JPS62258222A - Magnet bearing control system - Google Patents

Magnet bearing control system

Info

Publication number
JPS62258222A
JPS62258222A JP10225886A JP10225886A JPS62258222A JP S62258222 A JPS62258222 A JP S62258222A JP 10225886 A JP10225886 A JP 10225886A JP 10225886 A JP10225886 A JP 10225886A JP S62258222 A JPS62258222 A JP S62258222A
Authority
JP
Japan
Prior art keywords
position sensor
signal
force
magnetic bearing
floating object
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10225886A
Other languages
Japanese (ja)
Inventor
Shigeki Morii
茂樹 森井
Keiichi Katayama
圭一 片山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP10225886A priority Critical patent/JPS62258222A/en
Publication of JPS62258222A publication Critical patent/JPS62258222A/en
Pending legal-status Critical Current

Links

Landscapes

  • Magnetic Bearings And Hydrostatic Bearings (AREA)

Abstract

PURPOSE:To reduce the instability-oriented force occurring in the medium & high frequency domains so as to ensure the stable floating state of a floating object, by adding the signal from the second position sensor to that from the first position sensor, after the signal from the second position sensor has passed through the high-pass filter or the bandpass filter, and then feeding back the result. CONSTITUTION:After it passes through a fitler 8, the signal from the second position sensor 7 is added by an adding machine 9 to the signal from the first position sensor 1, whose phase is deviated from that of the sensor 7 by 180 deg.. The signal thus added passes through the position feed-back gain 2 and is input into a control circuit 3. Accordingly, a relation, the force F of a magnetic bearing/displacement D of the bearing, obtained only through the route of the first position sensor 1 remains as before. On the contrary, the signal obtained only through the route of the second position sensor 7 is diametrically opposite to that obtained through the first sensor 1. However, all things considered, since both are added together, we get F/D=0 for the frequency f exceeding the cut-off frequency fc. Accordingly, the instability-oriented force is reduced, thereby decreasing the possibility of occurrence of the convergence- tending vibration. Thus, a floating object can be kept afloat in a stable manner for the medium & high frequency domains.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はターボ分子ポンプや、コンプレッサ。[Detailed description of the invention] [Industrial application field] The present invention is a turbo molecular pump or a compressor.

タービン、工作機械用スピンドル等の高速回転体、さら
にはテンター等の走行物浮上用の磁気軸受に適用される
磁気軸受の制御方式に関する。
The present invention relates to a control system for magnetic bearings applied to high-speed rotating bodies such as turbines and spindles for machine tools, as well as magnetic bearings for floating moving objects such as tenters.

【従来の技術〕[Conventional technology]

回転体や走行物を浮上保持する手段として電磁石を用い
た磁気軸受がある。この磁気軸受は従来の流体潤滑軸受
よりもロスが小さく、軸受のドライ化、雰囲気のクリー
ン化がはかれ、特に真空状態では何月な軸受である。
There are magnetic bearings that use electromagnets as a means of keeping rotating bodies and moving objects floating. This magnetic bearing has less loss than conventional fluid-lubricated bearings, allows for a dry bearing and a cleaner atmosphere, and is particularly durable in vacuum conditions.

この磁気軸受において、回転体や走行物の浮上位置を設
定する手段として、浮上物の位置を計測し、その計測信
号に基いて電磁石に流す電流値を決め、電磁石から発生
する磁力の大きさを定める手段がある。
In this magnetic bearing, as a means of setting the floating position of a rotating body or a running object, the position of the floating object is measured, the current value to be passed through the electromagnet is determined based on the measurement signal, and the magnitude of the magnetic force generated from the electromagnet is determined. There are means to determine this.

第6図はその手段を示すブロック−線図である。FIG. 6 is a block diagram showing the means.

第6図において、位置センサ1は浮上物の位置(変位)
を測るためのセンサであり、過電流変位計などがその1
例である。位置フィードバックゲイン2は、位置センサ
1で得られた信号の大きさを必要な大きさに比例倍する
ためのものである。
In Fig. 6, the position sensor 1 indicates the position (displacement) of the floating object.
It is a sensor for measuring
This is an example. The position feedback gain 2 is for proportionally multiplying the magnitude of the signal obtained by the position sensor 1 to a required magnitude.

