noriyuki Kawada
則幸 川田
Koichi Tokiyasu
時安 孝一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP62021076A priority Critical patent/JPH0730790B2/en
Publication of JPS63190929A publication Critical patent/JPS63190929A/en
Publication of JPH0730790B2 publication Critical patent/JPH0730790B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2360/00Engines or pumps
    • F16C2360/44Centrifugal pumps
    • F16C2360/45Turbo-molecular pumps

Landscapes

  • Magnetic Bearings And Hydrostatic Bearings (AREA)

Abstract

PURPOSE:To prevent the generation of vibration and to retain a floating body stably by subtracting the second signal which is obtained by passing one signal from a position sensor through a filter and a proportional circuit from the first signal which is the other signal from the position signal in its original condition, to be feedbacked to a magnetic bearing. CONSTITUTION:A signal from a position sensor 1 is divided into two signals. One signal is fed in its original condition as the first signal (a) to a + input end of a subtraction circuit 9, and the other signal has a frequency band portion which becomes more unstable force extracted by a filter 7, which is amplified by a proportional circuit 8 having a alpha-fold gain. After that, the signal is fed as the second signal (b) to - input terminal of the subtraction circuit 9. Thus, the signal (b) is subtracted from the signal (a) by the subtraction circuit 9. A signal (c) after such subtraction is input through a position feedback gain 2 to a control circuit 3. Thus the damping characteristics of a magnetic bearing is as shown by a solid line D, in which a dotted line portion of a frequency band of fC1-fC2 is changed into stabilization, so that natural frequencies in the frequency band are stabilized.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、ターボ分子ポンプや、コンプレッサ。[Detailed description of the invention] [Industrial application field] The present invention relates to turbo molecular pumps and compressors.

タービン、工作機械用スピンドル等の高速回転体用の磁
気軸受、さらにはテンター等の走行物浮上用の磁気軸受
等に適用される磁気軸受制御装置に関する。
The present invention relates to a magnetic bearing control device that is applied to magnetic bearings for high-speed rotating bodies such as turbines and spindles for machine tools, as well as magnetic bearings for floating moving objects such as tenters.

〔従来の技術〕[Conventional technology]

回転体や走行物を浮上保持する手段として電磁石を用い
た磁気軸受がある。この磁気軸受は従来の流体潤滑軸受
よりもロスが小さく、軸受のドライ化、雰囲気のクリー
ン化がはかれ、特に真空状態では有用な軸受である。
There are magnetic bearings that use electromagnets as a means of keeping rotating bodies and moving objects floating. This magnetic bearing has less loss than conventional fluid-lubricated bearings, allows for a dryer bearing, and a cleaner atmosphere, making it particularly useful in vacuum conditions.

この磁気軸受において、回転体や走行物の浮上位置を設
定する手段として、浮上物の浮上位置を計測し、その計
測信号に基いて電磁石に流す電流値を決め、電磁石から
発生する磁力の大きさを定める手段がある。
In this magnetic bearing, as a means of setting the floating position of a rotating body or a running object, the floating position of the floating object is measured, and based on the measurement signal, the current value to be passed through the electromagnet is determined, and the magnitude of the magnetic force generated from the electromagnet is determined. There is a means to determine.

第5図はその手段の制御系の構成を示すブロック線図で
ある。第5図において、位置センサ1は浮上物の位置(
変位)を測るためのセンサであり、渦電流変位計などが
その一例である。位置フィードバックゲイン2は、位置
センサ1で得られた信号の大きさを必要な大きさに比例
倍するためのものである。制御回路3は位置フィードバ
ックゲイン2で得られた信号を、電磁石4に適切な形に
して入力するための信号処理回路からなる。この信号処
理回路としては、例えばPID (比例−積分−微分)
回路や位相補償回路、さらにはその組み合わせ回路など
がある。電磁石4は鉄心にコイルが巻かれたものであり
、制御回路3がら供給された電流に応じて、浮上用の磁
力を発生するものである。
FIG. 5 is a block diagram showing the configuration of the control system of the means. In FIG. 5, the position sensor 1 detects the position of the floating object (
An example of this is an eddy current displacement meter. The position feedback gain 2 is for proportionally multiplying the magnitude of the signal obtained by the position sensor 1 to a required magnitude. The control circuit 3 includes a signal processing circuit for inputting the signal obtained by the position feedback gain 2 to the electromagnet 4 in an appropriate form. As this signal processing circuit, for example, PID (proportional-integral-derivative)
There are circuits, phase compensation circuits, and combination circuits. The electromagnet 4 has a coil wound around an iron core, and generates magnetic force for levitation in response to a current supplied from the control circuit 3.

