JPS63190255A - Fuel cell structure - Google Patents

Fuel cell structure

Info

Publication number
JPS63190255A
JPS63190255A JP62020411A JP2041187A JPS63190255A JP S63190255 A JPS63190255 A JP S63190255A JP 62020411 A JP62020411 A JP 62020411A JP 2041187 A JP2041187 A JP 2041187A JP S63190255 A JPS63190255 A JP S63190255A
Authority
JP
Japan
Prior art keywords
gas
fuel
concentration
reaction
flow path
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62020411A
Other languages
Japanese (ja)
Inventor
Shoji Ito
昌治 伊藤
Shigeyoshi Kobayashi
成嘉 小林
Yoshihiro Uchiyama
内山 好弘
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP62020411A priority Critical patent/JPS63190255A/en
Publication of JPS63190255A publication Critical patent/JPS63190255A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0258Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the configuration of channels, e.g. by the flow field of the reactant or coolant
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0247Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the form
    • H01M8/0254Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the form corrugated or undulated
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04089Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/14Fuel cells with fused electrolytes
    • H01M2008/147Fuel cells with molten carbonates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0048Molten electrolytes used at high temperature
    • H01M2300/0051Carbonates
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Abstract

PURPOSE:To improve the performance of a fuel cell by providing a turbulence promoter in gas passage inside the cell in order to promote the mixing of gas, so that the concentration of reaction gas is increased on the electrode surface. CONSTITUTION:A product gas 15 flows downstream from an anode 10 to a fuel gas passage 11. An increased amount of the product gas 15 is produced, as the power generation proceeds by electrochemical reaction, forming a product gas layer between the reaction gas. The passage area of fuel gas is however constricted by the effect of an extruded turbulence promoter 4 installed in the passage, generating a large turbulence of the flow at the downstream side, which causes mixing of the product gas 15 and the fuel gas 13 and disappearance of the product gas layer, and completely mixed fuel gas is fed to the electrode surface.

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 本発明は燃料電池に係り、特にセパレータ内のガス流路
におけるガス混合が良く、電極表面の反応ガス濃度が高
く、高性能化に好適なように改良した燃料電池構造に関
するものである。
[Industrial Application Field] The present invention relates to a fuel cell, and in particular to a fuel cell structure that has been improved to have good gas mixing in the gas flow path in the separator, high concentration of reactant gas on the electrode surface, and suitable for high performance. It is related to.

【従来技術〕[Conventional technology]