制御回路3は位置フィードバックゲイン2で得られた信
号を電磁石4に適切な形にして入力するための処理回路
であり、例としてはPID (比例−積分−微分)回路
や位相補償回路、その組み合わせなどがある。電磁石4
は鉄心にコイルが巻かれたものであり、制御回路3から
入力された電流に応じて、浮上用の磁力を発生するもの
である。
The control circuit 3 is a processing circuit for inputting the signal obtained by the position feedback gain 2 to the electromagnet 4 in an appropriate form, and examples thereof include a PID (proportional-integral-derivative) circuit, a phase compensation circuit, and a combination thereof. and so on. Electromagnet 4
A coil is wound around an iron core, and it generates magnetic force for levitation according to the current input from the control circuit 3.

制御回路3が比例要素(P要素)だけで構成された最も
簡単な位置フィードバック系を考える。
Consider the simplest position feedback system in which the control circuit 3 consists of only proportional elements (P elements).

7ti磁石4の人力Iと出力である磁力Fとの伝達関数
は、コイル、鉄心等の抵抗やインダクタンスにより以下
の1次遅れ系になる。
The transfer function between the human force I of the 7ti magnet 4 and the output magnetic force F becomes the following first-order lag system due to the resistance and inductance of the coil, iron core, etc.

F/I蒙に+4/(1+TM−5)・・・(1)ここで
、KMは電磁石4のゲイン、TMは電磁石4の時定数、
Sはラプラス演算子である。よって、位置フィードバッ
ク系の計測する変位りから浮上物への力Fの伝達関数は
以下の通りとなる。
F/I +4/(1+TM-5)...(1) Here, KM is the gain of electromagnet 4, TM is the time constant of electromagnet 4,
S is a Laplace operator. Therefore, the transfer function of the force F from the displacement measured by the position feedback system to the floating object is as follows.

F/D=Kp−Kp・KM /(1+TM−8)       ・・・(2)ここで
、KFは位置フィードバックゲイン2゜K pは制御回
路3の比例ゲインを示す。位置フィードバック系の(力
F)/(変位D)の周波数特性を見るため、ラプラス演
算子5−j2πfとおき、(2)に代入する。ここでf
は一周波数(Hz )で j−J二:コーである。(力
F)/(変位D)は)(素数となり次のようにおく。
F/D=Kp-Kp.KM/(1+TM-8) (2) where KF is position feedback gain 2°Kp indicates proportional gain of control circuit 3. In order to see the frequency characteristics of (force F)/(displacement D) of the position feedback system, a Laplace operator 5-j2πf is set and substituted into (2). Here f
is j-J2:co at one frequency (Hz). (Force F)/(Displacement D) is a prime number and is written as follows.

F / D = K R・(f) 十j−Kt・(f)
・・・(3) (3)式における(力F)/(変位D)の実部は周波数
fに依存した剛性を、虚部は周波数fに依存した減衰を
意味する。(2)式のような1次遅れは虚部が常に負と
なり、浮上物に対し減衰とは反対の不安定化力になる。
F / D = K R・(f) 1j−Kt・(f)
(3) In equation (3), the real part of (force F)/(displacement D) means stiffness that depends on frequency f, and the imaginary part means damping that depends on frequency f. The imaginary part of the first-order lag as shown in equation (2) is always negative, and it becomes a destabilizing force on the floating object that is opposite to damping.

第7図は(力F)/(変位D)、すなわち(3)式の虚
部の値と周波数fとの関係を示す図である。
FIG. 7 is a diagram showing the relationship between (force F)/(displacement D), that is, the value of the imaginary part of equation (3), and frequency f.

第7図に示す点線Aが(2)式に対応するものであり、
上述の状態を示している。浮上物と位置フィードバック
系からなる固有振動数fcがもつ減衰、特に浮上物の減
衰より、第7図に示す周波数f−fcの所の値が大きい
と、その固有振動数は発散的に振動し、運転できなくな
る。
Dotted line A shown in FIG. 7 corresponds to equation (2),
The above state is shown. If the value of the frequency f-fc shown in Figure 7 is greater than the damping of the natural frequency fc of the floating object and the position feedback system, especially the damping of the floating object, the natural frequency will oscillate divergently. , and become unable to drive.