制御回路3が比例要素(P要素)だけで構成された最も
簡単な位置フィードバック系を考えると、電磁石4の入
力Iと出力である磁力Fどの伝達関数は、コイル、鉄心
等の抵抗やインダクタンスにより以下の1次遅れ系にな
る。
Considering the simplest position feedback system in which the control circuit 3 is composed of only proportional elements (P elements), the transfer function of the input I of the electromagnet 4 and the magnetic force F which is the output is determined by the resistance and inductance of the coil, iron core, etc. It becomes the following first-order lag system.

F/I −KM / (1+7M・S)−(1)ここで
、K、は電磁石4のゲイン、TMは電磁石4の時定数、
Sはラプラス演算子である。よって、位置フィードバッ
ク系の計測変位りがら浮上物への力Fに至る伝達関数は
以下の通りとなる。
F/I −KM / (1+7M・S) − (1) Here, K is the gain of the electromagnet 4, TM is the time constant of the electromagnet 4,
S is a Laplace operator. Therefore, the transfer function from the measured displacement of the position feedback system to the force F to the floating object is as follows.

F/D=Kr −Kp−KM /(1+TM−8)      ・・・(2)ここで、
KFは位置フィードバックゲイン2の比例ゲイン、KP
は制御回路3の比例ゲインをそれぞれ示す。位置フィー
ドバック系の(力F)/(変位D)の周波数特性を見る
ため、ラプラス演算子5−j2πfとおき、(2)式に
代入する。
F/D=Kr-Kp-KM/(1+TM-8)...(2) Here,
KF is the proportional gain of position feedback gain 2, KP
represent the proportional gain of the control circuit 3, respectively. In order to see the frequency characteristics of (force F)/(displacement D) of the position feedback system, a Laplace operator 5-j2πf is set and substituted into equation (2).

ここでfは周波数(Hz )で j−−”了である。(カF)/(変位D)は複素数とな
り次のようにおく。
Here, f is the frequency (Hz) and is j--". (F)/(Displacement D) is a complex number and is expressed as follows.

F/D−KR(f)+j−KI (f)・・・(3) (3)式における(力F)/(変位D)の実部は周波数
fに依存した剛性を意味し、虚部は周波数fに依存した
減衰を意味する。(2)式のような1次遅れは虚部が常
に負となり、浮上物に対し減衰とは反対の不安定化力に
なる。
F/D-KR(f)+j-KI (f)...(3) In equation (3), the real part of (force F)/(displacement D) means the stiffness depending on the frequency f, and the imaginary part means attenuation dependent on frequency f. The imaginary part of the first-order lag as shown in equation (2) is always negative, and it becomes a destabilizing force on the floating object that is opposite to damping.

第6図は(力F)/(変位D)、すなわち(3)式の虚
部の値と周波数fとの関係を示す図である。
FIG. 6 is a diagram showing the relationship between (force F)/(displacement D), that is, the value of the imaginary part of equation (3), and frequency f.

第6図に示す点線Aが(2)式に対応するものであり、
上述の状態を示している。浮上物と位置フィードバック
系からなる固有振動数fcがもつ減衰、特に浮上物の減
衰より、第6図に示す周波数f−fcの所の値が大きい
と、その固有振動数は発散的に振動し、運転できなくな
る。
Dotted line A shown in FIG. 6 corresponds to equation (2),
The above state is shown. If the value of the frequency f-fc shown in Figure 6 is greater than the damping of the natural frequency fc of the floating object and the position feedback system, especially the damping of the floating object, the natural frequency will oscillate divergently. , and become unable to drive.