従来の装置は、特開昭60−189868号に記載のよ
うに燃料、M他剤ガスが電池の入口部から出口部へ流れ
ていく間に、@気化学反応によりそのガス濃度が変化し
、出口部では反応ガスの濃度が低下するため、出口部に
行くにしたがい入口部より反応ガスの電極中の拡散抵抗
が小さくなるように電極中のガス流路長さを短くした構
造にしている。 しかし、この構造ではtt極内の拡散抵抗は反応ガス濃
度が低下した割合だけ小さくすることはできるが、11
tt4i表面の反応ガス濃度は電池の使用に伴って変化
するという問題がある。即ち生成ガスが電極から反応ガ
ス中へ流出する場合には生成ガスと反応ガスとによる濃
度成層が生じ、その影響に→るガス濃度低下に対しては
補償できないという問題点がある。 〔発明が解決しようとする間!9M 、Q )本発明は
上述の事情に鑑みて為されたもので、本発明の目的は、
反応ガスと生成ガスとの混合を良くし、電極表面での反
応ガス濃度を高くし、電池性能を向上させた燃料電池構
造を提供することにある。 〔問題点を解決するための手段〕 上記目的は、1!池内のガス流路にガスの混合を促進す
るためのタービュレンスプロモータを設けることにより
達成される。 〔作用〕 電池内のガス流路に設けられたガス混合用のタービュレ
ンスプロモータは、電気化学反応により電極内で発生し
た生成ガスと反応ガスとの間に形成される濃度境界層付
近に乱流を発生させて双方のガスの混合を促進する。こ
れにより、電極表面での反応ガス濃度が生成ガスのため
に低下するのを防ぐことが出来、燃料、酸化剤ガス出口
部での性能低下を減らすことができ、電池の性能向上を
達成することができろ。 〔実施例〕 以下1本発明の一実施例を第1図、第2図により説明す
る。 第1図はガス流路を構成する波板状セパレータの構造を
示す、波板セパレータ1は厚さ0.3〜0.51IIの
金属板(例えばステンレス鋼板、銅板あるいはニッケル
板など)をプレス成形で作ることができる。 第2園は第1図に示す突起付き波板セパレータ1を燃料
ガス側11に使用した溶融炭酸塩型燃料電池の単位電池
断面図を示す。燃料、#他剤ガス流路用の波板セパレー
タは底板6にニッケルロー付けなどにより接合され1図
示されていないが電池周辺部にはガスのシール部材が波
板と同様にニッケルローで底板6に接合されている。燃
料、酸化剤セパレータ間には電解質板8が電極9,10
に挟まれて設けられている。 第3図は第2図のm −III断面図である。 同図において、電池内の燃料ガス】3(例えば水素;炭
酸ガス=80=20)は酸化剤ガス14例えば(空気:
炭酸ガス=70::(O)の電気化学反応によりカソー
ド電極9で生成した炭酸イオン(:Os−とアノード電
極10内で電気化学反応により発電し、その際、炭酸ガ
スと水との生成ガス15を生じる。この生成ガス15は
アノード電極10から燃料ガス流路11へ流出し、下流
へ流れていく、このように生成ガス15は電気化学反応
によって、発電が進めば、進むほど多量となり。 反応ガス(燃料ガス13)との間に生成ガス層を形成す
ることになる。しかし、流路中に設けられた突起状のタ
ービュレンスプロモータ4により。 燃料ガス1:3の流路面積が縮小し、その後流側で流れ
に大きな乱れが発生し、この乱れ部分で生成ガス15と
燃料ガスl:1とが混合して生成ガス層が消滅し、電極
表面に完全混合状態の燃料ガスが供給されることになる
。このような乱れ部分を周期的に発生させれば、電池出
口部分についても燃料ガスを有効に利用することが可能
となる。 14図は燃料ガス流路内の電極表面からガス流路高さ方
向への反応ガス(水素)濃度分布を電池入口から出口へ
の変化として示した図表である。 第4図<11)は本発明の実施例であり、入口部で反応
ガス濃度はy軸(高さ方向)方向に一様であり1発電に
よって反応ガスが消費され、生成ガスが流入するため下
流に行くにしたがって絶対的な濃度は低下している。し
かし、tit極表面から高さ方向への濃度変化はガス混
合効果により非常に小さくなり、その結果、電極表面の
反応ガス濃度が高くなり発電性能が向上する。一方、第
4図(A)の従来例では、電池入口から出口へ燃料ガス
が流れていく間に1反応ガス(水素ガス)濃度が電極表
面から高さ方向へ大きく変化し、電極表面の反応ガス濃
度はかなり低くなる。したがって、燃料ガス出口部の発
電性能が大幅に低下する効果となる。 本実施例(第4図(B))によれば、燃料ガス流路中の
反応ガスと発電に伴って発生する生成ガスとの混合が完
全に行なわれるため、電極表面の反応ガス濃度が高くな
り、電池の燃料ガス出口部の発電性能向上が達成できる
。 (発明の効果〕 本発明によれば、電池内の燃料、酸化剤ガスと発電に伴
って生じる生成ガスとの混合により、電池のガス出口部
においても電極表面の燃料、酸化剤ガス濃度が高くなる
ため、発電性能の向上が達成できる。また、発電性能の
向トは発電に伴う発熱量の低減につながり、電池の温度
ヒ昇が小さくなり、電池の寿命、信頼性の向上も達成で
きる。
In the conventional device, as described in JP-A-60-189868, while the fuel, M, and other gases flow from the inlet to the outlet of the cell, the gas concentration changes due to a gas chemical reaction. Since the concentration of the reactant gas decreases at the outlet, the length of the gas flow path in the electrode is shortened so that the diffusion resistance of the reactant gas in the electrode becomes smaller as it goes toward the outlet than at the inlet. However, with this structure, the diffusion resistance within the tt pole can be reduced by the proportion that the reactant gas concentration has decreased;
There is a problem in that the concentration of reactant gas on the surface of tt4i changes as the battery is used. That is, when the produced gas flows out from the electrode into the reaction gas, concentration stratification occurs between the produced gas and the reactant gas, and there is a problem in that it is impossible to compensate for the decrease in gas concentration caused by this effect. [While invention tries to solve! 9M, Q) The present invention has been made in view of the above circumstances, and the purpose of the present invention is to
The object of the present invention is to provide a fuel cell structure that improves the mixing of reaction gas and generated gas, increases the concentration of reaction gas on the electrode surface, and improves cell performance. [Means to solve the problem] The above purpose is 1! This is achieved by providing a turbulence promoter in the gas flow path within the pond to promote gas mixing. [Operation] The turbulence promoter for gas mixing installed in the gas flow path in the battery generates turbulence near the concentration boundary layer formed between the product gas generated in the electrode and the reaction gas due to an electrochemical reaction. is generated to promote mixing of both gases. As a result, it is possible to prevent the concentration of the reactant gas on the electrode surface from decreasing due to the generated gas, and it is possible to reduce the performance deterioration at the fuel and oxidant gas outlet, thereby achieving improved battery performance. Be able to do it. [Embodiment] An embodiment of the present invention will be described below with reference to FIGS. 1 and 2. Fig. 1 shows the structure of a corrugated plate separator that constitutes a gas flow path.The corrugated plate separator 1 is press-formed from a metal plate (for example, a stainless steel plate, a copper plate, or a nickel plate) with a thickness of 0.3 to 0.51 II. It can be made with. The second diagram shows a sectional view of a unit cell of a molten carbonate fuel cell using the protruded corrugated plate separator 1 shown in FIG. 1 on the fuel gas side 11. A corrugated sheet separator for the fuel and other gas flow paths is joined to the bottom plate 6 by nickel brazing, etc. (1) Although not shown in the figure, a gas sealing member is attached to the bottom plate 6 with nickel brazing in the same manner as the corrugated sheet around the battery. is joined to. Between the fuel and oxidizer separators, an electrolyte plate 8 is connected to electrodes 9 and 10.
