JPS62297533A - Magnetic bearing controller - Google Patents

Magnetic bearing controller

Info

Publication number
JPS62297533A
JPS62297533A JP13982486A JP13982486A JPS62297533A JP S62297533 A JPS62297533 A JP S62297533A JP 13982486 A JP13982486 A JP 13982486A JP 13982486 A JP13982486 A JP 13982486A JP S62297533 A JPS62297533 A JP S62297533A
Authority
JP
Japan
Prior art keywords
filter
signal
magnetic bearing
force
signals
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP13982486A
Other languages
Japanese (ja)
Other versions
JPH0680328B2 (en
Inventor
Shigeki Morii
茂樹 森井
Keiichi Katayama
圭一 片山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP61139824A priority Critical patent/JPH0680328B2/en
Priority to US07/042,212 priority patent/US4795927A/en
Priority to FR878706068A priority patent/FR2598191B1/en
Publication of JPS62297533A publication Critical patent/JPS62297533A/en
Publication of JPH0680328B2 publication Critical patent/JPH0680328B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Magnetic Bearings And Hydrostatic Bearings (AREA)

Abstract

PURPOSE:To prevent divergent vibration and to float floating substances stably by separating the signals from a position sensor so as to allow one signal to pass a first filter and another signal to pass a second filter and then by adding both signals to each other for feed back. CONSTITUTION:Signals from a position sensor 1 are separated so that one signal may pass a first filter 8 directly and another signal may pass a second filter 9 after being inverted its polarity by an inversional circuit 7 and are added to each other by an adder. This added signal is input to an electromagnet 4 through a position feed back gain 2 and a control circuit 3. The filter 8 is made to have an operating characteristic in the predetermined frequency domain to be stabilized, and the filter 9 is made to have a passage characteristic. An unstabilized force produced by a magnetic bearing can, therefore, be changed to a stabilized force to float floating substances stably.

Description

【発明の詳細な説明】 3、発明の詳細な説明 〔産業上の利用分野〕 本発明はターボ分子ポンプや、コンプレッサ。[Detailed description of the invention] 3. Detailed description of the invention [Industrial application field] The present invention is a turbo molecular pump or a compressor.

タービン、工作礪械用スピンドル等の高速回転体、さら
にはテンター等の走行物浮上用のEl磁気軸受適用され
る磁気軸受制御装置に関する。
The present invention relates to a magnetic bearing control device to which El magnetic bearings are applied for high-speed rotating bodies such as turbines and spindles for machine tools, and for floating moving objects such as tenters.

〔従来の技術〕[Conventional technology]

回転体や走行物を浮上保持する手段として電磁石を用い
た磁気軸受がある。この磁気軸受は従来の流体潤滑軸受
よりもロスが小さく、軸受のドライ化、雰囲気のクリー
ン化がはかれ、特に真空状態では有用な軸受である。
There are magnetic bearings that use electromagnets as a means of keeping rotating bodies and moving objects floating. This magnetic bearing has less loss than conventional fluid-lubricated bearings, allows for a dryer bearing, and a cleaner atmosphere, making it particularly useful in vacuum conditions.

この磁気軸受において、回転体や走行物の浮上位置を設
定する手段として、浮上物の位置を計測し、その計測信
号に基いて電磁石に流す電流値を決め、電磁石から発生
する磁力の大きさを定める手段がある。
In this magnetic bearing, as a means of setting the floating position of a rotating body or a running object, the position of the floating object is measured, the current value to be passed through the electromagnet is determined based on the measurement signal, and the magnitude of the magnetic force generated from the electromagnet is determined. There are means to determine this.

第5図はその手段を示すブロック線図である。FIG. 5 is a block diagram showing the means.

第5図において、位置センサ1は浮上物の位置(変位)
を測るためのセンサであり、渦電流変位計などがその1
例である。位置フィードバックゲイン2は、位置センサ
1で得られた信号の大きさを必要な大きさに比例倍する
ためのものである。
In Fig. 5, the position sensor 1 indicates the position (displacement) of the floating object.
An eddy current displacement meter is one of them.
This is an example. The position feedback gain 2 is for proportionally multiplying the magnitude of the signal obtained by the position sensor 1 to a required magnitude.

制御回路3は位置フィードバックゲイン2で得られた信
号をN磁石4に適切な形にして入力するための処理回路
であり、例としてはPID(比例−積分−微分)回路や
位相補償回路、その組み合わせなどがある。WJ磁石は
鉄心にコイルが巻かれたものであり、制御回路3から入
力された電流に応じて、浮上用の磁力を発生するもので
ある。
The control circuit 3 is a processing circuit for inputting the signal obtained by the position feedback gain 2 to the N magnet 4 in an appropriate form, and includes, for example, a PID (proportional-integral-derivative) circuit, a phase compensation circuit, and the like. There are combinations. The WJ magnet has a coil wound around an iron core, and generates magnetic force for levitation in response to a current input from the control circuit 3.

制御回路3が比例要素(P要素)だけで構成された最も
簡単な位置フィードバック系を考える。
Consider the simplest position feedback system in which the control circuit 3 consists of only proportional elements (P elements).

fi1石4の入力]と出力である磁力Fどの伝達関数は
、コイル、鉄心等の抵抗やインダクタンスにより以下の
1次遅れ系になる。
The transfer function of the input of the magnet 4 and the magnetic force F becomes the following first-order lag system due to the resistance and inductance of the coil, iron core, etc.

F / I −K M / (1+ T M−8)・・
・(1)ここで、KMはivi石4のゲイン、TMは電
磁石4の時定数、Sはラプラス演算子である。よって、
位置フィードバック系の計測変位りから浮上物への力F
に至る伝達関数は以下の通りとなる。
F/I-KM/(1+TM-8)...
-(1) Here, KM is the gain of the ivite 4, TM is the time constant of the electromagnet 4, and S is the Laplace operator. Therefore,
Force F on the floating object from the measured displacement of the position feedback system
The transfer function leading to is as follows.

F/D=KF−KP −KM /(1千TM−8)      ・・・(2)ここで、
KFは位置フィードバックゲイン2゜Kpは制御回路3
の比例ゲインをそれぞれ示す。
F/D=KF-KP-KM/(1,000TM-8)...(2) Here,
KF is position feedback gain 2°Kp is control circuit 3
shows the proportional gain of , respectively.

位置フィードバック系の(力F)/(変位D)の周波数
特性を見るため、ラプラス演算子5−j2πfとおき、
(2)式に代入する。ここでfは周波数(Hz)で j−f−=コーである。(力F)/(変位D)は複素数
となり次のようにおく。
In order to see the frequency characteristics of (force F)/(displacement D) of the position feedback system, we set the Laplace operator 5-j2πf,
(2) Substitute into equation. Here, f is the frequency (Hz) and j−f−=co. (Force F)/(Displacement D) is a complex number and is written as follows.

F / D = K R・(f)+j−KJ・(f)・
・・(3) く3)式における(力F)/(変位D)の実部は周波数
fに依存した剛性を、虚部は周波数fに依存した減衰を
意味する。(2)式のような1次遅れは虚部が常に負と
なり、浮上物に対し減衰とは反対の不安定化力になる。
F / D = K R・(f)+j−KJ・(f)・
...(3) In equation (3), the real part of (force F)/(displacement D) means stiffness that depends on frequency f, and the imaginary part means damping that depends on frequency f. The imaginary part of the first-order lag as shown in equation (2) is always negative, and it becomes a destabilizing force on the floating object that is opposite to damping.

第6図は(力F)/(変位D)、すなわち(3)式の虚
部の値と周波数fとの関係を示す図である。
FIG. 6 is a diagram showing the relationship between (force F)/(displacement D), that is, the value of the imaginary part of equation (3), and frequency f.

第6図に示す点線Aが(2)式に対応するものであり、
上述の状態を示している。浮上物と位置フィードバック
系からなる固有振動数f0がもつ滅哀、特に浮上物の減
衰より、第6図に示す周波数f=fcの所の値が大きい
と、その固有撮動数は発散的に振動し、運転できなくな
る。
Dotted line A shown in FIG. 6 corresponds to equation (2),
The above state is shown. Due to the disadvantage of the natural frequency f0 consisting of the floating object and the position feedback system, especially due to the damping of the floating object, if the value at the frequency f = fc shown in Fig. 6 is large, the natural frequency of vibration becomes divergent. It vibrates and makes it impossible to drive.

そこで、位置フィードバック系の(力F)/(変位D)
に減衰効果をもたすために、制御回路3に比例要素(P
要素)と並列に微分要素(D要素)または位相補償要素
を設ける。ここでは代表して微分要素を例とする。微分
要素(D要素)を制御回路3に回路として実現すると、
以下の1次遅れ系となる。
Therefore, the position feedback system (force F)/(displacement D)
In order to provide a damping effect to the control circuit 3, a proportional element (P
A differential element (D element) or a phase compensation element is provided in parallel with the D element. Here, a differential element will be taken as a representative example. When the differential element (D element) is realized as a circuit in the control circuit 3,
The first-order lag system is as follows.

(g1分要素)=Ko ’S/1+To −8・・・(
4) ここで、Koは微分要素のゲイン、Toは時定数である
。微分要素だけの位置フィードバック系のく力E)/(
変位D)は以下の式となる。
(g1 minute element)=Ko 'S/1+To -8...(
4) Here, Ko is the gain of the differential element, and To is the time constant. The force of the position feedback system with only differential elements E)/(
The displacement D) is expressed by the following formula.

F/D=KF−KO−KM−8 /((1+To−8)(1+TM−8))・・・(5) (5)式の分子はSの1次で分母はSの2次になるため
、(5)式の虚部は第6図に示す一点鎖線Bのようにな
る。すなわち、周波数の低い領域では浮上物に対し減衰
効果を、高い領域では不安定化作用をもつ。浮上物の位
置を保持するため、制御回路3には比例要素と微分要素
との併存が必要となる。このような制御回路3の位置フ
ィードバック系の(力F)/(変位D)は F / D −K F ” (Kp +Ko −3/ (1+To −8))・
KM/ (1+TM−3)    ・・・(6)となり
、第6図に示した実線Cのようになり、上述と同じ特性
をもつ。浮上物と位置フィードバック系からなる固有振
動数fcを減衰効果を有する周波数の低い領域に置くと
、安定性が確保でき、振動を発生することなく運転でき
る。
F/D=KF-KO-KM-8/((1+To-8)(1+TM-8))...(5) The numerator of equation (5) is the first order of S and the denominator is the second order of S. Therefore, the imaginary part of equation (5) becomes like the dashed line B shown in FIG. That is, it has a damping effect on floating objects in a low frequency range, and a destabilizing effect in a high frequency range. In order to maintain the position of the floating object, the control circuit 3 must include a proportional element and a differential element. The (force F)/(displacement D) of the position feedback system of the control circuit 3 is F / D −K F ” (Kp +Ko −3/ (1+To −8))・
KM/(1+TM-3)...(6), as shown by the solid line C shown in FIG. 6, and has the same characteristics as described above. By placing the natural frequency fc of the floating object and the position feedback system in a low frequency range that has a damping effect, stability can be ensured and operation can be performed without generating vibrations.

このような特性を有する磁気軸受を第7図<a)に示す
回転(45の軸受6として使用し、回転体5を浮上させ
る場合を考えると、次のような現宋を呈する。回転体5
は第7図(b)(c)(cl)(e)(f)〜に示すよ
うに無限個の固有振ill数を有する。回転体5自体の
材料等の減衰は、回転数以下の固有振動数に対しては不
安定化に動き、回転数以上の固有振動数に対しては減衰
作用として働く。
If we consider the case where a magnetic bearing having such characteristics is used as the bearing 6 of the rotation (45) shown in FIG.
has an infinite number of natural vibrations as shown in FIGS. 7(b), (c), (cl), (e), and (f). The damping of the material of the rotating body 5 itself acts as a destabilizing effect for natural frequencies below the rotational speed, and acts as a damping effect for natural frequencies above the rotational speed.

したがって、磁気軸受の位置フィードバック系の(力F
〉/(変位D)の減衰効果を有する周波数領域に、回転
数以下の固有振動数をもってくる必要がある。しかし、
回転体5の固有振動数は第7図(b)(c)(d)(e
)(f) 〜に示すように無限にあるため、必ず(力F
)/(変位D)の不安定化作用を有する周波数領域に固
有振動数がある。したがって、回転体5自体による固有
振動数が有する減衰よりも、磁気軸受の位置フィードバ
ック系の不安定化作用が大きくなると不安定になり、撮
動が発散的に大きくなり、回転させることができなくな
る。
Therefore, the (force F
It is necessary to bring the natural frequency below the rotational speed to a frequency range that has a damping effect of >/(displacement D). but,
The natural frequencies of the rotating body 5 are shown in Fig. 7 (b), (c), (d) (e
) (f) Since there are infinitely many as shown in ~, there is always (force F
)/(displacement D) There is a natural frequency in the frequency region that has a destabilizing effect. Therefore, if the destabilizing effect of the position feedback system of the magnetic bearing is greater than the damping of the natural frequency of the rotating body 5 itself, it will become unstable, the imaging will become divergent, and rotation will no longer be possible. .

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上述したように、従来のものでは浮上物の位置を保持す
るため浮上物の位置を計測し、その信号をフィードバッ
クし、!磁石4から力を発生させるようにしているが、
この力は浮上物を振動させる不安定化力となる。そして
制御回路3にPID。
As mentioned above, in order to maintain the position of a floating object, the conventional system measures the position of the floating object, feeds back the signal, and! I am trying to generate force from magnet 4, but
This force becomes a destabilizing force that causes the floating object to vibrate. And PID to control circuit 3.

位相補償等の処理を行なっても、低周波数領域では安定
化〈減衰)力になるが、中高周波数領域では依然として
大きな不安定化力を有している。したがって、回転体5
のような無限個の固有振動数を有する浮上物では、不安
定化力となる領域に固有振動数が必ず有り、磁気軸受に
より発散的な振動を発生することになる。
Even if processing such as phase compensation is performed, it becomes a stabilizing (damping) force in the low frequency range, but it still has a large destabilizing force in the middle and high frequency ranges. Therefore, the rotating body 5
In a floating object having an infinite number of natural frequencies, such as the above, there is always a natural frequency in a region that causes a destabilizing force, and the magnetic bearing generates divergent vibrations.

そこで本発明は、指定された周波数領域において磁気軸
受が発生する不安定化力を安定化力(減衰力)に変更し
得、発散的な撮動発生を防止し得、浮上物を安定に浮上
させ得る磁気軸受制′n装置を提供することを目的とす
る。
Therefore, the present invention can change the destabilizing force generated by the magnetic bearing in a specified frequency range into a stabilizing force (damping force), prevent the occurrence of divergent imaging, and stabilize floating objects. It is an object of the present invention to provide a magnetic bearing control device that can be used to control magnetic bearings.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は上記問題点を解決し目的を達成するために、次
のような手段を講じた。すなわち、位置センサからの信
号を二つに分離し、その一方の信号は安定化したい周波
数帯域が遮断域である第1のフィルタを通し、他方の信
号は陽性反転させると共に上記遮断域が通過帯域である
第2のフィルタを通し、別々の道を通った両信号を再び
加算したものを磁気軸受へフィードバックし、電磁石で
力にかえるようにした。
In order to solve the above-mentioned problems and achieve the object, the present invention takes the following measures. That is, the signal from the position sensor is separated into two, one of the signals is passed through a first filter whose cutoff band is the frequency band to be stabilized, and the other signal is inverted positive and whose cutoff band is the passband. The two signals passed through a second filter, which passed through separate paths, were summed again and fed back to the magnetic bearing, where it was converted into force by an electromagnet.

(作用〕 このような手段を講じたことにより、分離された一方の
信号のうち不安定化力となる周波数帯域部分が第1のフ
ィルタにより遮断され、分離された他方の信号のうち力
性反転されて安定化力になった周波数帯域部分が第2の
フィルタを通過し、両信号の加算信号がフィードバック
さ机るので、磁気軸受に発生する力がすべて安定化力に
変更される。
(Effect) By taking such measures, the frequency band portion of one of the separated signals that is a destabilizing force is blocked by the first filter, and the frequency band portion of the other separated signal is blocked by the destabilizing force. The frequency band portion that becomes a stabilizing force passes through the second filter, and the sum of both signals is fed back, so that all the force generated in the magnetic bearing is changed to a stabilizing force.

〔実施例〕〔Example〕

第1図は本発明の一実施例の構成を示すブロック線図で
ある。なお第1図において、第5図と同一の部分にはそ
れぞれ同一符号を付しである。第1図において、7は信
号の極性を反転させる反転回路であり、8.9は第1.
第2のフィルタ、10は加算器である。
FIG. 1 is a block diagram showing the configuration of an embodiment of the present invention. In FIG. 1, the same parts as in FIG. 5 are given the same reference numerals. In FIG. 1, 7 is an inverting circuit that inverts the polarity of a signal, and 8.9 is an inverting circuit that inverts the polarity of a signal.
The second filter, 10, is an adder.

位置センサ1からの信号は二つに分離され、一方の信号
はそのまま第1のフィルタ8を通り、他方の信号は反転
回路7で極性反転されたのち第2のフィルタ9を通るつ 第1のフィルタ8へ入力する信号をaとし、第2のフィ
ルタ9へ入力する信号をbとすると、この二つの信号a
、bは第2図(a)(b)に示すように、浮上物の動き
に対し、全く反対の大きさを有する関係、すなわち位相
が180°ずれた関係を有する信号となる。したがって
例えば信号aが+5を示せば、信号すは−5という値を
示す。
The signal from the position sensor 1 is separated into two parts; one signal passes through the first filter 8 as it is, and the other signal has its polarity inverted by the inverting circuit 7 and then passes through the second filter 9. If the signal input to the filter 8 is a, and the signal input to the second filter 9 is b, then these two signals a
, b are signals having completely opposite magnitudes with respect to the movement of the floating object, that is, the phases are shifted by 180°, as shown in FIGS. 2(a) and 2(b). Therefore, for example, if signal a indicates +5, signal S indicates a value of -5.

第3図(a)(b)は第1.第2のフィルタ8゜9の各
ゲイン特性を示す図である。同図(a>に示すように、
第1のフィルタ8は安定化すべき所定の周波数f。lか
ら周波数fc2までのgA域で遮断特性(ゲインが零)
をもち、同図(b)に示すように、第2のフィルタ9は
その逆で周波数f。1から周波vlfczまでの領域で
通過特性(ゲインが1)をもっている。第1のフィルタ
8および第2のフィルタ9を通過した各信号は、加算器
10により加算される。この加陣信号は位置フィードバ
ックゲイン2を経由して制御回路3に入力する。
Figures 3(a) and 3(b) are 1. FIG. 7 is a diagram showing each gain characteristic of the second filter 8°9. As shown in the same figure (a>,
The first filter 8 has a predetermined frequency f to be stabilized. Cutoff characteristics in the gA range from l to frequency fc2 (gain is zero)
As shown in FIG. 2B, the second filter 9 has the opposite frequency f. It has a pass characteristic (gain is 1) in the region from 1 to the frequency vlfcz. The signals that have passed through the first filter 8 and the second filter 9 are added by an adder 10. This joining signal is input to the control circuit 3 via the position feedback gain 2.

したがって、磁気軸受の(力F)/(変位D)を(3)
式であられすと、信号aの経路では、fがf引からfc
2までの領域においてはF/D−0・・・(7−1) となり、fがその池の領域においては F/D=KR・(f) +j−KI ・(f)     ・・・(7−2>とな
る。また信号すの経路では、信号極性が全く反対になる
ので、fがfclからfC2までの領域においては F/D=  KR・ (fン −j−にゴ ・ (f)   ・・・ (8−1>とな
り、fがその伯の領域においては F/D−〇 ・・・(8−2> となる。そしてR柊的には、両者が加算されるので、f
がfclからf。2までの領域においてはF  / O
=  −K R・  (f)−J−に工・(f)  ・
・・(9−1)となり、fがその他の領域においては F / D = K R・(f) +J−Kx  ・(f)   ・・・(9−2)となる
。したがって、磁気軸受の減衰特性は第4図の実I!D
に示すようになり、f C1〜f C2の周波数領域に
おける点線Eの部分が安定化力に変更されたものとなる
。よって、その周波数領域にある固有振動数は安定化さ
れ、発散的な振動の発生が防止される。
Therefore, (force F)/(displacement D) of the magnetic bearing is (3)
In the formula, in the path of signal a, f is from f to fc
In the area up to 2, F/D-0...(7-1), and in the area where f is the pond, F/D=KR・(f) +j-KI・(f)...(7 -2>.Also, in the path of the signal, the signal polarity is completely opposite, so in the region where f is from fcl to fC2, F/D=KR・(Go to f-j-・(f) ...(8-1>, and in the area where f is the number, F/D-〇 ...(8-2>).And from R Hiiragi's point of view, since both are added, f
is fcl to f. F/O in areas up to 2
= −K R・(f) −J−に工・(f)・
...(9-1), and when f is in other regions, F/D=KR.(f) +J-Kx.(f)...(9-2). Therefore, the damping characteristics of the magnetic bearing are as shown in Fig. 4. D
As shown in the figure, the part indicated by the dotted line E in the frequency region of f C1 to f C2 has been changed to a stabilizing force. Therefore, the natural frequency in that frequency range is stabilized, and the occurrence of divergent vibrations is prevented.

なお、本発明は前記実施例に限定されるものではない。Note that the present invention is not limited to the above embodiments.

例えば前記実施例では、位置センサ1からの信号を二つ
に分けた直後に一つの信号を反転させたが、第2のフィ
ルタ9のあと、つまり加算器10に入れる前にその信号
を反転させるようにしてもよい。また前記実施例ではf
clからfc2までの一周波数帯域を安定化する例を示
したが、浮上物および磁気軸受の特性等に応じて複数個
の周波数帯域あるいはfcI以上の全帯域についても同
様に安定化をはかるようにしてもよい。このほか本発明
の要旨を逸脱しない範囲で種々変形実施可能であるのは
勿論である。
For example, in the embodiment described above, one signal is inverted immediately after dividing the signal from the position sensor 1 into two, but that signal is inverted after the second filter 9, that is, before entering the adder 10. You can do it like this. Furthermore, in the above embodiment, f
Although we have shown an example of stabilizing one frequency band from cl to fc2, it is possible to similarly stabilize multiple frequency bands or all bands above fcI depending on the characteristics of the floating object and magnetic bearing. It's okay. It goes without saying that various other modifications can be made without departing from the gist of the present invention.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、位置センサからの信“号を二つに分離
し、その一方の信号は安定化したい周波数帯域が遮断域
である第1のフィルタを通し、他方の信号は極性反転さ
せると共に上記遮断域が通過帯域である第2のフィルタ
を通し、別々の道を通った両信号を再び加算したものを
磁気軸受へフィードバックし、電磁石で力にかえるよう
にしたので、指定された周波数領域において1ift気
軸受が発生する不安定化力を安定化力(減衰力)に変更
し得、発散的な振動発生を防止し得、浮上物を安定に浮
上させ得る磁気軸受till i装置を提供できる。
According to the present invention, a signal from a position sensor is separated into two, one of the signals is passed through a first filter whose cutoff is the frequency band to be stabilized, and the other signal is inverted in polarity and The above-mentioned cutoff region is passed through a second filter whose passband is the passband, and the sum of both signals that have passed through separate paths is fed back to the magnetic bearing and converted into force by an electromagnet, so that it can be used in the specified frequency range. It is possible to provide a magnetic bearing till i device that can change the destabilizing force generated by the 1ift air bearing into a stabilizing force (damping force), prevent the generation of divergent vibrations, and stably levitate a floating object. .

【図面の簡単な説明】[Brief explanation of the drawing]

第1図〜第4図は本発明の一実施例を示す図で、第1図
は構成を示すブロック線図、第2図(a)(b)は二つ
のフィルタ入力信号の波形を示ず図、第3図(a)(b
)は第1.第2のフィルタのゲイン−周波数特性を示す
図、第4図は磁気軸受の減衰特性を示す図である。第5
図〜第7図(a)〜(f)は従来例を示す図で、第5図
は構成を示すブロック線図、第6図は磁気軸受の減衰特
性を示す図、第7図(a>〜(f)は回転体と固有振動
数とを示す図である。 1・・・位置センサ、2・・・位置フィードバックゲイ
ン、3・・・制御回路、4・・・電磁石、5・・・回転
体、6・・・軸受、7・・・反転回路、8・・・第1の
フィルタ、9・・・第2のフィルタ、10・・・加算器
。 出願人復代理人 弁理士 鈴江武彦 第2図 g 3図 第4I21 第5図 第6図
Figures 1 to 4 are diagrams showing one embodiment of the present invention, with Figure 1 being a block diagram showing the configuration, and Figures 2 (a) and (b) showing waveforms of two filter input signals. Figure 3(a)(b)
) is the first. FIG. 4 is a diagram showing the gain-frequency characteristics of the second filter, and FIG. 4 is a diagram showing the attenuation characteristics of the magnetic bearing. Fifth
7(a) to 7(f) are diagrams showing a conventional example, FIG. 5 is a block diagram showing the configuration, FIG. 6 is a diagram showing the damping characteristics of the magnetic bearing, and FIG. 7 (a> ~(f) is a diagram showing a rotating body and a natural frequency. 1... Position sensor, 2... Position feedback gain, 3... Control circuit, 4... Electromagnet, 5... Rotating body, 6... Bearing, 7... Inverting circuit, 8... First filter, 9... Second filter, 10... Adder. Applicant's sub-agent Patent attorney Takehiko Suzue Figure 2g Figure 3 Figure 4I21 Figure 5 Figure 6

Claims (1)

【特許請求の範囲】[Claims] 浮上物に対する位置センサからの信号を磁気軸受へフィ
ードバックし、PID(比例、積分、微分)や位相補償
等の制御を行ない、磁気軸受を能動的に用いるようにし
た磁気軸受制御装置において、前記位置センサからの信
号を二つに分けて、一方の信号を安定化すべき所定の周
波数帯域が遮断周波数帯域である第1のフィルタを通過
させ、他方の信号を極性反転させるとともに上記遮断周
波数帯域が通過周波数帯域である第2のフィルタを通過
させ、再び二つの信号を加算して磁気軸受にフィードバ
ックするようにしたことを特徴とする磁気軸受制御装置
In a magnetic bearing control device that actively uses a magnetic bearing by feeding back a signal from a position sensor for a floating object to a magnetic bearing and controlling PID (proportional, integral, differential), phase compensation, etc. The signal from the sensor is divided into two, one signal is passed through a first filter whose cutoff frequency band is a predetermined frequency band to be stabilized, and the polarity of the other signal is inverted while the cutoff frequency band is passed. A magnetic bearing control device characterized in that the two signals are passed through a second filter having a frequency band, and the two signals are added together and fed back to the magnetic bearing.
JP61139824A 1986-05-02 1986-06-16 Magnetic bearing control device Expired - Fee Related JPH0680328B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP61139824A JPH0680328B2 (en) 1986-06-16 1986-06-16 Magnetic bearing control device
US07/042,212 US4795927A (en) 1986-05-02 1987-04-24 Control system for a magnetic type bearing
FR878706068A FR2598191B1 (en) 1986-05-02 1987-04-29 CONTROL SYSTEM FOR MAGNETIC TYPE BEARING.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61139824A JPH0680328B2 (en) 1986-06-16 1986-06-16 Magnetic bearing control device

Publications (2)

Publication Number Publication Date
JPS62297533A true JPS62297533A (en) 1987-12-24
JPH0680328B2 JPH0680328B2 (en) 1994-10-12

Family

ID=15254325

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61139824A Expired - Fee Related JPH0680328B2 (en) 1986-05-02 1986-06-16 Magnetic bearing control device

Country Status (1)

Country Link
JP (1) JPH0680328B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108167330A (en) * 2017-11-07 2018-06-15 珠海格力节能环保制冷技术研究中心有限公司 A kind of magnetic suspension bearing electric power system and its control method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59212519A (en) * 1983-05-14 1984-12-01 Ntn Toyo Bearing Co Ltd Control device of magnetic bearing
JPS6014619A (en) * 1983-07-05 1985-01-25 Ntn Toyo Bearing Co Ltd Magnetic bearing control device
JPS6091020A (en) * 1983-09-30 1985-05-22 Ntn Toyo Bearing Co Ltd Control device of magnetic bearing

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59212519A (en) * 1983-05-14 1984-12-01 Ntn Toyo Bearing Co Ltd Control device of magnetic bearing
JPS6014619A (en) * 1983-07-05 1985-01-25 Ntn Toyo Bearing Co Ltd Magnetic bearing control device
JPS6091020A (en) * 1983-09-30 1985-05-22 Ntn Toyo Bearing Co Ltd Control device of magnetic bearing

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108167330A (en) * 2017-11-07 2018-06-15 珠海格力节能环保制冷技术研究中心有限公司 A kind of magnetic suspension bearing electric power system and its control method
US11454278B2 (en) 2017-11-07 2022-09-27 Gree Green Refrigeration Technology Center Co., Ltd. Of Zhuhai Power supply system for magnetic bearing and control method therefor

Also Published As

Publication number Publication date
JPH0680328B2 (en) 1994-10-12

Similar Documents

Publication Publication Date Title
US4795927A (en) Control system for a magnetic type bearing
Bleuler et al. Application of digital signal processors for industrial magnetic bearings
EP0665480B1 (en) Time delay controlled processes
DE60320072T2 (en) Magnetic bearing device with vibration limitation, magnetic bearing device with vibration estimation, and pumping device with built-in magnetic bearing devices
JPH0510326A (en) Control device for magnetic bearing
JPS62297533A (en) Magnetic bearing controller
JPS62258221A (en) Magnetic bearing control system
JPS62258219A (en) Magnetic bearing control system
JP2575862B2 (en) Magnetic bearing control device
JPS62258220A (en) Magnetic beraing control system
JPS62258222A (en) Magnet bearing control system
JPS63190929A (en) Magnetic bearing control device
JPH01150016A (en) Magnetic bearing controller
JPH01137302A (en) Controller for magnetic bearing
JP2957222B2 (en) Active bearing rotor support controller
JPH0570729B2 (en)
JP3169143B2 (en) Positioning device
JPH01150015A (en) Magnetic bearing controller
JP2522168Y2 (en) Magnetic bearing control device
JPH0534336Y2 (en)
JP3110204B2 (en) Magnetic bearing control device
Takahashi et al. Instability induced by iron losses in rotor-active magnetic bearing system
JPH03282032A (en) Active vibration control method and control device thereof
Ritonja et al. Decentralized control for active magnetic bearings
JPH0221025A (en) Magnetic bearing control unit

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees