JPS62258219A - Magnetic bearing control system - Google Patents
Magnetic bearing control systemInfo
- Publication number
- JPS62258219A JPS62258219A JP10225586A JP10225586A JPS62258219A JP S62258219 A JPS62258219 A JP S62258219A JP 10225586 A JP10225586 A JP 10225586A JP 10225586 A JP10225586 A JP 10225586A JP S62258219 A JPS62258219 A JP S62258219A
- Authority
- JP
- Japan
- Prior art keywords
- signal
- floating object
- force
- magnetic bearing
- position sensor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000007667 floating Methods 0.000 claims abstract description 28
- 238000000034 method Methods 0.000 claims description 3
- 238000013016 damping Methods 0.000 abstract description 16
- 238000006073 displacement reaction Methods 0.000 abstract description 13
- 230000000087 stabilizing effect Effects 0.000 abstract description 7
- 238000010586 diagram Methods 0.000 description 11
- 230000000368 destabilizing effect Effects 0.000 description 10
- 230000000694 effects Effects 0.000 description 6
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical group [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 238000012546 transfer Methods 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 1
- 230000001687 destabilization Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 238000005339 levitation Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000006641 stabilisation Effects 0.000 description 1
- 238000011105 stabilization Methods 0.000 description 1
Landscapes
- Magnetic Bearings And Hydrostatic Bearings (AREA)
Abstract
Description
【発明の詳細な説明】 C産業上の利用分野〕 本発明はターボ分子ポンプや、コンプレッサ。[Detailed description of the invention] C Industrial application field] The present invention is a turbo molecular pump or a compressor.
タービン、工作機械用スピンドル等の高速回転体、さら
にはテンター等の走行物浮上用の磁気軸受に適用される
磁気軸受の制御方式に関する。The present invention relates to a control system for magnetic bearings applied to high-speed rotating bodies such as turbines and spindles for machine tools, as well as magnetic bearings for floating moving objects such as tenters.
回転体や走行物を浮上保持する手段として電磁石を用い
た磁気軸受がある。この磁気軸受は従来の流体潤滑軸受
よりもロスが小さく、軸受のドライ化、雰囲気のクリー
ン化がはかれ、特に真空状態では有用な軸受である。There are magnetic bearings that use electromagnets as a means of keeping rotating bodies and moving objects floating. This magnetic bearing has less loss than conventional fluid-lubricated bearings, allows for a dryer bearing, and a cleaner atmosphere, making it particularly useful in vacuum conditions.
この磁気軸受において、回転体や走行物の浮上位置を設
定する手段として、浮上物の位置を計測し、その計測信
号に基いて電磁石に流す電流値を決め、電磁石から発生
する磁力の大−きさを定める手段がある。In this magnetic bearing, as a means of setting the floating position of a rotating body or a running object, the position of the floating object is measured, and the current value to be passed through the electromagnet is determined based on the measurement signal, and the large magnetic force generated by the electromagnet is determined. There is a way to determine the
第6図はその手段を示すブロック線図である。FIG. 6 is a block diagram showing the means.
第6図において、位置センサ1は浮上物の位置(変位)
を測るためのセンサであり、過電流変位計などがその1
例である。位置フィードバックゲイン2は、位置センサ
1で得られた信号の大きさを必要な大きさに比例倍する
ためのものである。In Fig. 6, the position sensor 1 indicates the position (displacement) of the floating object.
It is a sensor for measuring
This is an example. The position feedback gain 2 is for proportionally multiplying the magnitude of the signal obtained by the position sensor 1 to a required magnitude.
制御回路3は位置フィードバックゲイン2で得られた信
号を電磁石4に適切な形にして入力するための処理回路
であり、例としてはPID(比例−積分−微分)回路や
位相補償回路、その組み合わせなどがある。電磁石4は
鉄心にコイルが巻かれたものであり、制御回路3から入
力された電流に応じて、浮上用の磁力を発生するもので
ある。The control circuit 3 is a processing circuit for inputting the signal obtained by the position feedback gain 2 to the electromagnet 4 in an appropriate form, and examples thereof include a PID (proportional-integral-derivative) circuit, a phase compensation circuit, and a combination thereof. and so on. The electromagnet 4 has a coil wound around an iron core, and generates magnetic force for levitation in response to a current input from the control circuit 3.
制御回路3が比例要素(P要素)だけで構成された最も
簡単な位置フィードバック系を考える。Consider the simplest position feedback system in which the control circuit 3 consists of only proportional elements (P elements).
電磁石4の人力Iと出力である磁力Fとの伝達関数は、
コイル、鉄心等の抵抗やインダクタンスにより以下の1
次遅れ系になる。The transfer function between the human force I of the electromagnet 4 and the output magnetic force F is:
Depending on the resistance and inductance of the coil, iron core, etc.
It becomes the next lag system.
F/ I −KM / (1+TM−S)・・・(1)
ここで、KMは電磁石4のゲイン、TMは電磁石4の時
定数、Sはラプラス演算子である。よって、位置フィー
ドバック系の計測する変位りから浮上物への力Fの伝達
関数は以下の通りとなる。F/I-KM/(1+TM-S)...(1)
Here, KM is the gain of the electromagnet 4, TM is the time constant of the electromagnet 4, and S is the Laplace operator. Therefore, the transfer function of the force F from the displacement measured by the position feedback system to the floating object is as follows.
F/D−KF −KP −KM
/(1+TM−8) ・・・(2)ここで、
KFは位置フィードバックゲイン2゜KPは制御回路3
の比例ゲインをそれぞれ示す。F/D-KF-KP-KM/(1+TM-8)...(2) Here,
KF is position feedback gain 2° KP is control circuit 3
shows the proportional gain of , respectively.
位置フィードバック系の (力F)、/(変位D)の周
波数特性を見るため、ラプラス、演算子5−j2πfと
おき、(2)に代入する。ここでfは周波数(Hz )
で
j=J−:]−である。(力F)/(変位D)は複素数
となり次のようにおく。To see the frequency characteristics of (force F) and /(displacement D) of the position feedback system, set the Laplace operator 5-j2πf and substitute it into (2). Here f is the frequency (Hz)
and j=J-:]-. (Force F)/(Displacement D) is a complex number and is written as follows.
F / D −K R・ (f)+j−Ki ・ (f
)・・・(3)
(3)式における(力F)/(変位D)の実部は周波数
fに依存した剛性を、虚部は周波Ifに依存した減衰を
意味する。(2)式のような1次遅れは虚部が常に負と
なり、浮上物に対し減衰とは反対の不安定化力になる。F/D −K R・(f)+j−Ki・(f
)...(3) In equation (3), the real part of (force F)/(displacement D) means stiffness that depends on the frequency f, and the imaginary part means damping that depends on the frequency If. The imaginary part of the first-order lag as shown in equation (2) is always negative, and it becomes a destabilizing force on the floating object that is opposite to damping.
第7図は(力F)/(変位D)、すなわち(3)式の虚
部の値と周波数fとの関係を示す図である。FIG. 7 is a diagram showing the relationship between (force F)/(displacement D), that is, the value of the imaginary part of equation (3), and frequency f.
第7図に示す点線Aが(2)式に対応するものであり、
上述の状態を示している。浮上物と位置フィードバック
系からなる固有振動数fCがもつ減衰、特に浮上物の減
衰より、第7図に示す周波数f−fcの所の値が大きい
と、その固有振動数は発散的に振動し、運転できなくな
る。Dotted line A shown in FIG. 7 corresponds to equation (2),
The above state is shown. If the value of the frequency f-fc shown in Figure 7 is greater than the damping of the natural frequency fC of the floating object and the position feedback system, especially the damping of the floating object, the natural frequency will oscillate divergently. , and become unable to drive.
そこで、位置フィードバック系の(力F)/(変位D)
に減衰効果をもたすために、制御回路3に比例要素(P
要素)と並列に微分要素(D要素)、または位相補償要
素を設ける。ここでは代表して微分要素を例とする。微
分要素(D要素)を制御回路3に回路として実現すると
、以下の1次遅れ系となる。Therefore, the position feedback system (force F)/(displacement D)
In order to provide a damping effect to the control circuit 3, a proportional element (P
A differential element (D element) or a phase compensation element is provided in parallel with the D element. Here, a differential element will be taken as a representative example. When the differential element (D element) is realized as a circuit in the control circuit 3, the following first-order lag system is obtained.
