JPH03282032A - Active vibration control method and control device thereof - Google Patents

Active vibration control method and control device thereof

Info

Publication number
JPH03282032A
JPH03282032A JP8386390A JP8386390A JPH03282032A JP H03282032 A JPH03282032 A JP H03282032A JP 8386390 A JP8386390 A JP 8386390A JP 8386390 A JP8386390 A JP 8386390A JP H03282032 A JPH03282032 A JP H03282032A
Authority
JP
Japan
Prior art keywords
vibration
signal
phase
frequency
feedback
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8386390A
Other languages
Japanese (ja)
Inventor
Masaaki Shibata
昌明 柴田
Tadashi Yoshida
正 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP8386390A priority Critical patent/JPH03282032A/en
Publication of JPH03282032A publication Critical patent/JPH03282032A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)
  • Vibration Prevention Devices (AREA)
  • Soundproofing, Sound Blocking, And Sound Damping (AREA)

Abstract

PURPOSE:To reduce all vibration in a multidegree of freedom system by a method wherein a feedback signal forms a vibration response (a speed component), classified by a single frequency, to each natural frequency of an object to be dampered. CONSTITUTION:A signal processing part factorizes an input signal into a vibration response (a speed component), classified by a single frequency, to each natural frequency of an object to be dampered by using a narrow band-pass filter 5. After multiplication of each signal by a feedback gain by means of a voltage amplifier 6, a phase is inverted by a phase inverter 7, where occasion demand, so that feedback control is stabilized. Composition of results is effected by an adder 8 to provide a control signal having frequency characteristics as shown in a diagram. A control signal converted in a manner described above by the signal processing part is inputted to a power amplifier 9 to drive an actuator 2. In this way, a feedback control system using an output (the speed component of a response separated classified by a signal frequency) is formed, and the generation of all vibration of an object to be damped is reduced.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、船舶、鉄構構造物、各種口lット等の機械構
造物一般の制振装置として用いられる能動振動制御方法
及びその制御装置に関する。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to an active vibration control method used as a vibration damping device for general mechanical structures such as ships, steel structures, and various types of ports, and its control. Regarding equipment.

〔従来の技術〕[Conventional technology]

従来、能動的に振動を制御する方法として、センサで検
出した制振対象の振動速度に比例し、かつ逆位相の信号
を用いてアクチエエータを駆動させる、いわゆる出力フ
ィードバック制御により、制振対象の減衰を見掛は上増
加させて振動を低減するなどの方法が提案されていた。
Conventionally, as a method of actively controlling vibration, so-called output feedback control is used to drive an actuator using a signal that is proportional to the vibration velocity of the vibration damping target detected by a sensor and has an opposite phase. Methods have been proposed to reduce vibration by increasing the appearance.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

第6図に従来の出力フィードバック制御により制振装置
を構成した例を示す。第6図において。
FIG. 6 shows an example of a damping device constructed using conventional output feedback control. In FIG.

1は制振対象%2はアクチエエータ、3は振動検出セン
サ、4はチャージアンプ、6は電圧増幅器、1は位相反
転器である。
1 is a vibration damping target; 2 is an actuator; 3 is a vibration detection sensor; 4 is a charge amplifier; 6 is a voltage amplifier; 1 is a phase inverter.

従来の方法によれば、1自由度系もしくは一部の多自由
度系では制振可能であるが、一般の多自由度系では必ず
しもすべての振動を低域できるとは限らなかりた。すな
わち、アクチエエータ2の加振力とセンサ3の点応答間
の伝達関数(モビリティ)の位相特性が共振点で常に同
相で々ければ安定なフィードバック制御にはならない。
According to the conventional method, vibration can be suppressed in a one-degree-of-freedom system or a part of a multi-degree-of-freedom system, but in a general multi-degree-of-freedom system, it is not necessarily possible to suppress all vibrations at low frequencies. That is, if the phase characteristics of the transfer function (mobility) between the excitation force of the actuator 2 and the point response of the sensor 3 are always in phase at the resonance point, stable feedback control will not be achieved.

ところが、一般には第7図に示すように共振点W1.W
2゜W3での位相は同相と逆相の入シ混じったものとな
っている。したがって、フィードバック系の根軌跡は第
8図に示すように%特性根のうちあるものは安定化する
が、あるものは不安定化するといったことが起こる。そ
の結果として得られる振動応答は第9図に示すように、
411F性根が安定化した本応答が増加することKなる
However, generally, as shown in FIG. 7, the resonance point W1. W
The phase at 2°W3 is a mixture of in-phase and anti-phase inputs. Therefore, as shown in FIG. 8, in the root locus of the feedback system, some of the characteristic roots become stable, while others become unstable. The resulting vibration response is shown in Figure 9.
This response increases when the 411F root is stabilized.