そこで、位置フィードバック系の(力F)/(変位D)
に減衰効果をもたすために、制御回路3に比例要素(P
要素)と並列に微分要素(D要素)、または位相補償要
素を設ける。ここでは代表して微分要素を例とする。微
分要素(D要素)を制御回路3に回路として実現すると
、以下の1次遅れ系となる。
Therefore, the position feedback system (force F)/(displacement D)
In order to provide a damping effect to the control circuit 3, a proportional element (P
A differential element (D element) or a phase compensation element is provided in parallel with the D element. Here, a differential element will be taken as a representative example. When the differential element (D element) is realized as a circuit in the control circuit 3, the following first-order lag system is obtained.

(微分要素)−KD−S/1+TD−8・・・(4) ここで、KDは微分要素のゲイン、TDは時定数である
。微分要素だけの位置フィードバック系の(力F)/(
変位D)は以下の式となる。
(Differential element)-KD-S/1+TD-8 (4) Here, KD is the gain of the differential element, and TD is the time constant. (Force F)/( of the position feedback system with only differential elements
The displacement D) is expressed by the following formula.

F/D−KF −Ko−KuΦS /((1+TD−8)(1+TM−8))・・・(5) (5)式の分子はSの1次で分母はSの2次になるため
、(5)式の虚部は第7図に示す一点鎖線Bのようにな
る。すなわち、周波数の低い領域では浮上物に対し減衰
効果を、高い領域では不安定化作用をもつ。浮上物の位
置を保持するため、制御回路3には比例要素と微分要素
との併存が必要となる。このような制御回路3の位置フ
ィードバック系の(力F)/(変位D)は F/D−KF ・ fKp +KD−S/ (1+TD−3)]・KM
/(1+TM−8)    ・・・(6)となり、第7
図に示した実線Cのようになり、上述と同じ特性をもつ
。浮上物と位置フィードバック系からなる固有振動数f
Cを減衰効果を有する周波数の低い領域に置くと、安定
性が確保でき、振動を発生することなく運転できる。
F/D-KF -Ko-KuΦS /((1+TD-8)(1+TM-8))...(5) Since the numerator of equation (5) is the first order of S and the denominator is the second order of S, The imaginary part of equation (5) is as shown by the dashed-dotted line B in FIG. That is, it has a damping effect on floating objects in a low frequency range, and a destabilizing effect in a high frequency range. In order to maintain the position of the floating object, the control circuit 3 must include a proportional element and a differential element. The (force F)/(displacement D) of the position feedback system of the control circuit 3 is F/D-KF ・fKp +KD-S/ (1+TD-3)]・KM
/(1+TM-8) ...(6), and the seventh
It becomes like the solid line C shown in the figure, and has the same characteristics as described above. Natural frequency f consisting of floating object and position feedback system
If C is placed in a low frequency range that has a damping effect, stability can be ensured and operation can be performed without generating vibrations.

このような特性を有する磁気軸受を第8図(a)に示す
回転体5の軸受6に使用し、回転体5を浮上させる場合
を考えると、次のよう−な現象を呈する。回転体5は第
8図(b)(c)(d)(e)(f)〜に示すように無
限側の固有振動数を有する。回転体5自体の材料等の減
衰は、回転数以下の固釘振動数に対しては不安定化に働
き、回転数以上の固有振動数に対しては減衰作用として
働く。
When a magnetic bearing having such characteristics is used as the bearing 6 of the rotating body 5 shown in FIG. 8(a) and the rotating body 5 is levitated, the following phenomenon occurs. The rotating body 5 has a natural frequency on the infinite side as shown in FIGS. 8(b), (c), (d), (e), and (f). The damping of the material of the rotating body 5 itself works to destabilize the fixed nail vibration frequency below the rotation speed, and acts as a damping effect on the natural vibration frequency above the rotation speed.