(微分要素)−KD −S/1+TD −S・・・(4
)
ここで、KDは微分要素のゲイン、Tpは時定数である
。微分要素だけの位置フィードバック系の(力F)/(
変位D)は以下の式となる。(Differential element) -KD -S/1+TD -S... (4
) Here, KD is the gain of the differential element, and Tp is the time constant. (Force F)/( of the position feedback system with only differential elements
The displacement D) is expressed by the following formula.
F / D = K F・KD−KM−S/((1+T
D−8)(1+TM−8))・・・(5)
(5)式の分子はSの1次で分母はSの2次になるため
、(5)1式の虚部は第7図に示す一点鎖線Bのように
なる。すなわち、周波数の低い領域ではlデ上物に対し
減衰効果を、高い領域では不安定化作用をもつ。浮上物
の位置を保持するため、制御回路3には比例要素と微分
要素との併存が必要となる。このような制御回路3の位
置フィードバック系の(力F)/(変位D)は
F/D零K。F / D = K F・KD−KM−S/((1+T
D-8)(1+TM-8))...(5) Since the numerator of equation (5) is the first order of S and the denominator is the second order of S, the imaginary part of equation (5)1 is shown in Figure 7. It will look like the dashed line B shown in . That is, in the low frequency range, it has a damping effect on the object, and in the high frequency range, it has a destabilizing effect. In order to maintain the position of the floating object, the control circuit 3 must include a proportional element and a differential element. The (force F)/(displacement D) of the position feedback system of the control circuit 3 is F/D zero K.
・ lKp +Ko−S/ (1+TD−S)1・KM
/(1+TM−8) ・・・(6)となり、第7図
に示した実線Cのようになり、上述と同じ特性をもつ。・lKp +Ko-S/ (1+TD-S)1・KM
/(1+TM-8) . . . (6), as shown by the solid line C shown in FIG. 7, and has the same characteristics as described above.
浮上物と位置フィードバック系からなる固有振動数fc
を減衰効果を自′する周波数の低い領域に置くと、安定
性が確保でき、振動を発生することなく運転できる。Natural frequency fc consisting of floating object and position feedback system
By placing the damping effect in a low frequency range, stability can be ensured and operation can be performed without generating vibrations.
このような特性ををする磁気軸受を第8図(a)に示す
回転体5の軸受6として使用し、回転体5を浮上させる
場合を考えると、次のような現象を呈する。回転体5は
第8図(b)(c)(d)(e)(f)〜に示すように
無限側の固を振動数を有する。回転体5自体の材料等の
減衰は、回転数以下の固有振動数に対しては不安定化に
働き、回転数以上の固有振動数に対しては減衰作用とし
て働く。When a magnetic bearing having such characteristics is used as the bearing 6 of the rotating body 5 shown in FIG. 8(a) and the rotating body 5 is levitated, the following phenomenon occurs. The rotating body 5 has a fixed frequency on the infinite side as shown in FIGS. 8(b), (c), (d), (e), and (f). The damping of the material of the rotating body 5 itself acts as a destabilizing effect for natural frequencies below the rotational speed, and acts as a damping effect for natural frequencies above the rotational speed.
したがって、磁気軸受の位置フィードバック系の(力F
)/(変位D)の減衰効果を有する周波数領域に回転数
以下の固有振動数をもってくる必要がある。しかし、回
転体5の固有振動数は第8図(b)(c)(d)(e)
(f)〜に示すように無限にあるため、必ず(力F)/
(変位D)の不安定化作用を有する周波数領域に固有振
動数がある。したがって、回転体5自体による固有振動
数がaする減衰よりも磁気軸受の位置フィードバック系
の不安定化作用が大きくなると不安定になり、振動が発
散的に大きくなり、回転させることができなくなる。Therefore, the (force F
)/(displacement D) It is necessary to bring the natural frequency below the rotational speed to a frequency range that has a damping effect. However, the natural frequency of the rotating body 5 is as shown in Fig. 8 (b), (c), (d), and (e).
(f) As shown in ~, there is an infinite number of forces, so (force F)/
There is a natural frequency in the frequency region that has the destabilizing effect of (displacement D). Therefore, if the destabilizing effect of the position feedback system of the magnetic bearing is greater than the damping of the natural frequency of the rotating body 5 itself, the rotating body becomes unstable, and the vibration increases in a divergent manner, making it impossible to rotate the body.
上述したように、従来のものでは浮−り物の位置を保持
するため浮上物の位置を計測し、その信号をフィードバ
ックし、電磁石から力を発生させるようにしているが、
この力は浮上物を振動させる不安定化力となる。そして
制御回路3にPID。As mentioned above, in order to maintain the position of a floating object, conventional devices measure the position of the floating object, feed back the signal, and generate force from an electromagnet.
This force becomes a destabilizing force that causes the floating object to vibrate. And PID to control circuit 3.
位相補償等の処理を行なっても、低周波数領域では安定
化(減衰)力になるが、中高−周波数領域では依然とし
て大きな不安定化力を有している。したがって、回転体
のような無限側の固有振動数を角”する浮上物では、不
安定化力となる領域に固何振動数が必ず有り、磁気軸受
により発散的な振動を発生することになる。Even if processing such as phase compensation is performed, it becomes a stabilizing (damping) force in the low frequency range, but it still has a large destabilizing force in the middle and high frequency ranges. Therefore, in a floating object such as a rotating body whose natural frequency is angular on the infinite side, there is always a natural frequency in the region that causes destabilizing force, and the magnetic bearing will generate divergent vibrations. .
そこで本発明は、指定された周波数領域において磁気軸
受が発生する不安定化力を安定化力(減衰力)に変更し
、発散的な振動発生を防止し、19上物を安定に浮上さ
せ得る磁気軸受の制御方式を提供することを目的とする
。Therefore, the present invention changes the destabilizing force generated by the magnetic bearing in a specified frequency range into a stabilizing force (damping force), prevents the generation of divergent vibrations, and makes it possible to stably levitate objects. The purpose is to provide a control method for magnetic bearings.
本発明は上記問題点を解決し目的を達成するために、次
のような手段を講じた。すなわち、浮上物に対する位置
センサからの信号をフィードバックし、位相補償等の制
御を行ない能動的に用いるようにした磁気軸受の制御方
式において、浮上物の正側の位置を計測するように配置
した第1の位置センサからの信号を、安定化すべき所定
の周波数帯域が遮断周波数帯域である第1のフィルタを
通過させ、上記浮上物の逆側の位置を計測する第2の位
置センサからの信号を、前記所定の周波数帯域と同じ帯
域が通過周波数帯域である第2のフィルタを通過させ、
第1.第2のフィルタの通過信号を加算し、その加算信
号を電磁石へフィードバックするようにした。In order to solve the above-mentioned problems and achieve the object, the present invention takes the following measures. In other words, in a magnetic bearing control system in which signals from a position sensor relative to a floating object are fed back to perform phase compensation and other control and are actively used, a magnetic bearing that is placed so as to measure the positive position of the floating object The signal from the first position sensor is passed through a first filter whose cutoff frequency band is a predetermined frequency band to be stabilized, and the signal from the second position sensor that measures the position on the opposite side of the floating object is transmitted. , passing through a second filter whose pass frequency band is the same as the predetermined frequency band;
1st. The signals passed through the second filter are added and the added signal is fed back to the electromagnet.
〔作用〕
このような手段を講じたことにより、第1の位置センサ
からの信号のうち不安定化力となる周波−敗帯域部分は
第1のフィルタで遮断され、位相が180°反転してい
る第2の位置センサからの信号のうち安定化力となる周
波数帯域部分が第2のフィルタを通過し、両信号の加算
信号がフィードバックされるので、磁気軸受の発生する
力が安定化力に変更される。[Operation] By taking such measures, the frequency-loss band portion that causes destabilization in the signal from the first position sensor is blocked by the first filter, and the phase is reversed by 180°. The frequency band portion of the signal from the second position sensor that serves as the stabilizing force passes through the second filter, and the sum of both signals is fed back, so the force generated by the magnetic bearing becomes the stabilizing force. Be changed.
第1図は本発明の一実施例ゐ構成を示すブロック線図で
ある。なお第1図において、第5図と同一の部分にはそ
れぞれ同一符号を付しである。第1因において、7は1
と同じ位置センサであり、8.9はフィルタ、10は加
算器である。上記第1、第2の位置センサ1,7は第2
図に示すように回転体5の180°異なる正逆再位置に
それぞれ取り付けられている。なお、ここでは浮上物の
例として回転体5を示しているが、その限りではない。FIG. 1 is a block diagram showing the configuration of an embodiment of the present invention. In FIG. 1, the same parts as in FIG. 5 are given the same reference numerals. In the first cause, 7 is 1
It is the same position sensor as , 8.9 is a filter, and 10 is an adder. The first and second position sensors 1 and 7 are
As shown in the figure, they are attached to the rotating body 5 at forward and reverse positions that differ by 180 degrees. In addition, although the rotating body 5 is shown here as an example of a floating object, it is not limited thereto.
第1.第2の位置センサ1,7から発生する信号は、第
3図(a)(b)のように回転体5の動きに対し全く反
対の大きさを有する関係、すなわち180@位相がずれ
た信号となる。第1の位置センサ1の信号が例えば+5
を示せば、第2の位置センサ7の信号は−5という値を
示す。1st. The signals generated from the second position sensors 1 and 7 have completely opposite magnitudes with respect to the movement of the rotating body 5, as shown in FIGS. becomes. For example, the signal of the first position sensor 1 is +5
, the signal from the second position sensor 7 shows a value of -5.
第4図(a)(b)は第1.第2のフィルタ8゜9の各
ゲイン特性を示す図である。同図(a)(b)に示すよ
うに、第1のフィルタ8は安定化すべき所定の周波数帯
域、すなわち周波数f。1から周波数f。2の領域で遮
断特性(ゲインが零)をもち、同図(b)に示すように
第2のフィルタ9はその逆で周波数f から周波数fC
2の領域で通過特性(ゲインが1)をもっている。Figures 4(a) and 4(b) are 1. FIG. 7 is a diagram showing each gain characteristic of the second filter 8°9. As shown in (a) and (b) of the figure, the first filter 8 has a predetermined frequency band to be stabilized, that is, a frequency f. 1 to frequency f. The second filter 9 has a cutoff characteristic (gain is zero) in the region 2, and as shown in FIG.
It has a pass characteristic (gain is 1) in the region of 2.
第1の位置センサ1の信号は第1のフィルタ8を通過し
、第2の位置センサ7の信号は第2のフィルタ9を通過
したのち、これらの2つの信号は加算器10で加算され
る。そしてこの加算信号は、位置フィードバックゲイン
2を経て制御回路31;人力する。したがって、磁気軸
受の(力F)/(変位D)は(3)式であられすと第1
の位置センサ1のみの経路では、fがf から’C2の
領域l
においては
F/D−0・・・(7−1)
fがその他の領域においては
F / D = K R・ (f)
+j−Kl ・ (f) ・・・(T−2)と
なる。また位置センサ7のみの経路では信号が位置セン
サ1と全く反対になるのでfが’CIからfC2の領域
においては
F/D−−KR・ (f)
−j −Kz ・ (f) ・・・ (8−1
)fがその他の領域においては
F/D−0・・・ CF3−2)
となる。そして最終的には、両者が一加算されるので、
fがf からf の領域においてはF/D−−KRa
(f )
−j−KI・(f) ・・・(9−1)fがその他の
領域においては
F / D = K R・ (f)
十j−Kr−(f) ・・・(9−2)となる。し
たがって、磁気軸受の減衰特性は第5図の実線りに示す
ようになり、fc1〜fC2の周波数領域における点線
Eが安定化力に変更されたものとなる。よって、その周
波数領域にある固有振動数は安定化され、発散的な振動
の発生が防止される。After the signal of the first position sensor 1 passes through a first filter 8 and the signal of the second position sensor 7 passes through a second filter 9, these two signals are added in an adder 10. . This addition signal then passes through position feedback gain 2 and is manually input to the control circuit 31. Therefore, (force F)/(displacement D) of the magnetic bearing is expressed by equation (3), and the first
In the path of only the position sensor 1, in the region l from f to 'C2, F/D-0... (7-1) In other regions, F/D = K R (f) +j-Kl ・(f) ...(T-2). Also, in the path of only the position sensor 7, the signal is completely opposite to that of the position sensor 1, so in the region where f is from 'CI to fC2, F/D--KR (f) -j -Kz (f)... (8-1
) f in other areas becomes F/D-0...CF3-2). And in the end, both are added together, so
In the region where f ranges from f to f, F/D--KRa
(f) -j-KI・(f)...(9-1) When f is in other areas, F/D=KR・(f) 2). Therefore, the damping characteristic of the magnetic bearing becomes as shown by the solid line in FIG. 5, and the dotted line E in the frequency range fc1 to fC2 is changed to the stabilizing force. Therefore, the natural frequency in that frequency range is stabilized, and the occurrence of divergent vibrations is prevented.
なお、本発明は前記実施例に限定されるものではない。Note that the present invention is not limited to the above embodiments.
例えば前記実施例では、fclから’C2の1周波数領
域を安定化する例を示したが、浮上物および磁気軸受の
特性等に応じて複数個の周波数領域あるいはfc1以上
の領域でも同様の安定化を実現可能である。For example, in the above embodiment, an example was shown in which one frequency range from fcl to 'C2 is stabilized, but the same stabilization can be performed in multiple frequency ranges or in a range above fc1 depending on the characteristics of the floating object and magnetic bearing. is possible.
このほか本発明の要旨を逸脱しない範囲で種々変形実施
可能であるのは勿論である。It goes without saying that various other modifications can be made without departing from the gist of the present invention.
本発明によれば、第1.第2の位置センサで浮−に物の
位置を正逆2方向から計測し、その計測信号をそれぞれ
のセンサの信号に対し、正反対の通過・遮断特性を有す
るフィルタをそれぞれ通過させたのち、加算してフィー
ドバックするようにしたので、磁気軸受から発生する不
安定化力を安定化力に変換し、浮上物の発散的な振動を
防止して、浮上物を安定に浮上させ得る磁気軸受の制御
方式を提供できる。According to the present invention, first. A second position sensor measures the position of a floating object from two directions, forward and reverse, and the measured signals are passed through filters with opposite pass/block characteristics to the signals from each sensor, and then summed. Since the destabilizing force generated by the magnetic bearing is converted into a stabilizing force, the divergent vibration of the floating object is prevented, and the magnetic bearing can be controlled to stably levitate the floating object. We can provide methods.
第1図〜第5図は本発明の一実施例を示す図で、第1図
は制御方式の構成を示すブロック線図、第2図は第1.
第2の位置センサの取付は状態を示す図、第3図(a)
(b)は第1.第2の位置センサの出力信号波形を示す
図、第4図(a)(b)は第1.第2のフィルタのゲイ
ン−周波数特性を示す図、第5図は磁気軸受の減衰特性
を示す図である。第6図は従来の制御方式の構成を示す
ブロック線図、第7図は従来の制御方式による磁気軸受
の減衰特性を示す図、第8図(a)〜(f)は回転体と
固有振動数とを示す図である。
1.7・・・第1.第2の位置センサ、2・・・位置フ
ィードバックゲイン、3・・・制御回路、4・・・電磁
石、5・・・回転体、6・・・軸受、8.9・・・第1
.第2のフィルタ、10・・・加算器。
出願人復代理人 弁理士 鈴江武彦
第3図
第4図
第5図1 to 5 are diagrams showing one embodiment of the present invention, in which FIG. 1 is a block diagram showing the configuration of a control system, and FIG.
Figure 3 (a) shows the installation status of the second position sensor.
(b) is the first. FIGS. 4(a) and 4(b) are diagrams showing the output signal waveforms of the second position sensor. FIG. 5 is a diagram showing the gain-frequency characteristics of the second filter, and FIG. 5 is a diagram showing the attenuation characteristics of the magnetic bearing. Figure 6 is a block diagram showing the configuration of a conventional control system, Figure 7 is a diagram showing the damping characteristics of a magnetic bearing according to a conventional control system, and Figures 8 (a) to (f) are rotating bodies and natural vibrations. FIG. 1.7... 1st. Second position sensor, 2... Position feedback gain, 3... Control circuit, 4... Electromagnet, 5... Rotating body, 6... Bearing, 8.9... First
.. Second filter, 10...adder. Applicant Sub-Agent Patent Attorney Takehiko Suzue Figure 3 Figure 4 Figure 5
Claims (1)
し、位相補償等の制御を行ない能動的に用いるようにし
た磁気軸受の制御方式において、浮上物の正側の位置を
計測するように配置した第1の位置センサからの信号を
、安定化すべき所定の周波数帯域が遮断周波数帯域であ
る第1のフィルタを通過させ、上記浮上物の逆側の位置
を計測する第2の位置センサからの信号を、前記所定の
周波数帯域と同じ帯域が通過周波数帯域である第2のフ
ィルタを通過させ、第1、第2のフィルタの通過信号を
加算し、その加算信号を電磁石へフィードバックするよ
うにしたことを特徴とする磁気軸受の制御方式。In a magnetic bearing control system that feeds back signals from a position sensor with respect to a floating object and performs control such as phase compensation, it is actively used. The signal from the position sensor is passed through a first filter whose cutoff frequency band is a predetermined frequency band to be stabilized, and the signal from the second position sensor that measures the position on the opposite side of the floating object is passed through the filter. It is characterized by passing through a second filter whose pass frequency band is the same as the predetermined frequency band, adding the passing signals of the first and second filters, and feeding the added signal back to the electromagnet. A control method for magnetic bearings.
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10225586A JPS62258219A (en) | 1986-05-02 | 1986-05-02 | Magnetic bearing control system |
US07/042,212 US4795927A (en) | 1986-05-02 | 1987-04-24 | Control system for a magnetic type bearing |
FR878706068A FR2598191B1 (en) | 1986-05-02 | 1987-04-29 | CONTROL SYSTEM FOR MAGNETIC TYPE BEARING. |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10225586A JPS62258219A (en) | 1986-05-02 | 1986-05-02 | Magnetic bearing control system |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS62258219A true JPS62258219A (en) | 1987-11-10 |
Family
ID=14322485
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP10225586A Pending JPS62258219A (en) | 1986-05-02 | 1986-05-02 | Magnetic bearing control system |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS62258219A (en) |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS59212519A (en) * | 1983-05-14 | 1984-12-01 | Ntn Toyo Bearing Co Ltd | Control device of magnetic bearing |
JPS6014619A (en) * | 1983-07-05 | 1985-01-25 | Ntn Toyo Bearing Co Ltd | Magnetic bearing control device |
JPS6091020A (en) * | 1983-09-30 | 1985-05-22 | Ntn Toyo Bearing Co Ltd | Control device of magnetic bearing |
-
1986
- 1986-05-02 JP JP10225586A patent/JPS62258219A/en active Pending
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS59212519A (en) * | 1983-05-14 | 1984-12-01 | Ntn Toyo Bearing Co Ltd | Control device of magnetic bearing |
JPS6014619A (en) * | 1983-07-05 | 1985-01-25 | Ntn Toyo Bearing Co Ltd | Magnetic bearing control device |
JPS6091020A (en) * | 1983-09-30 | 1985-05-22 | Ntn Toyo Bearing Co Ltd | Control device of magnetic bearing |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4795927A (en) | Control system for a magnetic type bearing | |
US4686404A (en) | Controlled radial magnetic bearing device | |
Lum et al. | Adaptive autocentering control for an active magnetic bearing supporting a rotor with unknown mass imbalance | |
US4839550A (en) | Controlled type magnetic bearing device | |
US5084643A (en) | Virtual rotor balancing in magnetic bearings | |
Liu et al. | Research on automatic balance control of active magnetic bearing‐rigid rotor system | |
JPH0510326A (en) | Control device for magnetic bearing | |
JPS62258219A (en) | Magnetic bearing control system | |
JPS62258221A (en) | Magnetic bearing control system | |
JPS62297533A (en) | Magnetic bearing controller | |
JPS62258222A (en) | Magnet bearing control system | |
JPS62258220A (en) | Magnetic beraing control system | |
JP3110204B2 (en) | Magnetic bearing control device | |
Yakub et al. | Practical control for two-mass positioning systems in presence of saturation | |
JPH0570729B2 (en) | ||
JP2575862B2 (en) | Magnetic bearing control device | |
Bradfield et al. | Performance of an electromagnetic bearing for the vibration control of a supercritical shaft | |
JPS63190929A (en) | Magnetic bearing control device | |
JPH0534336Y2 (en) | ||
JP2522168Y2 (en) | Magnetic bearing control device | |
JPH03123910A (en) | Positioner | |
JPH01150016A (en) | Magnetic bearing controller | |
JPH01150015A (en) | Magnetic bearing controller | |
Ye et al. | Vibration Suppression for Active Magnetic Bearings Using Adaptive Filter with Iterative Search Algorithm | |
JPH03255240A (en) | Rotor support control device of active bearing |