このように、従来の方法によれば、必ずしもすべての振
動を低減できるとは限らないといった問題がありた。
As described above, the conventional method has the problem that not all vibrations can necessarily be reduced.

本発明は上記のような点に鑑みなされたもので、多自由
度系において、すべての振動を低減可能とする能動振動
制御方法及びその制御装置t−提供することを目的とす
る。
The present invention has been made in view of the above points, and an object of the present invention is to provide an active vibration control method and a control device thereof that can reduce all vibrations in a multi-degree-of-freedom system.

〔課題を解決するための手段〕[Means to solve the problem]

すなわち、本発明は、フィードバックする信号を制振対
象の各固有振動数に対する単一周波数毎の振動応答(速
度成分)とするものである。具体的には、下記の式(1
)に示すような2次遅れ要素と1次微分9!素を組合せ
た伝達関数として表され、第3図に示すような周波数f
lにおいて入出力間で位相変化のない狭帯域通過フィル
タを作成し、振動検出センサにて検出される信号を並列
に上述の狭帯域通過フィルタに入力し、制振対象として
着目する周波数毎の信号に分離する。この各分離された
信号についてはそれぞれフィードバックゲインを乗じ、
必要に応じて安定なフィードバック制御となるように位
相を反転させた後加算することにより、フィードバック
する制御信号を得て、常に安定な出力フィードバック制
御を実現しようとするものである。
That is, in the present invention, the feedback signal is a vibration response (velocity component) for each single frequency with respect to each natural frequency of the damping target. Specifically, the following formula (1
) as shown in the second-order lag element and the first-order differential 9! It is expressed as a transfer function that combines elements, and the frequency f as shown in Figure 3
Create a narrow band pass filter with no phase change between input and output at l, input the signal detected by the vibration detection sensor in parallel to the above narrow band pass filter, and generate a signal for each frequency to be focused on as a vibration suppression target. Separate into Each separated signal is multiplied by the feedback gain,
By inverting the phase and adding it to achieve stable feedback control as necessary, a control signal to be fed back is obtained, thereby achieving always stable output feedback control.

狭帯域通過フィルタの特性を表わす伝達関数ここで Sニラプラス演算子 W、 = 2πf1:中心周波数(通過させたい周波数
) Q:共振倍率 に:比例係数 〔作用〕 上記の構成によれば、フィードバックする信号を制振対
象の各固有振動数に対する単一周波数毎の振動応答(速
度成分)としているので、得られるそれぞれの出力は各
共振周波数における応答であり、アクチエエータ加振力
との伝達関数の位相関係は第2図に示すように常に同相
となる。したがって、フィードバック系の根軌跡は第4
図に示すように、すべての特性根が安定側に動くことに
なる。その結果として得られる振動応答は第5図に示す
ように、制振対象として着目したすべての振動モードに
対して減衰を付加でき、振動応答を低減することができ
る。
Transfer function representing the characteristics of a narrow band pass filter Here, S nira plus operator W, = 2πf1: Center frequency (frequency you want to pass) Q: Resonance magnification: Proportionality coefficient [effect] According to the above configuration, the feedback signal is the vibration response (velocity component) for each single frequency for each natural frequency of the damping target, so each output obtained is a response at each resonance frequency, and the phase relationship of the transfer function with the actuator excitation force are always in phase as shown in FIG. Therefore, the root locus of the feedback system is the fourth
As shown in the figure, all characteristic roots move toward stability. As shown in FIG. 5, the vibration response obtained as a result can be damped for all vibration modes focused on as damping targets, and the vibration response can be reduced.

〔実施例〕〔Example〕

以下、図面を参照して本発明の一実施例を説明する。 Hereinafter, one embodiment of the present invention will be described with reference to the drawings.

第1図は同実施例の能動振動制御装置の概略構成図(信
号伝達経路を示す図)、第2図Fi信号処理部の出力(
単一周波数毎に分離された応答の速度成分)とアクチエ
エータ加振力の伝達関数の−例を示す図、第3図は狭帯
域通過フィルタの入出力伝達関数の一例を示す図、第4
図は本装置を用いたときのS平面上での極位置の一例を
示す図、第5図は本装置を用いたときの振動応答の一例
を示す図である。
Figure 1 is a schematic configuration diagram of the active vibration control device of the same embodiment (a diagram showing the signal transmission path), and Figure 2 is the output of the Fi signal processing section (
Fig. 3 is a diagram showing an example of the input/output transfer function of a narrow band pass filter.
The figure shows an example of a pole position on the S plane when using this device, and FIG. 5 is a diagram showing an example of a vibration response when using this device.

第1図に示すように、制振対象Jに振動検出センサ3を
設置し、チャージアンプ4により、振動速度を表す電圧
に変換する。なお、センサ3が加速度センサの場合はチ
ャージアンプ4に一次積分の機能を、センサ3が変位セ
ンサの場合はチャージアンプ4に一次微分の機能を持た
せるか、あるいは積分器もしくは微分器を追設すればよ
い。また、5は狭帯域通過フィルタ、6は電圧増幅器。
As shown in FIG. 1, a vibration detection sensor 3 is installed on the vibration damping target J, and a charge amplifier 4 converts it into a voltage representing the vibration speed. If the sensor 3 is an acceleration sensor, the charge amplifier 4 should have a first-order integration function, and if the sensor 3 is a displacement sensor, the charge amplifier 4 should have a first-order differentiation function, or an integrator or differentiator should be added. do it. Further, 5 is a narrow band pass filter, and 6 is a voltage amplifier.

7は位相反転器、8は加算器、10は切換スイッチであ
り、5〜10を信号処理部とする。
7 is a phase inverter, 8 is an adder, 10 is a changeover switch, and 5 to 10 are signal processing units.

信号処理部では、入力信号に対し、第3図に示すような
特性を有する複数の狭帯域通過フィルタ5を用いて制振
対象の各固有振動数に対する単一周波数毎の振動応答(
速度成分)に分解する。そして、電圧増幅器6により、
各信号毎にフィードバックゲインを乗じた後、必要に応
じて安定なフィードバック制御(第4図にその一例とし
ての根軌跡を示す)となるように位相反転器2により位
相を反転させ、加算器8によりそれぞれを合成して第2
図に示すような周波数特性を有する制御信号を得る。
The signal processing section uses a plurality of narrow band pass filters 5 having characteristics as shown in FIG. 3 to calculate the vibration response (
(velocity component). Then, by the voltage amplifier 6,
After each signal is multiplied by the feedback gain, the phase is inverted by the phase inverter 2 so as to achieve stable feedback control (an example of which is shown in FIG. 4), and the adder 8 Synthesize each and create the second
A control signal having frequency characteristics as shown in the figure is obtained.

上述のようにして信号処理部にて変換された制御信号を
パワーアンプ9に入力してアクチエエータ2を駆動する
ことにより、出力(単一周波数毎に分離された応答の速
度成分)を用いたフィードバック制御系を構成し、第5
図に示すように制振対象の振動をすべて低減しようとす
るものである。
By inputting the control signal converted by the signal processing unit as described above to the power amplifier 9 and driving the actuator 2, feedback using the output (velocity component of the response separated for each single frequency) is performed. Configure the control system and
As shown in the figure, this is an attempt to reduce all the vibrations of the damping target.

ここで狭帯域通過フィルタ5の周波数決定方法について
述べると、制御用アクチュエータ2によシ制振対象1を
加振した場合のアクチーエータ/センサ間の伝達関数を
計測し、その計測結果に応じて適当な周波数を選ぶもの
とする。また、このとき得られる位相に基づいて、各周
波数毎にスイッチ100オン/オフ設定を行う。
Here, to describe the frequency determination method of the narrow band pass filter 5, the transfer function between the actuator and the sensor is measured when the vibration damping target 1 is excited by the control actuator 2, and an appropriate frequency is determined according to the measurement result. A frequency shall be selected. Further, on/off settings of the switch 100 are performed for each frequency based on the phase obtained at this time.

第7図において、@1のピーク(共振点)W。In FIG. 7, the peak (resonance point) W of @1.

では、アクチエニータカとセンサ応答の位相は同相(位
相差0°)である。したがって、観測される信号の位相
を反転させた信号でアクチュエータを駆動させれば、加
振力と逆相の制御力が働くことになシ、応答は小さくな
る。−1第2.第3のピーク(共振点) W2. W、
では、アクチーニータカとセンサ応答の位相は逆相(位
相差180°)である。したがって、観測される信号の
位相を反転させた信号でアクチエエータを駆動させれは
加振力と同相の制御力が更に加わることになり、この周
波数における応答は逆に大きく々ってしまう。
In this case, the phases of the actienne taka and the sensor response are in phase (phase difference 0°). Therefore, if the actuator is driven with a signal whose phase is inverted from that of the observed signal, a control force with a phase opposite to the excitation force will not be applied, and the response will be small. -1 2nd. Third peak (resonance point) W2. W,
In this case, the phases of the actinihawk and the sensor response are opposite to each other (phase difference: 180°). Therefore, if the actuator is driven with a signal that has the phase of the observed signal inverted, a control force that is in phase with the excitation force will be further applied, and the response at this frequency will conversely increase.

ところで、第6図に示す従来の方法では、各ピーク毎に
位相を変えて制御することは不可能であ訃、あるピーク
を小さくすれば他のピークは大きくなる場合がどうして
も生じる(極端な場合は負減衰となり発散する)。これ
に対し、第1図に示す方法によれば、各ピーク毎に分離
して、制御Pイン、位相を決められることから、すべて
のピークを小さくすることができる。
By the way, with the conventional method shown in Figure 6, it is impossible to control the phase by changing the phase for each peak, and if one peak is made smaller, other peaks will inevitably become larger (in extreme cases). becomes negatively attenuated and diverges). On the other hand, according to the method shown in FIG. 1, since the control P-in and phase can be determined separately for each peak, all peaks can be made small.

〔発明の効果〕〔Effect of the invention〕

以上詳述したように、本発明によれば、次のような効果
が得られる。
As detailed above, according to the present invention, the following effects can be obtained.

フィードバックする信号を制振対象の単一周波数毎に分
離された振動応答の速度成分とし、かつ安定なフィード
バック制御とするため、必要に応じて位相を反転させて
いるので、制振対象として着目した複数の固有振動数に
対して、すべて振動応答を低減することが可能である。
The feedback signal is the velocity component of the vibration response separated for each single frequency of the vibration damping target, and the phase is reversed as necessary to ensure stable feedback control. It is possible to reduce the vibration response for all natural frequencies.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例に係る能動振動制御装置の構
成を示すブロック図、第2図は同実施例の信号処理部の
出力(単一周波数毎に分離された応答の速度成分)とア
クチエエータ加振力の伝達関数を示す図、第3図は同実
施例の狭帯域通過フィルタの入出力伝達関数を示す図、
第4図は同実施例におけるS平面上での極位置を示す図
、第5図は同実施例の振動応答を示す図、第6図は従来
の能動振動制御装置の構成を示すブロック図、第7図は
従来の方法による出力(観測点での速度信号)とアクチ
エエータ加振力の伝達関数を示す図。 第8図は従来の方法によるS平面上での極位置を示す図
、第9図は従来の振動応答を示す図である。 1・・・雪掻対象、2・・・アクチエエータ、3・・・
振動検出センサ、4・・・チャージアンプ、5・・・狭
帯域通過フィルタ、6・・・電圧増幅器、2・・・位相
反転器。 8・・・加算a、p−・・パワーアンプ(電力増幅器)
。 10・・・切換スイッチ。
Fig. 1 is a block diagram showing the configuration of an active vibration control device according to an embodiment of the present invention, and Fig. 2 is an output of the signal processing section of the embodiment (velocity component of response separated for each single frequency). FIG. 3 is a diagram showing the input/output transfer function of the narrow band pass filter of the same embodiment.
FIG. 4 is a diagram showing the pole position on the S plane in the same embodiment, FIG. 5 is a diagram showing the vibration response of the same embodiment, and FIG. 6 is a block diagram showing the configuration of a conventional active vibration control device. FIG. 7 is a diagram showing the transfer function of the output (velocity signal at the observation point) and actuator excitation force according to the conventional method. FIG. 8 is a diagram showing the pole position on the S plane according to the conventional method, and FIG. 9 is a diagram showing the conventional vibration response. 1... Snow shoveling object, 2... Actieator, 3...
Vibration detection sensor, 4... Charge amplifier, 5... Narrow band pass filter, 6... Voltage amplifier, 2... Phase inverter. 8... Addition a, p-... Power amplifier (power amplifier)
. 10... Selector switch.

Claims (2)

【特許請求の範囲】[Claims] (1)多自由度系の制振対象の振動を出力フィードバッ
ク制御により能動的に制振する制振装置において、 フィードバックする信号を制振対象の各固有振動数に対
する単一周波数毎の振動応答とし、制振対象に設置した
振動センサの出力として得られる信号を入出力間で位相
変化のない狭帯域通過フィルタに入力して制振対象とし
て着目する周波数毎の信号に分離し、この各分離された
信号についてはそれぞれフィードバックゲインを乗じ、
必要に応じて安定なフィードバック制御となるように位
相を反転させた後加算することにより、フィードバック
する制御信号を得ることを特徴とする能動振動制御方法
(1) In a vibration damping device that actively damps the vibration of a damped object in a multi-degree-of-freedom system by output feedback control, the feedback signal is a vibration response for each single frequency for each natural frequency of the damped object. The signal obtained as the output of the vibration sensor installed on the vibration damping target is input to a narrow band pass filter with no phase change between input and output, and is separated into signals for each frequency to be focused on as the vibration damping target. Multiply each signal by the feedback gain,
An active vibration control method characterized in that a control signal to be fed back is obtained by inverting the phase and adding it to achieve stable feedback control as necessary.
(2)制振対象の振動を検出する振動検出手段と、この
振動検出手段の出力信号を所定の周波数毎の信号に分離
する複数のフィルタ手段と、 この各フィルタ手段によって分離された各信号にフィー
ドバックゲインを乗じる増幅手段と、この増幅手段によ
ってフィードバックゲインが乗じられた各信号の位相を
必要に応じて反転させる位相反転手段と、 この位相反転手段によって反転制御された各信号を加算
する加算手段と、 この加算手段の出力信号に基づいて上記制振対象を加振
する加振手段とを具備したことを特徴とする能動振動制
御装置。
(2) A vibration detection means for detecting the vibration of the damping target, a plurality of filter means for separating the output signal of the vibration detection means into signals of each predetermined frequency, and each signal separated by the filter means. An amplifying means for multiplying by a feedback gain, a phase inverting means for inverting the phase of each signal multiplied by the feedback gain by the amplifying means as necessary, and an adding means for adding each signal inverted by the phase inverting means. An active vibration control device comprising: and a vibration excitation device that vibrates the vibration damping target based on the output signal of the addition device.
JP8386390A 1990-03-30 1990-03-30 Active vibration control method and control device thereof Pending JPH03282032A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8386390A JPH03282032A (en) 1990-03-30 1990-03-30 Active vibration control method and control device thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8386390A JPH03282032A (en) 1990-03-30 1990-03-30 Active vibration control method and control device thereof

Publications (1)

Publication Number Publication Date
JPH03282032A true JPH03282032A (en) 1991-12-12

Family

ID=13814515

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8386390A Pending JPH03282032A (en) 1990-03-30 1990-03-30 Active vibration control method and control device thereof

Country Status (1)

Country Link
JP (1) JPH03282032A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006287620A (en) * 2005-03-31 2006-10-19 Tokai Rubber Ind Ltd Signal processor
JP2009080097A (en) * 2007-09-07 2009-04-16 Hiroshima Univ Method and device for measuring moisture content of processed food
CN105092197A (en) * 2015-06-19 2015-11-25 北京航天斯达科技有限公司 Multi-degree-of-freedom sine vibration control method and controller

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006287620A (en) * 2005-03-31 2006-10-19 Tokai Rubber Ind Ltd Signal processor
JP2009080097A (en) * 2007-09-07 2009-04-16 Hiroshima Univ Method and device for measuring moisture content of processed food
CN105092197A (en) * 2015-06-19 2015-11-25 北京航天斯达科技有限公司 Multi-degree-of-freedom sine vibration control method and controller

Similar Documents

Publication Publication Date Title
CN101180789B (en) Electric motor control device
CN101454969B (en) Servo controller
JP6390774B1 (en) Dynamometer control device
JPH0956183A (en) Mechanical vibration detecting equipment and damping controller
EP0713287A1 (en) Power system stabilizer for generator
KR950029891A (en) 2 mass in inertia resonance system that suppresses axial torsional vibration generated on a flexible drive shaft of a mass inertia resonance system
JPH03282032A (en) Active vibration control method and control device thereof
WO2020049845A1 (en) Dynamometer control device
JPH09305239A (en) Backlash damping control method
JP4664576B2 (en) Servo control device
JP7040581B1 (en) Test system
JP6638869B1 (en) Dynamometer control device
Rohlfing et al. Self-tuning velocity feedback control for a time varying structure using a voltage driven electrodynamic inertial mass actuator
JP4420158B2 (en) Motor speed control device
JP3303566B2 (en) Vibration suppression device of two inertia resonance system by resonance ratio control
JP3972155B2 (en) Motor control device
JP2531481Y2 (en) Active vibration control device
RU2290746C1 (en) Method and device for controlling electromagnetic bearings
KR20180028846A (en) Apparatus for controlling servo
KR100794893B1 (en) Motor control apparatus
JP3257873B2 (en) Shaft torque control method for motor drive system
JP2000347743A (en) Position controller
JPS6284309A (en) Machine rigidity compensation servo control system
JPH09120301A (en) Filter circuit for controlling rotary body
JPH07319546A (en) Positioning controller