そこで、位置フィードバック系の(力F)/(変位D)
に減衰効果をもたすために、制御回路3に比例要素(P
要素)と並列に微分要素(D要素)または位相補償要素
を設ける。ここでは代表して微分要素(D要素)に例を
とる。微分要素(D要素)を制御回路3に回路として実
現すると、以下の1次遅れ系が付加された形となる。
Therefore, the position feedback system (force F)/(displacement D)
In order to provide a damping effect to the control circuit 3, a proportional element (P
A differential element (D element) or a phase compensation element is provided in parallel with the D element. Here, a differential element (D element) will be taken as a representative example. When the differential element (D element) is realized as a circuit in the control circuit 3, the following first-order lag system is added.

(微分要素)−KD−8/(1+TD−8)・・・(4
) ここで、KDは微分要素のゲイン、TDは時定数である
。微分要素だけの位置フィードバック系の(力F)/(
変位D)は以下の式となる。
(Differential element)-KD-8/(1+TD-8)...(4
) Here, KD is the gain of the differential element, and TD is the time constant. (Force F)/( of the position feedback system with only differential elements
The displacement D) is expressed by the following formula.

F / D = K FやKD−KM拳S/((1+T
D−8)(1+TM−8))・・・(5) (5)式の分子はSの1次で分母はSの2次になるため
、(5)式の虚部は第6図に示す一点鎖線Bのようにな
る。すなわち、周波数の低い領域では浮上物に対し減衰
効果をもち、高い領域では不安定化作用をもつ。浮上物
の位置を保持するためには、制御回路3には比例要素と
微分要素との併存が必要となる。このような制御回路3
の位置フィードバック系の(力F)/(変位D)はF 
/ D = K F ・ (KP+KD−8/(1+Tp−8))・KM /
 (1+TM −S)    ・・・(6)となり、第
6図に示した実線Cのようになり、上述した一点鎖線B
とほぼ同じ特性をもつ。浮上物と位置フィードバック系
からなる固有摂動数fcを、減衰効果を有する周波数の
低い領域に置くと、安定性が確保でき、振動を発生する
ことなく運転できる。
F/D = K F or KD-KM fist S/((1+T
D-8)(1+TM-8))...(5) Since the numerator of equation (5) is the first order of S and the denominator is the second order of S, the imaginary part of equation (5) is shown in Figure 6. It becomes like the dashed line B shown in FIG. That is, it has a damping effect on floating objects in a low frequency range, and a destabilizing effect in a high frequency range. In order to maintain the position of the floating object, the control circuit 3 requires the coexistence of a proportional element and a differential element. Such a control circuit 3
The (force F)/(displacement D) of the position feedback system is F
/ D = KF ・(KP+KD-8/(1+Tp-8))・KM/
(1+TM -S) ...(6), and becomes like the solid line C shown in FIG. 6, and the above-mentioned dashed line B
It has almost the same characteristics as . If the natural perturbation number fc consisting of the floating object and the position feedback system is placed in a low frequency range that has a damping effect, stability can be ensured and operation can be performed without generating vibrations.

このような特性を有する磁気軸受を、第7図(a)に示
す回転体5の軸受6として使用し、回転体5を浮上させ
る場合を考えると、次のような現象を呈する。回転体5
は、第7図(b)(c)(d)(e)(f)〜に示すよ
うに無限側の固有振動数を有する。回転体5自体の材料
等による減衰は、回転数以下の固有振動数に対しては不
安定化に働き、回転数以上の固有振動数に対しては減衰
作用として働く。
When a magnetic bearing having such characteristics is used as the bearing 6 of the rotating body 5 shown in FIG. 7(a) and the rotating body 5 is levitated, the following phenomenon occurs. Rotating body 5
has a natural frequency on the infinite side as shown in FIGS. 7(b), (c), (d), (e), and (f). The damping caused by the material of the rotating body 5 itself acts as a destabilizing effect for natural frequencies below the rotational speed, and acts as a damping effect for natural frequencies above the rotational speed.