It is located between. FIG. 3 is a sectional view taken along line m-III in FIG. In the figure, the fuel gas in the battery] 3 (for example, hydrogen; carbon dioxide = 80 = 20) is the oxidant gas 14, for example (air:
The carbonate ion (:Os-) generated at the cathode electrode 9 by the electrochemical reaction of carbon dioxide gas = 70::(O) generates electricity by the electrochemical reaction within the anode electrode 10. At that time, the generated gas of carbon dioxide gas and water This generated gas 15 flows out from the anode electrode 10 to the fuel gas flow path 11 and flows downstream.As described above, the generated gas 15 becomes larger as the power generation progresses due to the electrochemical reaction. A produced gas layer is formed between the reactant gas (fuel gas 13).However, due to the protruding turbulence promoter 4 provided in the flow path.The flow path area of the fuel gas 1:3 is reduced. However, a large turbulence occurs in the flow on the downstream side, and in this turbulent part, the generated gas 15 and the fuel gas 1:1 mix, the generated gas layer disappears, and a completely mixed fuel gas is supplied to the electrode surface. If such turbulent parts are generated periodically, it becomes possible to use the fuel gas effectively at the cell outlet part. Figure 14 shows the view from the electrode surface in the fuel gas flow path. This is a chart showing the reaction gas (hydrogen) concentration distribution in the height direction of the gas flow path as a change from the cell inlet to the outlet. The concentration is uniform in the y-axis (height direction) direction, and the reactant gas is consumed by one power generation, and the produced gas flows in, so the absolute concentration decreases as it goes downstream. However, the concentration change in the height direction from the tit electrode surface becomes very small due to the gas mixing effect, and as a result, the reaction gas concentration on the electrode surface increases and the power generation performance improves. On the other hand, in the conventional example shown in FIG. 4(A), while the fuel gas flows from the cell inlet to the outlet, the concentration of one reactant gas (hydrogen gas) changes greatly in the height direction from the electrode surface, and the reaction on the electrode surface increases. The gas concentration will be considerably lower. Therefore, the effect is that the power generation performance of the fuel gas outlet section is significantly reduced. According to this example (Fig. 4 (B)), the reaction gas in the fuel gas flow path and the generated gas generated during power generation are completely mixed, so the concentration of the reaction gas on the electrode surface is high. Therefore, the power generation performance of the fuel gas outlet of the battery can be improved. (Effects of the Invention) According to the present invention, the concentration of fuel and oxidant gas on the electrode surface is high even at the gas outlet part of the battery due to the mixing of the fuel and oxidant gas in the battery with the generated gas generated during power generation. As a result, an improvement in power generation performance can be achieved.In addition, an improvement in power generation performance leads to a reduction in the amount of heat generated during power generation, which reduces the rise in temperature of the battery and improves the life and reliability of the battery.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例のセパレータ構造を示す斜視
図、第2図は上記ヤパレータを使用したm位電池の断面
図、第3図は第2図のm −it断面図である。第4図
はガス流路内の反応ガス濃度分布を示す図表である。 】・・・波板セパレータ板、3・・・ガス流路、4・・
・突起状のタービュレンスプロモータ、7・・・酸化剤
ガス流路、8・・・電解質扱、9・・・カソード電極、
10・・・アノード電極、13・・・燃料ガス、14・
・・酸化剤ガス、15・・・生成ガス。
FIG. 1 is a perspective view showing a separator structure according to an embodiment of the present invention, FIG. 2 is a sectional view of an m-order battery using the above separator, and FIG. 3 is an m-it sectional view of FIG. 2. FIG. 4 is a chart showing the reaction gas concentration distribution within the gas flow path. ]... Corrugated separator plate, 3... Gas flow path, 4...
・Protruding turbulence promoter, 7... Oxidizing gas flow path, 8... Electrolyte handling, 9... Cathode electrode,
10... Anode electrode, 13... Fuel gas, 14.
... Oxidizing gas, 15... Produced gas.

