JPS62258221A - Magnetic bearing control system - Google Patents

Magnetic bearing control system

Info

Publication number
JPS62258221A
JPS62258221A JP10225786A JP10225786A JPS62258221A JP S62258221 A JPS62258221 A JP S62258221A JP 10225786 A JP10225786 A JP 10225786A JP 10225786 A JP10225786 A JP 10225786A JP S62258221 A JPS62258221 A JP S62258221A
Authority
JP
Japan
Prior art keywords
frequency
rotating speed
magnetic bearing
cut
speed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10225786A
Other languages
Japanese (ja)
Inventor
Shigeki Morii
茂樹 森井
Keiichi Katayama
圭一 片山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP10225786A priority Critical patent/JPS62258221A/en
Publication of JPS62258221A publication Critical patent/JPS62258221A/en
Pending legal-status Critical Current

Links

Landscapes

  • Magnetic Bearings And Hydrostatic Bearings (AREA)

Abstract

PURPOSE:To reduce the occurrence of the instability-oriented force in the medium & high frequency domains so as to maintain the stability of a revolving body, by making the output signal from a control circuit pass through a low-pass filter, in which the cut-off frequency varies in proportion to the rotating-speed signal, and then inputting the result into an electromagnet. CONSTITUTION:The signal, whose frequency is greater than the cut-off frequency fc, of the output signals form a control circuit 3 is eliminated by a low-pass filter 7. In other words, until a revolving body 5 comes completely out of the entire critical speeds, the cut-off frequency fc of the filter 7 corresponds to the value of a pre-set value generator 9. Therefore, a magnetic bearing 6 acts as if it damps the vibration caused by the unbalanced force. The critical speed is defined as a rotating speed at which the rotating speed coincides with the natural frequency. Therefore, for the rotating speed exceeding the critical speed, the cut-off frequency fc of the filter 7 indicates the value of the rotating speed. Accordingly, for the natural frequency exceeding the rotating speed, the magnet bearing does not act. As a result, the revolving body 5 is kept stable owing to the internal damping effect. On the contrary, for the natural frequency lower than the rotating speed, the damping effect is exercised. Therefore, the revolving body 5 is free from the occurrence of large vibration and can be operated stably up to the maximum rotating speed.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はターボ分子ポンプや、コンプレッサ。[Detailed description of the invention] [Industrial application field] The present invention is a turbo molecular pump or a compressor.

タービン、工作機械用スピンドル等の高速回転体の磁気
軸受に適用される磁気軸受の制御方式に関する。
The present invention relates to a control method for magnetic bearings applied to magnetic bearings of high-speed rotating bodies such as turbines and spindles for machine tools.

〔従来の技術〕[Conventional technology]

回転体を浮上保持する手段として電磁石を用いた磁気軸
受がある。この磁気軸受は従来の流体潤滑軸受よりもロ
スが小さく、軸受のドライ化、雰囲気のクリーン化がは
かれ、特に真空状態では有用な軸受である。この磁気軸
受において、回転体のlf、上位置を設定する手段とし
て、浮上物の位置を計a?I L、その計測信号に基い
て電磁石に流す電流値を決め、電磁石から発生する磁力
の大きさを定める手段がある。
A magnetic bearing using an electromagnet is used as a means for keeping a rotating body floating. This magnetic bearing has less loss than conventional fluid-lubricated bearings, allows for a dryer bearing, and a cleaner atmosphere, making it particularly useful in vacuum conditions. In this magnetic bearing, the position of the floating object is measured as a means for setting the upper position of the rotating body. IL, there is a means to determine the current value to be passed through the electromagnet based on the measurement signal and to determine the magnitude of the magnetic force generated from the electromagnet.

第4図はその手段を示すブロック線図である。FIG. 4 is a block diagram showing the means.

第4図において、位置センサ1は浮上物の位置(変位)
を測るためのセンサであり、過電流変位計などがその1
例である。位置フィードバックゲイン2は位置センサ1
で得られた信号の大きさを必要な大きさに比例倍するた
めのものである。制御回路3は位置フィードバックゲイ
−ン2で得られた信号を電磁石4に適切な形にして入力
するための処理回路であり、例としてはPID(比例−
積分一徹分)回路や位相補償回路、その組み合わせなど
がある。電磁石4は鉄心にコイルが巻かれたものであり
、制御回路3から入力された電流に応じて浮上用の磁力
を発生するものである。
In Fig. 4, the position sensor 1 indicates the position (displacement) of the floating object.
It is a sensor for measuring
This is an example. Position feedback gain 2 is position sensor 1
This is to proportionally multiply the magnitude of the signal obtained by the required magnitude. The control circuit 3 is a processing circuit for inputting the signal obtained by the position feedback gain 2 to the electromagnet 4 in an appropriate form.
These include integral (integral-integral) circuits, phase compensation circuits, and combinations thereof. The electromagnet 4 has a coil wound around an iron core, and generates magnetic force for levitation in response to a current input from the control circuit 3.

制御回路3が比例要素(P要素)だけで構成された最も
簡単な位置フィードバック系を考える。
Consider the simplest position feedback system in which the control circuit 3 consists of only proportional elements (P elements).

電磁石4の入力Iと出力である磁力Fとの伝達関数は、
コイル、鉄心等の抵抗やインダクタンスにより以下の1
次遅れ系になる。
The transfer function between the input I of the electromagnet 4 and the output magnetic force F is:
Depending on the resistance and inductance of the coil, iron core, etc.
It becomes the next lag system.

F/ I −KM / (1+TI4 ・S)・・・(
1)ここで、KMは電磁石4のゲイン、TIは電磁石4
の時定数、Sはラプラス演算子である。よって、位置フ
ィードバック系の計測する変位りから浮4−物への力F
の伝達関数は以下の通りとなる。
F/I-KM/(1+TI4 ・S)...(
1) Here, KM is the gain of electromagnet 4, and TI is the gain of electromagnet 4.
The time constant of , S is the Laplace operator. Therefore, the force F on the floating object from the displacement measured by the position feedback system
The transfer function of is as follows.

F/D−Kp−KpΦKM /(1+TM−8)・・・(2) ここで、KFは位置フィードバックゲイン2゜KPは制
御回路3の比例ゲインを示す。位置フィードバック系の
(力F)/(変位D)の周波数特性を見るため、ラプラ
ス演算子5−j2πfとおき、(2)に代入する。ここ
でfは周波数(Hz )で 」−f二重である。(力F
)/(変位D)は複素数となり次のようにおく。
F/D-Kp-KpΦKM/(1+TM-8) (2) Here, KF is a position feedback gain of 2°, and KP is a proportional gain of the control circuit 3. In order to see the frequency characteristics of (force F)/(displacement D) of the position feedback system, a Laplace operator 5-j2πf is set and substituted into (2). Here f is the frequency (Hz) and is double "-f". (Force F
)/(displacement D) is a complex number and is written as follows.

F/D−KR・ (f)+j−に1 ・ (f)・・・
(3) (3)式における(力F)/(変位D)の実部は周波数
fに依存した剛性を、虚部−は周波数fに依存した減衰
を意味する。(2)式のような1次遅れは虚部が常に負
となり、浮上物に対し減衰とは反対の不安定化力になる
F/D-KR・1 for (f)+j−・(f)...
(3) In equation (3), the real part of (force F)/(displacement D) means stiffness that depends on frequency f, and the imaginary part - means damping that depends on frequency f. The imaginary part of the first-order lag as shown in equation (2) is always negative, and it becomes a destabilizing force on the floating object that is opposite to damping.

第5図は(力F)/(変位D)、すなわち(3)式の虚
部の値と周波数fとの関係を示す図である。
FIG. 5 is a diagram showing the relationship between (force F)/(displacement D), that is, the value of the imaginary part of equation (3), and frequency f.

第5図に示す点線Aが(2)式に対応するものであり、
上述の状態を示している。浮上物と位置フィードバック
系からなる固有振動数fCがもつ減衰、特に浮上物の減
衰より、第5図に示す周波数f−fCの所の値が大きい
と、その固を振動数は発散的に振動し、運転できなくな
る。
Dotted line A shown in FIG. 5 corresponds to equation (2),
The above state is shown. If the value of the frequency f-fC shown in Figure 5 is larger than the damping of the natural frequency fC of the floating object and the position feedback system, especially the damping of the floating object, the frequency of the fixed object will oscillate divergently. and become unable to drive.

そこで、位置フィードバック系の(力F)/′(変位D
)に減衰効果をもたすために、制御回路3に比例要素(
P要素)と並列に微分要素(D要素)、または位相補償
要素を設ける。ここでは代表して微分要素を例とする。
Therefore, the position feedback system (force F)/'(displacement D
), a proportional element (
A differential element (D element) or a phase compensation element is provided in parallel with the P element). Here, a differential element will be taken as a representative example.

微分要素(D要素)を制御回路3に回路として実現する
と、以下の1次遅れ系となる。
When the differential element (D element) is realized as a circuit in the control circuit 3, the following first-order lag system is obtained.

(微分要素) 、KD−S/ (1+TD−S)  ・・・(4)ここ
で、KDは微分要素のゲイン、TDは時定数である。微
分要素だけの位置フィードバック系の(力F)/(変位
D)は以下の式となる。
(differential element), KD-S/ (1+TD-S) (4) where KD is the gain of the differential element, and TD is the time constant. (Force F)/(Displacement D) of a position feedback system including only differential elements is expressed by the following equation.

F/D−Kr−Ko・KM−3 / [(1+To @ 5)(1+TM−S)1・・・
(5) (5)の分子はSの1次で分母はSの2次になるため、
(5)の虚部は第6図に示す点さ線のようになる。すな
わち、周波数の低い領域では浮上物に対し減衰効果を、
(5)式の分子はSの1次で分母はSの2次になるため
、(5)式の虚部は第5図に示す一点鎖線Bのようにな
る。すなわち、周波数の低い領域では浮上物に対し減衰
効果を、高い領域では不安定化作用をもつ。浮上物の位
置を保持するため、制御回路3には比例要素と微分要素
との併存が必要となる。このような制御回路3の位置フ
ィードバック系の(力F)/(変位D)は F / D = K F ・ fKp 十KD−3/ (1+TD−S)1・KM
/ (1+TM−S) ・・・ (6) となり、第5図に示した実線Cのようになり、上述と同
じ特性をもつ。浮上物と位置フィードバック系からなる
固有振動数fcを減衰効果を有する周波数の低い領域に
置くと、安定性が確保でき、振動を発生することなく運
転できる。
F/D-Kr-Ko・KM-3 / [(1+To @ 5) (1+TM-S) 1...
(5) Since the numerator of (5) is the first order of S and the denominator is the second order of S,
The imaginary part of (5) looks like the dotted line shown in FIG. In other words, in the low frequency region, there is a damping effect on floating objects,
Since the numerator of equation (5) is the first order of S and the denominator is the second order of S, the imaginary part of equation (5) becomes like the dashed line B shown in FIG. That is, it has a damping effect on floating objects in a low frequency range, and a destabilizing effect in a high frequency range. In order to maintain the position of the floating object, the control circuit 3 must include a proportional element and a differential element. The (force F)/(displacement D) of the position feedback system of the control circuit 3 is F / D = K F · fKp + KD - 3 / (1 + TD - S) 1 - KM
/ (1+TM-S) ... (6) and becomes like the solid line C shown in FIG. 5, having the same characteristics as described above. By placing the natural frequency fc of the floating object and the position feedback system in a low frequency range that has a damping effect, stability can be ensured and operation can be performed without generating vibrations.

このような特性を有する磁気軸受を第6図(a)に示す
回転体5の軸受6として使用し、回転体5を浮上させる
場合を考えると、次のような現象を呈する。回転体5は
第6図(b)(−c)(d)(e)(f)〜に示すよう
に無限側′の固有振動数を釘する。回転体5自体の材料
等の減衰は回転数以下の固有振動数に対しては不安定化
に働き、回転数以上の固有振動数に対しては減衰作用と
して働く。
When a magnetic bearing having such characteristics is used as the bearing 6 of the rotating body 5 shown in FIG. 6(a) and the rotating body 5 is levitated, the following phenomenon occurs. The rotating body 5 has a natural frequency on the infinite side as shown in FIGS. 6(b), (-c), (d), (e), and (f). The damping of the material of the rotating body 5 itself acts as a destabilizing effect for natural frequencies below the rotational speed, and acts as a damping effect for natural frequencies above the rotational speed.

したがって、磁気軸受の位置フィードバック系の(力F
)/(変位D)の減衰効果ををする周波数頭域に回転数
以下の固有振動数をもってくる必要がある。しかし、回
転体5の固有振動数は第6図(b)(C)(d)(e)
(f)〜に示すように無限にあるため、必ず(力F)/
(変位D)の不安定化作用を有する周波数領域に固有振
動数がある。したがって、回転体5自体による固有振動
数が宵する減衰よりも磁気軸受の位置フィードバック系
の不安定化作用が大きくなると不安定になり、振動が発
散的に大きくなり、回転させることかできなくなる。
Therefore, the (force F
)/(displacement D) It is necessary to bring the natural frequency below the rotational speed to the frequency range that produces the damping effect. However, the natural frequency of the rotating body 5 is as shown in Fig. 6 (b), (C), (d), and (e).
(f) As shown in ~, there is an infinite number of forces, so (force F)/
There is a natural frequency in the frequency region that has the destabilizing effect of (displacement D). Therefore, if the destabilizing effect of the position feedback system of the magnetic bearing is greater than the damping caused by the natural frequency of the rotating body 5 itself, the rotating body 5 becomes unstable, the vibration increases divergently, and rotation becomes impossible.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上述したように、従来のものでは、浮上物すなわち回転
体の位置を保持するために浮上物の位置を計測し、その
信号をフィードバックし、電磁石から力を発生させるよ
うにしているが、この力は淫」−物を振動させる不安定
化力となる。そして制御回路3にPID等の処理を行な
っても、低周波数領域では安定化(減衰)力になるが、
中高周波数領域では依然として大きな不安定化を有して
いる。したがって、無限側の固有振動数を有する浮上物
すなわち回転体では、不安定化力となる領域に固釘振動
数が必ず有り、磁気軸受〜により発散的な振動を発生す
ることになる。
As mentioned above, in conventional systems, in order to maintain the position of a floating object, that is, a rotating body, the position of the floating object is measured, the signal is fed back, and force is generated from an electromagnet. is obscene” – it becomes a destabilizing force that makes things vibrate. Even if processing such as PID is applied to the control circuit 3, it becomes a stabilizing (damping) force in the low frequency region, but
There is still significant instability in the medium and high frequency range. Therefore, in a floating object, that is, a rotating body having a natural frequency on the infinite side, there is always a fixed nail frequency in the region where the destabilizing force occurs, and the magnetic bearings generate divergent vibrations.

そこで本発明は、中高周波数領域に発生する不安定化力
を低減し得、回転体を安定に浮上回転させ得る磁気軸受
の制御方式を提供することを目的とする。
SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to provide a control method for a magnetic bearing that can reduce the destabilizing force generated in the medium and high frequency range and can stably levitate and rotate a rotating body.

c問題点を解決するための手段〕 本発明は上記問題点を解決し目的を達成するために、次
のような手段を講じた。すなわち、回転体の軸変位をフ
ィードバックし、磁気軸受を能動的に用いるようにした
磁気軸受の制御方式において、制御回路から出た信号を
、回転数信号に比例してカットオフ周波数が移動する低
域通過フィルタを通過させたのち、電磁石に人力させる
ようにした。
c. Means for Solving the Problems] In order to solve the above problems and achieve the object, the present invention takes the following measures. In other words, in a magnetic bearing control system that feeds back the axial displacement of a rotating body and actively uses a magnetic bearing, the signal output from the control circuit is converted into a low frequency signal whose cutoff frequency moves in proportion to the rotational speed signal. After passing it through a band pass filter, it was manually powered by an electromagnet.

〔作用〕[Effect]

このような手段をillじたことにより、回転数よりも
高い周波数領域ではゲインが低下し、回転体に対する磁
気軸受効果がなくなり、回転体の安定性が保持されるこ
とになる。
By implementing such means, the gain decreases in a frequency range higher than the rotational speed, the magnetic bearing effect on the rotating body disappears, and the stability of the rotating body is maintained.

〔実施例〕〔Example〕

第1図は本発明の一実施例の構成を示すブロック線図で
ある。なお磁気軸受は回転体のラジアル方向に設けてい
る。
FIG. 1 is a block diagram showing the configuration of an embodiment of the present invention. Note that the magnetic bearing is provided in the radial direction of the rotating body.

上図において、第4図と同一部分には同一符号を付しで
ある。第1図において、7は低域通過フィルタ、8はタ
コメータのような回転体5の回転数を示す回転数計、9
は回転体5が通過する最大の危険速度の1.3倍以上の
値を示す設定値発生器、10は回転数計8と設定値発生
器9の2つの信号が人力され、大きい方の値を出力する
比較器である。
In the above figure, the same parts as in FIG. 4 are given the same reference numerals. In FIG. 1, 7 is a low-pass filter, 8 is a rotational speed meter such as a tachometer that indicates the rotational speed of the rotating body 5, and 9
10 is a set value generator that indicates a value that is 1.3 times or more than the maximum critical speed that the rotating body 5 passes, and 10 is a manual input of two signals from the rotation speed meter 8 and the set value generator 9, and the larger value is This is a comparator that outputs .

回転体5の内部にある減衰は回転数より高い固釘振動数
には安定側に、そして回転数より低い固q振動数には不
安定側に働く。そこで、最高回転数より低い固有振動数
に対しては安定性を保証するように磁気軸受が減衰(安
定化)を与えるように制御回路3が構成されている。す
なわち、磁気軸受が第5図における実線に対応する減衰
特性をもつように制御回路3は作動する。
The damping inside the rotating body 5 works on the stable side for solid nail vibration frequencies higher than the rotational speed, and on the unstable side for solid nail vibration frequencies lower than the rotational speed. Therefore, the control circuit 3 is configured such that the magnetic bearing provides damping (stabilization) to ensure stability for natural frequencies lower than the maximum rotational speed. That is, the control circuit 3 operates so that the magnetic bearing has a damping characteristic corresponding to the solid line in FIG.

一方、低域通過フィルタ7は、比較器10の出力に応じ
て低域通過フィルタフのカットオフ周波数fcが決まる
ものとなっている。
On the other hand, the cutoff frequency fc of the low-pass filter 7 is determined according to the output of the comparator 10.

第6図は低域通過フィルタ7のゲインと周波数との関係
を示す図である。第6図に示すように、比較器10の出
力で決まるカットオフ周波数fC以上で低域通過フィル
タフのゲインが小さくなる。
FIG. 6 is a diagram showing the relationship between the gain and frequency of the low-pass filter 7. As shown in FIG. 6, the gain of the low-pass filter becomes small above the cutoff frequency fC determined by the output of the comparator 10.

かくして低域通過フィルタフにより制御回路3からの出
力信号のうちカットオフ周波数fC以上のものは消され
る。
Thus, the low-pass filter eliminates the output signal from the control circuit 3 that has a cutoff frequency fC or higher.

したがって、第1図に示す方式の磁気軸受の減衰特性は
第3図に示すようにカットオフ周波数fC以下の周波数
ではもとの特性が保持され、【C以上の周波数では安定
化(減衰)効果も不安定化効果をもたないものとなる。
Therefore, as shown in Fig. 3, the damping characteristics of the magnetic bearing of the type shown in Fig. 1 maintain the original characteristics at frequencies below the cutoff frequency fC, and have a stabilizing (damping) effect at frequencies above [C]. will also have no destabilizing effect.

回転体5が完全にすべての危険速度を通過するまでは低
域通過フィルタフのカットオフ周波数fcは設定値発生
器9の値に対応するので、磁気軸受5はアンバランス力
による振動を止めるように働く。
Until the rotating body 5 has completely passed through all critical speeds, the cutoff frequency fc of the low-pass filter corresponds to the value of the set value generator 9, so that the magnetic bearing 5 stops vibrations due to unbalanced forces. work.

危険速度とは回転数と固有振動数とが一致する回転数で
ある。このため、それ以上の回転数になると低域通過フ
ィルタフのカットオフ周波数fcは回転数の値を示す。
The critical speed is the rotational speed at which the rotational speed and the natural frequency match. Therefore, when the rotational speed is higher than that, the cutoff frequency fc of the low-pass filter shows the value of the rotational speed.

したがって、回転数より高い固を振動数では磁気軸受は
何ら力を作用しないので内部の減衰により安定であり、
低い固有振動数では磁気軸受に減衰作用が働き安定であ
る。よって、回転体5は多大な振動を発生することなく
最高回転数まで安定に運転される。
Therefore, at a vibration frequency higher than the rotation speed, the magnetic bearing does not exert any force, so it is stable due to internal damping.
At low natural frequencies, the magnetic bearing has a damping effect and is stable. Therefore, the rotating body 5 can be stably operated up to the maximum rotation speed without generating significant vibrations.

なお本発明は前記実施例に限定されるものではなく、本
発明の要旨を逸脱しない範囲で種々変形実施可能である
のは勿論である。
Note that the present invention is not limited to the embodiments described above, and it goes without saying that various modifications can be made without departing from the gist of the present invention.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、回転数に一致したカットオフ特性をも
つ低域通過フィルタを制御系に入れ、磁気軸受を回転数
より低い周波数では安定化させ、高い周波数では何の作
用力も生じさせずロータ独自の減衰力で安定化させるよ
うにしたので、中高周波数領域に発生する不安定化力を
低減し得、回転体を安定にil上回転させ得る磁気軸受
の制御方式を提供できる。
According to the present invention, a low-pass filter with a cutoff characteristic matching the rotational speed is inserted into the control system, and the magnetic bearing is stabilized at frequencies lower than the rotational speed, and at high frequencies, no acting force is generated and the rotor is rotated. Since stabilization is achieved using a unique damping force, it is possible to reduce the destabilizing force generated in the medium and high frequency range, and to provide a control system for the magnetic bearing that can stably rotate the rotating body at il.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例としての制御方式のブロック
線図、第2図は同実施例のフィルタのゲイン−周波数特
性を示す図、第3図は同実施例における磁気軸受の減衰
特性、第4図は従来の制御方式のブロック線図、第5図
は従来の方式による磁気軸受の減衰特性、第6図は回転
体と固荷娠動数である。 1・・・位置センサ、2・・・位置フィードバックゲイ
ン、3・・・制御回路、4・・・電磁石、5・・・回転
体、6・・・軸受、7・・・低域通過フィルタ、8・・
・回転数計、9・・・設定値発生器、10・・・比較器
Fig. 1 is a block diagram of a control system as an embodiment of the present invention, Fig. 2 is a diagram showing the gain-frequency characteristics of the filter of the embodiment, and Fig. 3 is the damping characteristic of the magnetic bearing in the embodiment. , FIG. 4 is a block diagram of a conventional control system, FIG. 5 is a damping characteristic of a magnetic bearing according to the conventional system, and FIG. 6 is a rotating body and solid load motion number. DESCRIPTION OF SYMBOLS 1... Position sensor, 2... Position feedback gain, 3... Control circuit, 4... Electromagnet, 5... Rotating body, 6... Bearing, 7... Low pass filter, 8...
- Rotation speed meter, 9...Set value generator, 10...Comparator.

Claims (1)

【特許請求の範囲】[Claims] 回転体の軸変位をフィードバックし、磁気軸受を能動的
に用いるようにした磁気軸受の制御方式において、制御
回路から出た信号を、回転数信号に比例してカットオフ
周波数が移動する低域通過フィルタを通過させたのち、
電磁石に入力させるようにしたことを特徴とする磁気軸
受の制御方式。
In a magnetic bearing control system that feeds back the axial displacement of a rotating body and actively uses a magnetic bearing, the signal output from the control circuit is controlled by a low-pass filter whose cutoff frequency moves in proportion to the rotational speed signal. After passing through the filter,
A magnetic bearing control method characterized by input to an electromagnet.
JP10225786A 1986-05-02 1986-05-02 Magnetic bearing control system Pending JPS62258221A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10225786A JPS62258221A (en) 1986-05-02 1986-05-02 Magnetic bearing control system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10225786A JPS62258221A (en) 1986-05-02 1986-05-02 Magnetic bearing control system

Publications (1)

Publication Number Publication Date
JPS62258221A true JPS62258221A (en) 1987-11-10

Family

ID=14322537

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10225786A Pending JPS62258221A (en) 1986-05-02 1986-05-02 Magnetic bearing control system

Country Status (1)

Country Link
JP (1) JPS62258221A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01150015A (en) * 1987-12-04 1989-06-13 Mitsubishi Heavy Ind Ltd Magnetic bearing controller
JPH0221025A (en) * 1988-07-07 1990-01-24 Seiko Seiki Co Ltd Magnetic bearing control unit
JPH03231315A (en) * 1990-02-07 1991-10-15 Matsushita Electric Ind Co Ltd Magnetic bearing controller
RU2605692C1 (en) * 2015-12-09 2016-12-27 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Уфимский государственный авиационный технический университет" Method of critical rotation speeds passing through in electromechanical energy converter
CN112054778A (en) * 2020-08-31 2020-12-08 中国人民解放军火箭军工程大学 Cut-off frequency self-adjusting low-pass filter and design method

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01150015A (en) * 1987-12-04 1989-06-13 Mitsubishi Heavy Ind Ltd Magnetic bearing controller
JPH0221025A (en) * 1988-07-07 1990-01-24 Seiko Seiki Co Ltd Magnetic bearing control unit
JPH03231315A (en) * 1990-02-07 1991-10-15 Matsushita Electric Ind Co Ltd Magnetic bearing controller
RU2605692C1 (en) * 2015-12-09 2016-12-27 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Уфимский государственный авиационный технический университет" Method of critical rotation speeds passing through in electromechanical energy converter
CN112054778A (en) * 2020-08-31 2020-12-08 中国人民解放军火箭军工程大学 Cut-off frequency self-adjusting low-pass filter and design method
CN112054778B (en) * 2020-08-31 2024-03-19 中国人民解放军火箭军工程大学 Cut-off frequency self-adjusting low-pass filter and design method

Similar Documents

Publication Publication Date Title
US4686404A (en) Controlled radial magnetic bearing device
Bleuler et al. Application of digital signal processors for industrial magnetic bearings
US4839550A (en) Controlled type magnetic bearing device
Cui et al. Harmonic current suppression of an AMB rotor system at variable rotation speed based on multiple phase-shift notch filters
US4795927A (en) Control system for a magnetic type bearing
WO2000045059A1 (en) Controlled magnetic bearing device
Betschon et al. Reducing magnetic bearing currents via gain scheduled adaptive control
Mizuno et al. Self-sensing magnetic bearing control system design using the geometric approach
US20190072131A1 (en) Magnetic bearing control device and vacuum pump
JPS62258221A (en) Magnetic bearing control system
Xu et al. Identification of dynamic stiffness and damping in active magnetic bearings using transfer functions of electrical control system
JP3463218B2 (en) Magnetic bearing device
Okubo et al. Unbalance vibration control for active magnetic bearing using automatic balancing system and peak-of-gain control
Hutterer et al. Unbalance compensation of a magnetically levitated rotor for the whole operating range
Saito et al. Trial of applying the unbalance vibration compensator to axial position of the rotor with AMB
JPS62258220A (en) Magnetic beraing control system
JP2957222B2 (en) Active bearing rotor support controller
JPH0680328B2 (en) Magnetic bearing control device
JPS62258222A (en) Magnet bearing control system
Cui et al. Harmonic Vibration Suppression of AMB Rotor Based on VSS Repetitive Controller Considering Mass Imbalance and Sensor Runout
Weise Present industrial applications of active magnetic bearings
JP3110204B2 (en) Magnetic bearing control device
Ye et al. Vibration Suppression for Active Magnetic Bearings Using Adaptive Filter with Iterative Search Algorithm
JPH09144756A (en) Controller for magnetic bearing
JPH01150016A (en) Magnetic bearing controller