したがって、磁気軸受6の位置フィードバック系の(力
F)/(変位D)の減衰効果を存する周波数領域に、回
転数以下の固有振動数をもってくる必要がある。しかし
、回転体5の固有振動数は第7図(b)(c)(d)(
e)(f)〜に示すように無限にあるため、必ず(力F
)/(変位D)の不安定化作用を有する周波数領域に固
有振動数がある。したがって、回転体5自体による固有
振動数が有する減衰よりも、磁気軸受6の位置フィード
バック系の不安定化作用が大きくなると不安定になり、
振動が発散的に大きくなり、回転させることができなく
なる。
Therefore, it is necessary to bring the natural frequency of the magnetic bearing 6's position feedback system below the rotational speed to the frequency range where the damping effect of (force F)/(displacement D) exists. However, the natural frequency of the rotating body 5 is
e) (f) Since there are infinitely many as shown in ~, it is certain that
)/(displacement D) There is a natural frequency in the frequency region that has a destabilizing effect. Therefore, if the destabilizing effect of the position feedback system of the magnetic bearing 6 becomes greater than the damping of the natural frequency of the rotating body 5 itself, it becomes unstable.
The vibrations become larger in a divergent manner, making it impossible to rotate.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上述したように、従来のものでは浮上物の位置を保持す
るために、浮上物の位置を位置センサ1で計測し、その
信号をフィードバックし、電磁石4から力を発生させる
ようにしているが、この力は浮上物を振動させる不安定
化力となる。そして制御回路3においてPID、位相補
償等の処理を行なっても、低周波数帯域は安定化(減衰
)力になるが、中高周波数帯域では依然として大きな不
安定化力を有している。しかるに回転体のような無限側
の固有振動数を有する浮上物では、不安定化力となる周
波数帯域に固有振動数が必ず存在しているため、磁気軸
受6により発散的な振動を発生することになる。
As mentioned above, in the conventional device, in order to maintain the position of the floating object, the position of the floating object is measured by the position sensor 1, the signal is fed back, and force is generated from the electromagnet 4. This force becomes a destabilizing force that causes the floating object to vibrate. Even if processing such as PID and phase compensation is performed in the control circuit 3, it becomes a stabilizing (damping) force in the low frequency band, but it still has a large destabilizing force in the middle and high frequency bands. However, in a floating object such as a rotating body that has a natural frequency on the infinite side, the natural frequency always exists in the frequency band that causes a destabilizing force, so the magnetic bearing 6 generates divergent vibrations. become.

そこで本発明は、指定された周波数帯域において、磁気
軸受が発生する不安定化力を安定化力に変更し得、発散
的な振動発生を防止でき、浮上物を安定に浮上保持し得
る磁気軸受制御装置を提供することを目的とする。
Therefore, the present invention provides a magnetic bearing that can change the destabilizing force generated by the magnetic bearing into a stabilizing force in a specified frequency band, prevent the generation of divergent vibrations, and stably hold a floating object. The purpose is to provide a control device.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は上記問題点を解決し目的を達成するために、次
のような手段を講じた。すなわち、浮上物に対する位置
センサからの信号を磁気軸受へフィードバックし、PI
D (比例、積分、微分)や位相補償等の制御を行ない
、磁気軸受を能動的に用いるようにした磁気軸受制御装
置において、前記位置センサからの信号を二つに分け、
一方の信号をそのまま第1の信号とし、他方の信号を安
定化すべき所定の周波数が通過周波数帯域であるフィル
タおよび比例回路を通過させて第2の信号とし、前記第
1の信号から第2の信号を減じた信号を磁気軸受へフィ
ードバックするようにした。
In order to solve the above-mentioned problems and achieve the object, the present invention takes the following measures. In other words, the signal from the position sensor for the floating object is fed back to the magnetic bearing, and the PI
D In a magnetic bearing control device that performs control such as proportional, integral, and differential (proportional, integral, differential) and phase compensation, and actively uses a magnetic bearing, the signal from the position sensor is divided into two,
One signal is used as a first signal, the other signal is passed through a filter and a proportional circuit whose pass frequency band is a predetermined frequency to be stabilized, and a second signal is obtained. The reduced signal is fed back to the magnetic bearing.