したがって、磁気軸受の位置フィードバック系の(力F
)/(変位D)の減衰効果を有する周波数頭域に回転数
以下の固有振動数をもってくる必要がある。しかし、回
転体5の固有振動数は第8図(b)(c)<d)(e)
(f)〜に示すように無限にあるため、必ず(力F)/
(変位D)の不安定化作用を有する周波数領域に固有振
動数がある。したがって、回転体5自体による固有振動
数が有する減衰よりも磁気軸受の位置フィードバック系
の不安定化作用が大きくなると不安定になり、振動が発
散的に大きくなり、回転させることができなくなる。
Therefore, the (force F
)/(displacement D) It is necessary to bring the natural frequency below the rotational speed to the frequency range that has the damping effect. However, the natural frequency of the rotating body 5 is as shown in Fig. 8(b)(c)<d)(e).
(f) As shown in ~, there is an infinite number of forces, so (force F)/
There is a natural frequency in the frequency region that has the destabilizing effect of (displacement D). Therefore, if the destabilizing effect of the position feedback system of the magnetic bearing becomes greater than the damping of the natural frequency of the rotating body 5 itself, the rotating body 5 becomes unstable, the vibration increases divergently, and rotation becomes impossible.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

」―記従来の磁気軸受の制御方式では、浮上物の位置を
保持するため浮上物の位置を計測し、その信号をフィー
ドバックし、電磁石から力を発生させるようにしている
が、この力は浮上物を振動させる不安定化力となる。そ
して、制御回路3(;PID、位t0補償等の処理を行
なっても、低周波数領域では安定化(減衰)力になるが
、中高周波数領域では依然として大きな不安定化力を有
している。したがって、回転体のような無限側の固有振
動数を有する浮上物では、不安定化力となる領域に固を
振動数が必ず有り、磁気軸−受により発散的な振動を発
生することになる。
” - In the conventional magnetic bearing control system, in order to maintain the position of the floating object, the position of the floating object is measured, the signal is fed back, and force is generated from the electromagnet. It becomes a destabilizing force that causes things to vibrate. Even if the control circuit 3 performs processing such as PID and position t0 compensation, it becomes a stabilizing (damping) force in the low frequency range, but still has a large destabilizing force in the middle and high frequency ranges. Therefore, in a floating object such as a rotating body that has a natural frequency on the infinite side, there is always a fixed frequency in the region that causes destabilizing force, and the magnetic bearing causes divergent vibrations. .

そこで本発明は、中高周波数領域において磁気軸受が発
生する不安定化力を低減させることができ、発散的な振
動発生を防止し得る磁気軸受の制御方式を提供すること
を目的とする。
SUMMARY OF THE INVENTION Therefore, an object of the present invention is to provide a control method for a magnetic bearing that can reduce the destabilizing force generated by the magnetic bearing in the medium and high frequency range and can prevent the generation of divergent vibrations.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は上記問題点を解決し目的を達成するために、次
のような手段を3B4じた。すなわち、浮上物に対する
位置センサからの信号をフィードバックし、位相補償等
の制御を行ない能動的に用いるようにした磁気軸受の制
御方式において、浮上物の正側の位置を計測するように
配置した第1の位置センサのほかに、上記浮上物の反対
側の位置をM1定する第2の位置センサを設け、この第
2の位置センサからの信号を高域通過フィルタまたは帯
域通過フィルタに通したのち、第1の位置センサからの
信号に加算し、加算後の信号を磁気軸受の電磁石へフィ
ードバックするようにした。
In order to solve the above-mentioned problems and achieve the object, the present invention takes the following measures. In other words, in a magnetic bearing control system in which signals from a position sensor relative to a floating object are fed back to perform phase compensation and other control and are actively used, a magnetic bearing that is placed so as to measure the positive position of the floating object In addition to the first position sensor, a second position sensor is provided to determine the position on the opposite side of the floating object M1, and the signal from this second position sensor is passed through a high-pass filter or a band-pass filter. , is added to the signal from the first position sensor, and the added signal is fed back to the electromagnet of the magnetic bearing.

〔作用〕[Effect]

このような手段を講じたことにより、不安定化力を発生
する中高周波数領域では、逆方向につけた2つの位置セ
ンサからの信号が加算されるので、フィードバック信号
が零になる。その結果、磁気軸受は何ら力を発生しない
ので不安定化力は実質消滅する。
By taking such measures, in the middle and high frequency range where destabilizing force is generated, the signals from the two position sensors attached in opposite directions are added, so that the feedback signal becomes zero. As a result, the destabilizing force virtually disappears because the magnetic bearing does not generate any force.

〔実施例〕 第1図は本発明の一実施例としての制御方式を示すブロ
ック線図である。
[Embodiment] FIG. 1 is a block diagram showing a control method as an embodiment of the present invention.

上図において、第6図と同一部分には同一符号を付しで
ある。第1図において、7は1と同じ位jクセンサであ
り、8はフィルタ、9は加算器である。」−2第1.第
2の位置センサ1,7は第2図に示すような回転体5の
180°異なる正逆再位置にそれぞれ取り付けられてい
る。なお、ここでは浮上物の例として回転体5を示して
いるが、その限りではない。
In the above figure, the same parts as in FIG. 6 are given the same reference numerals. In FIG. 1, 7 is a sensor of the same order of magnitude as 1, 8 is a filter, and 9 is an adder. ”-2 1st. The second position sensors 1 and 7 are respectively attached to forward and reverse positions of the rotating body 5 that are 180 degrees apart as shown in FIG. In addition, although the rotating body 5 is shown here as an example of a floating object, it is not limited thereto.

第1.第2の位置センサ1と7から発生する信号は、第
3図(a)(b)のように回転体5の動きに対し全く反
対の大きさの関係、すなわち180°位相がずれた信号
となる。第1の位置センサlの信号が例えば+5を示せ
ば、第2の位置センサ7の信号は−5という値を示す。
1st. The signals generated from the second position sensors 1 and 7 have completely opposite magnitude relationships with respect to the movement of the rotating body 5, as shown in FIGS. Become. If the signal of the first position sensor l indicates, for example, +5, the signal of the second position sensor 7 indicates a value of -5.

第4図はフィルタ8のゲイン−周波数特性を示す図であ
る。第4図に示すように、このフィルタ8はカットオフ
周波数をfcを有し、fc以上の周波数の成分のみ通過
させる高域通過フィルタである。第2の位置センサ7の
信号はフィルタ8を通過したのち、位置センサ1の信号
と加算器9において加算される。この加算された信号は
位置フィードバックゲイン2を通したのち制御回路3に
入力する。
FIG. 4 is a diagram showing the gain-frequency characteristics of the filter 8. As shown in FIG. 4, this filter 8 is a high-pass filter that has a cutoff frequency fc and allows only components of frequencies higher than fc to pass. After the signal from the second position sensor 7 passes through a filter 8, it is added to the signal from the position sensor 1 in an adder 9. This added signal is input to the control circuit 3 after passing through the position feedback gain 2.

したがって、磁気軸受の(力F)/(変位D)を(3)
式を用いてあられすと、第1の位置センサ1のみの経路
では従来のままであり、全周波数で F / D −K R・ (f)+ j −KI 串 
(f)・・・・・・ (3) ゛ となる。第2の位置センサ7のみの経路では、信号が第
1の位置センサ1と全く反対になるので【がfC以下で F/D−0・・・(7−1) fがfc以上で F/D−−KR・ (f) −j−Kt ・ (f)・・・(7−2)となる。全体
としては両者が加算されるので、fがfC以下で F/D−KR・ (f) +j−I(■・ (f)   ・・・(8−1)fがf
c以上で F/D−0・・・(8−2) となる。
Therefore, (force F)/(displacement D) of the magnetic bearing is (3)
Using the formula, the path of only the first position sensor 1 remains the same as before, and F / D - K R · (f) + j - KI skewer at all frequencies.
(f)... (3) ゛. In the path of only the second position sensor 7, the signal is completely opposite to that of the first position sensor 1, so if [ is less than fC, F/D-0... (7-1) If f is more than fc, F/ D--KR・(f) −j-Kt・(f)...(7-2). As a whole, both are added, so when f is less than fC, F/D-KR・(f) +j-I(■・(f)...(8-1) f becomes f
c or more, F/D-0...(8-2).

第5図は本方式による磁気軸受の減衰特性を示す図であ
る。第5図に示すようにfcより大きい周波数では減衰
特性が零となる。したがって、第7図の実線で示す減衰
特性をもつ従来の磁気軸受に対し、本方式を適用した場
合には不安定化力は低減され、発散的な振動が発生する
おそれがなくなる。
FIG. 5 is a diagram showing the damping characteristics of the magnetic bearing according to this method. As shown in FIG. 5, the attenuation characteristic becomes zero at frequencies greater than fc. Therefore, when this method is applied to the conventional magnetic bearing having the damping characteristics shown by the solid line in FIG. 7, the destabilizing force is reduced and there is no possibility of divergent vibrations occurring.

なお本発明は前記実施例に限定されるものではない。例
えば、前記実施例ではフ仁ルタ8に高域通過フィルタを
用いたが、不安定となる固を振動数が明かであれば、そ
の周波数を含む帯域通過フィルタを用いてもよい。
Note that the present invention is not limited to the above embodiments. For example, in the embodiment described above, a high-pass filter is used for the Funilter 8, but if the frequency of vibration that becomes unstable is clear, a band-pass filter that includes that frequency may be used.

このほか本発明の要旨を逸脱しない範囲で種々変形実施
可能であるのは勿論である。
It goes without saying that various other modifications can be made without departing from the gist of the present invention.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、浮上物の位置を正逆の2方向より第1
.第2の位置センサで計測し、第2の位置センサからの
信号を高域通過フィルタまたは帯域通過フィルタを通過
させ、その通過信号を第1の位置センサの信号と加算し
てフィードバックするようにしたので、磁気軸受から発
生する中高周波数領域の不安定化力を低減し、浮上物の
発散的な振動を防止し、浮上物を安定に浮上させること
のできる磁気軸受の制御方式を提供できる。
According to the present invention, the position of the floating object can be determined from two directions: forward and backward.
.. Measurement is performed with a second position sensor, the signal from the second position sensor is passed through a high-pass filter or a band-pass filter, and the passed signal is added to the signal from the first position sensor and fed back. Therefore, it is possible to provide a control method for a magnetic bearing that can reduce the destabilizing force in the medium and high frequency range generated from the magnetic bearing, prevent divergent vibrations of the floating object, and levitate the floating object stably.

【図面の簡単な説明】[Brief explanation of drawings]

第1図〜第5図は本発明の一実施例を示す図で、第1図
は制御方式の構成を示すブロック線図、第2図は第1.
第2の位置センサの取付は状態を示す図、第3図(a)
(b)は第1.第2の位置センサの出力信号波形を示す
図、第4図はフィルタのゲイン−周波数特性を示す図、
第5図は磁気軸受の減衰特性を示す図である。第6図は
従来の制御方式の構成を示すブロック線図、第7図は従
来の制御方式による磁気軸受の減衰特性を示す図、第8
図(a)〜(f)は回転体と固有振動数とを示す図であ
る。 1.7・・・第1.第2の位置センサ、2・・・位置フ
ィードバックゲイン、3・・・制御回路、4・・・電磁
石、5・・・回転体、6・・・軸受、8・・・フィルタ
、9・・・加算X0 出願人復代理人 弁理士 鈴江武彦 第3図 第4図 第5図 第6図 第7 図 ; 第8図 〔す11価勧幻 〔謬 ・  〕 〔才3 ・  〕 罷 ・ 〕 〔才5 、 〕
1 to 5 are diagrams showing one embodiment of the present invention, in which FIG. 1 is a block diagram showing the configuration of a control system, and FIG.
Figure 3 (a) shows the installation status of the second position sensor.
(b) is the first. A diagram showing the output signal waveform of the second position sensor, FIG. 4 is a diagram showing the gain-frequency characteristic of the filter,
FIG. 5 is a diagram showing the damping characteristics of the magnetic bearing. Fig. 6 is a block diagram showing the configuration of the conventional control system, Fig. 7 is a diagram showing the damping characteristics of the magnetic bearing according to the conventional control system, and Fig. 8 is a block diagram showing the configuration of the conventional control system.
Figures (a) to (f) are diagrams showing a rotating body and natural frequencies. 1.7... 1st. Second position sensor, 2... Position feedback gain, 3... Control circuit, 4... Electromagnet, 5... Rotating body, 6... Bearing, 8... Filter, 9... Addition X0 Applicant's sub-agent Patent attorney Takehiko Suzue Figure 3 Figure 4 Figure 5 Figure 6 Figure 7 Figure 8 5, ]

Claims (1)

【特許請求の範囲】[Claims] 浮上物に対する位置センサからの信号をフィードバック
し、位相補償等の制御を行ない能動的に用いるようにし
た磁気軸受の制御方式において、浮上物の正側の位置を
計測するように配置した第1の位置センサのほかに、上
記浮上物の反対側の位置を測定する第2の位置センサを
設け、この第2の位置センサからの信号を高域通過フィ
ルタまたは帯域通過フィルタに通したのち、第1の位置
センサからの信号に加算し、加算後の信号を磁気軸受の
電磁石へフィードバックするようにしたことを特徴とす
る磁気軸受の制御方式。
In a magnetic bearing control system that feeds back signals from a position sensor with respect to a floating object and performs control such as phase compensation, it is actively used. In addition to the position sensor, a second position sensor is provided to measure the position on the opposite side of the floating object, and the signal from the second position sensor is passed through a high-pass filter or a band-pass filter, and then the signal is passed through a high-pass filter or a band-pass filter. A control method for a magnetic bearing, characterized in that the signal is added to a signal from a position sensor, and the added signal is fed back to an electromagnet of the magnetic bearing.
JP10225886A 1986-05-02 1986-05-02 Magnet bearing control system Pending JPS62258222A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10225886A JPS62258222A (en) 1986-05-02 1986-05-02 Magnet bearing control system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10225886A JPS62258222A (en) 1986-05-02 1986-05-02 Magnet bearing control system

Publications (1)

Publication Number Publication Date
JPS62258222A true JPS62258222A (en) 1987-11-10

Family

ID=14322563

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10225886A Pending JPS62258222A (en) 1986-05-02 1986-05-02 Magnet bearing control system

Country Status (1)

Country Link
JP (1) JPS62258222A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59212519A (en) * 1983-05-14 1984-12-01 Ntn Toyo Bearing Co Ltd Control device of magnetic bearing
JPS6014619A (en) * 1983-07-05 1985-01-25 Ntn Toyo Bearing Co Ltd Magnetic bearing control device
JPS6091020A (en) * 1983-09-30 1985-05-22 Ntn Toyo Bearing Co Ltd Control device of magnetic bearing

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59212519A (en) * 1983-05-14 1984-12-01 Ntn Toyo Bearing Co Ltd Control device of magnetic bearing
JPS6014619A (en) * 1983-07-05 1985-01-25 Ntn Toyo Bearing Co Ltd Magnetic bearing control device
JPS6091020A (en) * 1983-09-30 1985-05-22 Ntn Toyo Bearing Co Ltd Control device of magnetic bearing

Similar Documents

Publication Publication Date Title
Bleuler et al. Application of digital signal processors for industrial magnetic bearings
US4795927A (en) Control system for a magnetic type bearing
US5084643A (en) Virtual rotor balancing in magnetic bearings
US4885491A (en) Unstable vibration prevention apparatus for magnetic bearing system
JPH0572177B2 (en)
JPH0510326A (en) Control device for magnetic bearing
Mizuno et al. Self-sensing magnetic bearing control system design using the geometric approach
JP2004132441A (en) Magnetic bearing device, through-flow fan device for excimer laser using this magnetic bearing device, program for making computer execute feedback control of magnetic bearing and computer-readable recording medium with program for making computer execute feedback control of magnetic bearing recorded thereon
JP3463218B2 (en) Magnetic bearing device
Chen et al. Magnetic bearing with rotating force control
JPS62258222A (en) Magnet bearing control system
JPS62258221A (en) Magnetic bearing control system
Li et al. A simple method for rotation about the inertial axis of a rigid AMB rotor
JPS62258219A (en) Magnetic bearing control system
Yoo et al. Optimal notch filter for active magnetic bearing controllers
JPH0680328B2 (en) Magnetic bearing control device
JPS62258220A (en) Magnetic beraing control system
JP2957222B2 (en) Active bearing rotor support controller
JP2575862B2 (en) Magnetic bearing control device
JPH01150015A (en) Magnetic bearing controller
JPH0570729B2 (en)
JP3110204B2 (en) Magnetic bearing control device
JPH0730790B2 (en) Magnetic bearing control device
JPH01150016A (en) Magnetic bearing controller
JP2522168Y2 (en) Magnetic bearing control device