Claims (1)

【特許請求の範囲】[Claims] 1、(a)電解質板と、(b)上記電解質板の両側に密
着させた燃料側極板、酸化剤側極板と、(c)燃料ガス
と酸化剤ガスとを分離するセパレータ板とを設けた燃料
電池において、燃料ガス流路および酸化剤ガス流路の少
なくとも何れか一方に、ガス流の直進を妨げて渦流を発
生させるための障害物(タービユレンスプロモータ)を
設けたことを特徴とする燃料電池構造。
1. (a) an electrolyte plate, (b) a fuel-side electrode plate and an oxidizer-side electrode plate closely attached to both sides of the electrolyte plate, and (c) a separator plate for separating fuel gas and oxidant gas. In the provided fuel cell, an obstacle (turbulence promoter) is provided in at least one of the fuel gas flow path and the oxidant gas flow path to prevent the gas flow from moving straight and generate a vortex flow. fuel cell structure.
JP62020411A 1987-02-02 1987-02-02 Fuel cell structure Pending JPS63190255A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62020411A JPS63190255A (en) 1987-02-02 1987-02-02 Fuel cell structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62020411A JPS63190255A (en) 1987-02-02 1987-02-02 Fuel cell structure

Publications (1)

Publication Number Publication Date
JPS63190255A true JPS63190255A (en) 1988-08-05

Family

ID=12026294

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62020411A Pending JPS63190255A (en) 1987-02-02 1987-02-02 Fuel cell structure

Country Status (1)

Country Link
JP (1) JPS63190255A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002023653A2 (en) * 2000-09-12 2002-03-21 Siemens Aktiengesellschaft Fuel cell unit with improved reaction gas utilisation
JP2003045453A (en) * 2001-07-31 2003-02-14 Nippon Soken Inc Separator for fuel cell
EP1365469A2 (en) * 2002-04-25 2003-11-26 General Electric Company Improved heat transfer due to superficial concavities in fluid passages of solid oxide fuel cells
US6663997B2 (en) 2000-12-22 2003-12-16 Ballard Power Systems Inc. Oxidant flow field for solid polymer electrolyte fuel cell
JP2007227130A (en) * 2006-02-23 2007-09-06 Honda Motor Co Ltd Fuel cell
JP2010272541A (en) * 2010-08-06 2010-12-02 Toyota Motor Corp Fuel cell
WO2018222265A1 (en) * 2017-05-31 2018-12-06 Fuelcell Energy, Inc. Fuel cell anode flow field design configurations for achieving increased fuel utilization

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6212269B2 (en) * 1978-07-25 1987-03-17 Hitachi Cable

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6212269B2 (en) * 1978-07-25 1987-03-17 Hitachi Cable

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002023653A3 (en) * 2000-09-12 2002-09-06 Siemens Ag Fuel cell unit with improved reaction gas utilisation
WO2002023653A2 (en) * 2000-09-12 2002-03-21 Siemens Aktiengesellschaft Fuel cell unit with improved reaction gas utilisation
US6663997B2 (en) 2000-12-22 2003-12-16 Ballard Power Systems Inc. Oxidant flow field for solid polymer electrolyte fuel cell
JP2003045453A (en) * 2001-07-31 2003-02-14 Nippon Soken Inc Separator for fuel cell
SG119183A1 (en) * 2002-04-25 2006-02-28 Gen Electric Improved fluid passages for power generation equipment
JP2004006330A (en) * 2002-04-25 2004-01-08 General Electric Co <Ge> Improved fluid channel for generator
EP1365469A2 (en) * 2002-04-25 2003-11-26 General Electric Company Improved heat transfer due to superficial concavities in fluid passages of solid oxide fuel cells
US7022429B2 (en) 2002-04-25 2006-04-04 General Electric Company Fluid passages for power generation equipment
EP1365469A3 (en) * 2002-04-25 2011-01-12 General Electric Company Improved heat transfer due to superficial concavities in fluid passages of solid oxide fuel cells
JP4642325B2 (en) * 2002-04-25 2011-03-02 ゼネラル・エレクトリック・カンパニイ Improved fluid passage for power generation equipment
JP2007227130A (en) * 2006-02-23 2007-09-06 Honda Motor Co Ltd Fuel cell
JP2010272541A (en) * 2010-08-06 2010-12-02 Toyota Motor Corp Fuel cell
WO2018222265A1 (en) * 2017-05-31 2018-12-06 Fuelcell Energy, Inc. Fuel cell anode flow field design configurations for achieving increased fuel utilization
US11374235B2 (en) 2017-05-31 2022-06-28 Fuelcell Energy, Inc. Fuel cell anode flow field design configurations for achieving increased fuel utilization

Similar Documents

Publication Publication Date Title
JP3553101B2 (en) Solid polymer electrolyte fuel cell
US7691511B2 (en) Fuel cell having coolant flow field wall
US20030129475A1 (en) Fuel cell
EP2549573B1 (en) Polymer electrolyte fuel cell and fuel cell stack equipped with same
KR20010089507A (en) Sheet metal bipolar plate design for polymer electrolyte membrane fuel cells
US20100086819A1 (en) Polymer electrolyte fuel cell and fuel cell stack including the same
US20120282537A1 (en) Fuel cell
JP2007299726A (en) Separator for fuel cell
JP2006324084A (en) Fuel cell
JPS63190255A (en) Fuel cell structure
JP2009037759A (en) Fuel cell
JP5098212B2 (en) Fuel cell
US20110165493A1 (en) Polymer electrolyte fuel cell and fuel cell stack comprising the same
US7951508B2 (en) Fuel cell
JP2007165174A (en) Fuel cell
CN100470899C (en) Stack and fuel cell system having the same
US7097929B2 (en) Molten carbonate fuel cell
JP5204932B1 (en) POLYMER ELECTROLYTE FUEL CELL AND FUEL CELL SYSTEM INCLUDING THE SAME
JPH08185873A (en) Fuel cell
EP0810684B1 (en) Molten carbonate fuel cell comprising electolyte plate having fine through holes
JP2008052942A (en) Fuel cell
JPH06267562A (en) Solid high polymer electrolyte fuel cell
US20070178356A1 (en) Development of high energy surfaces on stainless steels for improved wettability
JPH0650639B2 (en) Fuel cell
JPS62147664A (en) Reaction gas supply method in fuel cell