〔作用〕[Effect]

このような手段を講じたことにより、次のような作用を
呈する。すなわち不安定化力となる周波数帯域部分のみ
がフィルタにより抽出され、これが比例回路により増幅
されたのち元の信号から減じられるので、フィードバッ
クされる信号のうち不安定化力となる周波数帯域部分は
、元の信号とは極性が反転(位相が180’異なる)さ
れたものとなる。その結果、磁気軸受が発生する力はす
べて安定化力に変更される。
By taking such measures, the following effects are achieved. In other words, only the frequency band portion that is a destabilizing force is extracted by a filter, this is amplified by a proportional circuit, and then subtracted from the original signal, so the frequency band portion that is a destabilizing force of the feedback signal is The polarity is inverted (the phase differs by 180') from the original signal. As a result, all forces generated by the magnetic bearing are converted into stabilizing forces.

〔実施例〕〔Example〕

第1図は本発明の一実施例における制御系の構成を示す
ブロック線図である。なお第5図と同一機能を有する部
分には同一符号を付しである。
FIG. 1 is a block diagram showing the configuration of a control system in an embodiment of the present invention. Note that parts having the same functions as those in FIG. 5 are given the same reference numerals.

第1図において、7は不安定化力となる周波数帯域部分
を通過させるフィルタであり、8は信号増幅を行なう比
例回路であり、9は減算回路である。
In FIG. 1, 7 is a filter that passes a frequency band portion that is a destabilizing force, 8 is a proportional circuit for signal amplification, and 9 is a subtraction circuit.

第2図はフィルタフのゲイン特性を示す図である。第2
図に示すように、フィルタ7は、安定化すべき所定の周
波数帯域すなわち周波数fがfcm〜fc2の帯域に通
過特性(ゲイン1)を有している。
FIG. 2 is a diagram showing the gain characteristics of the filter. Second
As shown in the figure, the filter 7 has a pass characteristic (gain 1) in a predetermined frequency band to be stabilized, that is, a band where the frequency f is fcm to fc2.

かくして位置センサ1からの信号は二つに分離され、そ
の一方の信号はそのまま第1の信号aとして減算回路9
の(+)入力端へ供給され、他方の信号はフィルタフに
より不安定化力となる周波数帯域部分が抽出され、かつ
α倍のゲインを有する比例回路8により増幅されたのち
、第2の信号すとして前記減算回路9の(−)入力端へ
供給される。したがって減算回路9により第1の信号a
から第2の信号すが減じられる。このような減算が行な
われたのちの信号Cは、位置フィードバックゲイン2を
経由して制御回路3に入力する。
In this way, the signal from the position sensor 1 is separated into two, and one of the signals is directly sent to the subtraction circuit 9 as the first signal a.
The other signal is supplied to the (+) input terminal of The signal is supplied to the (-) input terminal of the subtraction circuit 9 as a signal. Therefore, the subtraction circuit 9 converts the first signal a
A second signal is subtracted from. The signal C after such subtraction is input to the control circuit 3 via the position feedback gain 2.

磁気軸受の(力F)/(変位D)が(3)式で表される
ものとすると、第1の信号aの経路では周波数fの全帯
域で F/D−KR(f) 十j−に1 (f)・・・(7) となる。また第2の信号すの経路ではフィルタ7と比例
回路8を通過しているため、fcm〜fc2の帯域にお
いては、 F/D−αΦKR(f)+jα・Kr  (f)・・・
(8−1) となり、fc1〜fc2以外の帯域においては、F/D
−0(8−2) となる。そして最終的には第1の信号aから第2の信号
すが減じられるので、信号Cの経路では、fcm〜fc
2の帯域においては、 F/D−(1−α)争KR(j) +j (1−α)・KI  (f) ・・・(9−1) となり、fc1〜fc2以外の帯域においては、F/D
−KR(f)+j −Kr  (f)・・・(9−2) となる。上記(9−1)式の値は、比例回路8のゲイン
αが「1」以上であれば、符号の極性が反転することに
なる。
Assuming that (force F)/(displacement D) of the magnetic bearing is expressed by equation (3), in the path of the first signal a, F/D-KR(f) +j- in the entire frequency band of f. 1 (f)...(7). Also, since the second signal path passes through the filter 7 and the proportional circuit 8, in the band fcm to fc2, F/D-αΦKR(f)+jα·Kr(f)...
(8-1), and in bands other than fc1 to fc2, F/D
-0(8-2). Finally, the second signal is subtracted from the first signal a, so in the path of signal C, fcm to fc
In the band No. 2, F/D-(1-α) conflict KR(j) +j (1-α)・KI (f) ...(9-1), and in bands other than fc1 to fc2, F/D
-KR(f)+j -Kr(f) (9-2). As for the value of the above equation (9-1), if the gain α of the proportional circuit 8 is "1" or more, the polarity of the sign will be reversed.

第3図(a)(b)(c)は、比例回路8のゲインαを
「2」としたときの、各経路におけるfc1〜fc2の
帯域の信号波形を示す図である。
FIGS. 3(a), 3(b), and 3(c) are diagrams showing signal waveforms in the band fc1 to fc2 in each path when the gain α of the proportional circuit 8 is set to "2".

同図(a)は第1の信号aの波形であり、同図(b)は
第2の信号すの波形であり、同図(c)は減算後の信号
Cの波形である。同図(c)に示すように、上記信号C
は極性が反転している。
3A shows the waveform of the first signal a, FIG. 2B shows the waveform of the second signal A, and FIG. 1C shows the waveform of the signal C after subtraction. As shown in the same figure (c), the above signal C
has reversed polarity.

かくして磁気軸受の減衰特性は第4図の実線りで示すよ
うになり、fc工〜fc2の周波数帯域における点線E
の部分が安定化力に変更されたものとなる。したがって
上記周波数帯域にある固有振動数は安定化される。なお
上記安定化に寄与する減衰量は、比例回路8のゲインα
の値を適宜調節することにより、不安定化力に対応した
適切な値に設定可能である。したがって上記安定化は確
実に行なわれ、発散的な振動の発生が防止される。
In this way, the damping characteristics of the magnetic bearing are shown by the solid line in Fig. 4, and the dotted line E in the frequency band from fc to fc2.
The part has been changed to a stabilizing force. Therefore, the natural frequencies in the above frequency band are stabilized. Note that the amount of attenuation that contributes to the above stabilization is the gain α of the proportional circuit 8.
By appropriately adjusting the value of , it is possible to set an appropriate value corresponding to the destabilizing force. Therefore, the above-mentioned stabilization is performed reliably, and the occurrence of divergent vibrations is prevented.

なお本発明は前記各実施例に限定されるものではない。Note that the present invention is not limited to the above embodiments.

例えば前記実施例では、フィルタ7、比例回路8.減算
器9からなる回路を、位置センサ1と位置フィードバッ
クゲイン2との間に設けた場合を例示したが、磁気軸受
制御系内の他の部分に設けるようにしてもよい。また前
記実施例では、周波数fcm〜fc2までの一つの周波
数帯域についてのみ安定化をはかる場合を例示したが、
浮上物および磁気軸受の特性等に応じて複数個の周波数
帯域あるいは所定周波数たとえばfc1以上の全帯域に
ついて安定化をはかるようにしてもよい。このほか本発
明の要旨を逸脱しない範囲で種々変形実施可能であるの
は勿論である。
For example, in the embodiment described above, the filter 7, the proportional circuit 8. Although the circuit including the subtracter 9 is provided between the position sensor 1 and the position feedback gain 2 as an example, it may be provided in other parts of the magnetic bearing control system. Further, in the above embodiment, the case where stabilization is attempted only for one frequency band from frequency fcm to fc2 was exemplified;
Depending on the characteristics of the floating object and the magnetic bearing, stabilization may be achieved in a plurality of frequency bands or in all bands above a predetermined frequency, for example, fc1. It goes without saying that various other modifications can be made without departing from the gist of the present invention.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、位置センサからの信号を部分し、一方
の信号をそのまま第1の信号とし、他方の信号を安定化
すべき周波数帯域が通過域であるフィルタおよび比例回
路を通過させて第2の信号とし、前記第1の信号から第
2の信号を減算した信号を磁気軸受へフィードバックす
るようにしたので、指定された周波数帯域において、不
安定化力を安定化力(減衰力)に変更し得、発散的な振
動発生を防止でき、浮上物を安定に浮上保持させ得る磁
気軸受制御装置を提供できる。
According to the present invention, a signal from a position sensor is divided into parts, one signal is used as a first signal, and the other signal is passed through a filter and a proportional circuit whose passband is the frequency band to be stabilized. Since the signal obtained by subtracting the second signal from the first signal is fed back to the magnetic bearing, the destabilizing force is changed to a stabilizing force (damping force) in the specified frequency band. Therefore, it is possible to provide a magnetic bearing control device that can prevent the occurrence of divergent vibrations and stably hold a floating object floating.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図〜第4図は本発明の一実施例を示す図で、第1図
は制御系の構成を示すブロック線図、第2図はフィルタ
のゲイン−周波数特性を示す図、第3図(a)(b)(
c)は各経路における所定周波数帯域の信号波形を示す
図、第4図は磁気軸受の減衰特性を示す図である。第5
図〜第7図(a)・・・Cf>〜は従来例を示す図で、
第5図は制御系の構成を示すブロック線図、第6図は磁
気軸受の減衰特性を示す図、第7図(a)・・・(f)
〜は回転体とその固有振動数とを示す図である。 1・・・位置センサ、2・・・位置フィードバックゲイ
ン、3・・・制御回路、4・・・電磁石、5・・・回転
体、6・・・磁気軸受、7・・・フィルタ、8・・・比
例回路、9・・・減算回路。 出願人代理人 弁理士 鈴江武彦 第2図 =1 第4図 第5図 第6図
Figures 1 to 4 are diagrams showing one embodiment of the present invention, in which Figure 1 is a block diagram showing the configuration of the control system, Figure 2 is a diagram showing the gain-frequency characteristics of the filter, and Figure 3 is a diagram showing an embodiment of the present invention. (a)(b)(
c) is a diagram showing the signal waveform of a predetermined frequency band in each path, and FIG. 4 is a diagram showing the damping characteristics of the magnetic bearing. Fifth
Figures to Figure 7(a)...Cf>~ are diagrams showing conventional examples,
Fig. 5 is a block diagram showing the configuration of the control system, Fig. 6 is a diagram showing the damping characteristics of the magnetic bearing, and Fig. 7 (a)...(f)
- is a diagram showing a rotating body and its natural frequency. DESCRIPTION OF SYMBOLS 1... Position sensor, 2... Position feedback gain, 3... Control circuit, 4... Electromagnet, 5... Rotating body, 6... Magnetic bearing, 7... Filter, 8... ...Proportional circuit, 9...Subtraction circuit. Applicant's agent Patent attorney Takehiko Suzue Figure 2 = 1 Figure 4 Figure 5 Figure 6

Claims (1)

【特許請求の範囲】[Claims] 浮上物に対する位置センサからの信号を磁気軸受へフィ
ードバックし、PID(比例、積分、微分)や位相補償
等の制御を行ない、磁気軸受を能動的に用いるようにし
た磁気軸受制御装置において、前記位置センサからの信
号を二つに分け、一方の信号をそのまま第1の信号とし
、他方の信号を安定化すべき所定の周波数が通過周波数
帯域であるフィルタおよび比例回路を通過させて第2の
信号とし、前記第1の信号から第2の信号を減じた信号
を磁気軸受へフィードバックするようにしたことを特徴
とする磁気軸受制御装置。
In a magnetic bearing control device that actively uses a magnetic bearing by feeding back a signal from a position sensor for a floating object to a magnetic bearing and controlling PID (proportional, integral, differential), phase compensation, etc. The signal from the sensor is divided into two, one signal is used as the first signal, and the other signal is passed through a filter and proportional circuit whose pass frequency band is a predetermined frequency to be stabilized, and becomes the second signal. A magnetic bearing control device, characterized in that a signal obtained by subtracting the second signal from the first signal is fed back to the magnetic bearing.
JP62021076A 1987-01-31 1987-01-31 Magnetic bearing control device Expired - Fee Related JPH0730790B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62021076A JPH0730790B2 (en) 1987-01-31 1987-01-31 Magnetic bearing control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62021076A JPH0730790B2 (en) 1987-01-31 1987-01-31 Magnetic bearing control device

Publications (2)

Publication Number Publication Date
JPS63190929A true JPS63190929A (en) 1988-08-08
JPH0730790B2 JPH0730790B2 (en) 1995-04-10

Family

ID=12044798

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62021076A Expired - Fee Related JPH0730790B2 (en) 1987-01-31 1987-01-31 Magnetic bearing control device

Country Status (1)

Country Link
JP (1) JPH0730790B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59212519A (en) * 1983-05-14 1984-12-01 Ntn Toyo Bearing Co Ltd Control device of magnetic bearing
JPS6014619A (en) * 1983-07-05 1985-01-25 Ntn Toyo Bearing Co Ltd Magnetic bearing control device
JPS6091020A (en) * 1983-09-30 1985-05-22 Ntn Toyo Bearing Co Ltd Control device of magnetic bearing

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59212519A (en) * 1983-05-14 1984-12-01 Ntn Toyo Bearing Co Ltd Control device of magnetic bearing
JPS6014619A (en) * 1983-07-05 1985-01-25 Ntn Toyo Bearing Co Ltd Magnetic bearing control device
JPS6091020A (en) * 1983-09-30 1985-05-22 Ntn Toyo Bearing Co Ltd Control device of magnetic bearing

Also Published As

Publication number Publication date
JPH0730790B2 (en) 1995-04-10

Similar Documents

Publication Publication Date Title
Bleuler et al. Application of digital signal processors for industrial magnetic bearings
US4795927A (en) Control system for a magnetic type bearing
JP3463218B2 (en) Magnetic bearing device
JPS6166541A (en) Controlled radial magnetic bearing device
JPS63190929A (en) Magnetic bearing control device
Hendrickson et al. Application of magnetic bearing technology for vibration free rotating machinery
JPS62258221A (en) Magnetic bearing control system
JP3110204B2 (en) Magnetic bearing control device
JP3306893B2 (en) Magnetic bearing device
JPS62258220A (en) Magnetic beraing control system
Yoo et al. Optimal notch filter for active magnetic bearing controllers
JPS62297533A (en) Magnetic bearing controller
JP2575862B2 (en) Magnetic bearing control device
JPS62258219A (en) Magnetic bearing control system
JPH01137302A (en) Controller for magnetic bearing
JP2522168Y2 (en) Magnetic bearing control device
JPH0570729B2 (en)
JPH01150016A (en) Magnetic bearing controller
JPH01150015A (en) Magnetic bearing controller
JPS62258222A (en) Magnet bearing control system
Weise Present industrial applications of active magnetic bearings
JPH0534336Y2 (en)
JPH08200364A (en) Control method for magnetic bearing and device thereof
Janhunen et al. Modeling and PID-control design for bearingless high speed motor drive
JPH01182648A (en) Axial vibration reducer for rotary machine

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees