JP2003045453A - Separator for fuel cell - Google Patents

Separator for fuel cell

Info

Publication number
JP2003045453A
JP2003045453A JP2001231189A JP2001231189A JP2003045453A JP 2003045453 A JP2003045453 A JP 2003045453A JP 2001231189 A JP2001231189 A JP 2001231189A JP 2001231189 A JP2001231189 A JP 2001231189A JP 2003045453 A JP2003045453 A JP 2003045453A
Authority
JP
Japan
Prior art keywords
convex
separator
fuel cell
convex portion
flow channel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001231189A
Other languages
Japanese (ja)
Other versions
JP5041640B2 (en
Inventor
Ikuyasu Katou
育康 加藤
Fumiya Nagai
史也 永井
Toshiyuki Suzuki
稔幸 鈴木
Takeshi Takahashi
剛 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Soken Inc
Original Assignee
Nippon Soken Inc
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Soken Inc, Toyota Motor Corp filed Critical Nippon Soken Inc
Priority to JP2001231189A priority Critical patent/JP5041640B2/en
Publication of JP2003045453A publication Critical patent/JP2003045453A/en
Application granted granted Critical
Publication of JP5041640B2 publication Critical patent/JP5041640B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Abstract

PROBLEM TO BE SOLVED: To compatibly secure current collecting performance, gas diffusing performance and draining performance, in a separator for a fuel cell. SOLUTION: Linear parts 511 defined by rectangular projecting parts 42, 43 longitudinally lining up in tandem are provided in a passage groove 51, and the projecting parts 42, 43 are disposed so that the tandem of the projecting parts 42, 43 on one side rim of each linear part 511 and the projecting parts 42, 43 on the other are offset in the tandem direction of the projecting parts 42, 43. Thereby, an action caused by the discontinuous parts 42a of the projecting parts 42, 43 while disturbing gas flow and hampering formation of laminar flow is controlled so as not to repeatedly work on the same position of the linear part 511 of the passage groove, and the number of the discontinuous parts 42a of the projecting parts can be reduced without harming an action to enhance gas diffusing performance by expediting the flow velocity on an electrode surface. Thereby, current collecting performance is secured.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は燃料電池を構成する
電池セルの隔壁をなす燃料電池用セパレータに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a fuel cell separator forming a partition wall of a battery cell constituting a fuel cell.

【0002】[0002]

【従来の技術】燃料電池は、電解質膜の上下面に、触媒
を担持した電極を重ね合わせて電池セルとするととも
に、電池セルとセパレータとを電極とセパレータとが対
向するように交互に積層する構造となっている。セパレ
ータは、電極側に突出する凸部が設けられて、セパレー
タを挟んで相隣れる電池セルの電極同志を導通する集電
極としての機能を果たすとともに、セパレータと電極と
の間隙に燃料ガス、酸化ガスを流し電極に供給する機能
を果たしている。セパレータの背向する表面の一方に沿
って燃料ガスを流すとともに他方の表面に沿って酸化ガ
スを流し、これらのガスをそれぞれ、対応する電極に供
給する。これにより、積層する電池セルが直列接続とな
り、積層数に応じて高電圧が取り出せる。
2. Description of the Related Art In a fuel cell, electrodes supporting a catalyst are stacked on the upper and lower surfaces of an electrolyte membrane to form a battery cell, and the battery cell and the separator are alternately laminated so that the electrode and the separator face each other. It has a structure. The separator is provided with a protrusion protruding toward the electrode side, and serves as a collector electrode for conducting the electrodes of the battery cells adjacent to each other with the separator sandwiched between them, and fuel gas and oxidation in the gap between the separator and the electrode. It plays the function of flowing gas and supplying it to the electrodes. A fuel gas is caused to flow along one of the surfaces facing the separator and an oxidizing gas is caused to flow along the other surface thereof, and these gases are respectively supplied to the corresponding electrodes. Thereby, the battery cells to be stacked are connected in series, and a high voltage can be taken out according to the number of stacked layers.

【0003】したがって、セパレータには、燃料ガスお
よび酸化ガスが電極の表面に十分に拡散しやすいこと
(拡散性)、かつ、電極との導通が十分であること(集
電性)が望まれる。
Therefore, it is desired that the separator has a property that the fuel gas and the oxidizing gas are easily diffused to the surface of the electrode (diffusion property) and that the conduction with the electrode is sufficient (collection property).

【0004】セパレータの形状としては、表面に畝状に
複数の細長の凸部を設けて複数の直線状の流路溝が平行
に形成されるようにしたものがある。また、図12に示
すように、セパレータ9の対向辺の近傍で流路が折り返
し蛇行する形状としたものにおいて、一部に複数の直線
状の流路溝が平行に形成されるようにしたものもある。
図例では、複数の細長の凸部911,913により、直
線状の流路溝921,923が形成されている。流路の
折り返し部では、多数の小凸部912を縦横方向に配列
することにより、流路溝922は格子状となっている
(特開平10−106594号公報)。このような、直
線状の流路溝を有するものでは、凸部の占有面積が大き
いので、集電性がよく、また、電池セルの特性を高める
ための加湿用としてガスに含められる水や、燃料ガスと
酸化ガスとの化学反応により発生する水が流れやすいの
で、排水性が良好とされている。さらに、流路溝の上流
から下流に向けて積極的な流れが形成されることによる
流速の上昇で、ガスの拡散性の向上を図っている。
As a shape of the separator, there is a shape in which a plurality of elongated convex portions are provided in a ridge shape on the surface so that a plurality of linear flow channel grooves are formed in parallel. Further, as shown in FIG. 12, in a shape in which the flow paths are folded and meandering in the vicinity of the opposite sides of the separator 9, a plurality of linear flow path grooves are formed in parallel in a part thereof. There is also.
In the illustrated example, the plurality of elongated protrusions 911 and 913 form linear flow channel grooves 921 and 923. In the folded portion of the flow passage, a large number of small convex portions 912 are arranged in the vertical and horizontal directions, so that the flow passage groove 922 has a lattice shape (Japanese Patent Laid-Open No. 10-106594). In such a thing having a linear flow path groove, since the occupying area of the convex portion is large, the current collecting property is good, and the water included in the gas for humidification for enhancing the characteristics of the battery cells, Since the water generated by the chemical reaction between the fuel gas and the oxidizing gas easily flows, it is said that the drainage is good. Furthermore, the positive flow is formed from the upstream side to the downstream side of the flow path groove to increase the flow velocity, thereby improving the gas diffusibility.

【0005】[0005]

【発明が解決しようとする課題】ところで、前記特開平
10−106594号公報のように、流路溝に直線状部
分を有するものでは、発明者が鋭意実験研究を重ねた結
果、次の問題が明らかとなった。すなわち、集電性の確
保の必要から流路断面積が非常に狭く、直線状部分では
ガスの流れが層流となりやすい。このため、電極の表面
近傍に境界層が形成されて、流量から知られる平均流速
の割りには電極の表面近傍ではさほど流れは速くなく、
実際には、ガスの拡散性が十分には向上していないこと
が明らかとなった。また、このため壁面に水が付着しや
すく、排水性の低下が懸念される。
By the way, in the case where the flow path groove has a linear portion as in the above-mentioned Japanese Patent Application Laid-Open No. 10-106594, the inventor has earnestly conducted experimental research, and as a result, the following problems have occurred. It became clear. That is, the cross-sectional area of the flow path is very narrow because it is necessary to secure the current collection property, and the gas flow is likely to be a laminar flow in the linear portion. Therefore, a boundary layer is formed near the surface of the electrode, and the flow is not so fast near the surface of the electrode for the average flow velocity known from the flow rate.
In fact, it became clear that gas diffusivity was not sufficiently improved. Further, for this reason, water is likely to adhere to the wall surface, and there is a concern that the drainage performance may be deteriorated.

【0006】この問題は、直線状の流路溝に沿って配置
される凸部を分断して、図13に示すように多数の小凸
部914を縦列配置し、格子状の流路溝924とすれ
ば、改善される。この構造では、流路溝直線状部分92
41を流れるガスは、縦列配置された複数の凸部914
を側壁として流れていくが、ある凸部914から次の凸
部914に移る位置では流路溝924の側壁が途切れる
ことになる。このため、ガスの流れが乱れて境界層の発
達を阻害し、電極の表面近傍における流速を速めること
ができるからである。
This problem is caused by dividing the convex portions arranged along the linear flow channel and arranging a large number of small convex portions 914 in a column as shown in FIG. If so, it will be improved. In this structure, the flow path groove linear portion 92
The gas flowing through 41 is formed by a plurality of protrusions 914 arranged in a column.
As a side wall, the side wall of the channel groove 924 is interrupted at a position where one convex portion 914 moves to the next convex portion 914. For this reason, the gas flow is disturbed to hinder the development of the boundary layer, and the flow velocity near the surface of the electrode can be increased.

【0007】しかしながら、凸部が多数の小凸部に分断
されることで、凸部の占有面積が減少し、集電性を損ね
ることになる。
However, when the convex portion is divided into a large number of small convex portions, the area occupied by the convex portion is reduced and the current collecting performance is impaired.

【0008】本発明は前記実情に鑑みなされたもので、
集電性を損ねることなく、ガスの拡散性および排水性の
よい燃料電池用セパレータを提供することを目的とす
る。
The present invention has been made in view of the above circumstances,
It is an object of the present invention to provide a fuel cell separator which has good gas diffusion and drainage properties without impairing current collection.

【0009】[0009]

【課題を解決するための手段】請求項1記載の発明で
は、燃料電池の積層する電池セルの隔壁をなすセパレー
タであって、その表面に電池セルの電極と接触し導通す
る凸部が設けられるとともに、凸部非形成部により、電
極に供給する燃料ガスまたは酸化ガスが電極との間隙を
流れる流路溝が形成され、該流路溝には、互いに平行な
複数の直線状の部分を含む燃料電池用セパレータにおい
て、流路溝の直線状部分に沿って配置する凸部として、
直線状部分の側縁を規定する辺を長辺とする長方形の凸
部であって、直線状部分に沿って縦列配置された複数の
凸部を設け、かつ、前記流路溝直線状部分の一方の側縁
側と他方の側縁側とで、凸部を非対称に形成する。
According to a first aspect of the present invention, there is provided a separator forming a partition wall of a battery cell in which fuel cells are stacked, and a convex portion which is in contact with an electrode of the battery cell and is conductive is provided on the surface of the separator. At the same time, the flow path groove in which the fuel gas or the oxidizing gas supplied to the electrode flows through the gap with the electrode is formed by the non-projecting portion, and the flow path groove includes a plurality of linear portions parallel to each other. In the fuel cell separator, as the convex portion arranged along the linear portion of the flow channel,
A rectangular convex portion having a long side that defines the side edge of the linear portion, and provided with a plurality of convex portions arranged in a row along the linear portion, and the flow channel groove linear portion The convex portion is formed asymmetrically on one side edge side and the other side edge side.

【0010】前記のごとく、凸部が不連続で流路溝の側
壁が途切れる位置では、流れを乱す作用が生じる。この
作用は、凸部を挟んで相隣れる2つの流路溝直線状部分
において生じる。このため、図13のような、流路溝を
格子状の形状としたセパレータでは、流路溝直線状部分
のそれぞれについて、一方の側縁側の凸部不連続部が生
む前記作用と、他方の側縁側の凸部不連続部が生む前記
作用とが重複している。
As described above, the action of disturbing the flow occurs at the position where the convex portion is discontinuous and the side wall of the flow channel is interrupted. This action occurs in the two linear portions of the flow channel groove that are adjacent to each other with the convex portion interposed therebetween. Therefore, in the separator in which the flow channel has a lattice shape as shown in FIG. 13, for each of the flow channel linear portions, the above-described action caused by the convex discontinuity portion on one side edge side and the other The above-mentioned action produced by the convex discontinuous portion on the side edge side overlaps.

【0011】これに対して、本発明では、流路溝直線状
部分の一方の側縁側と他方の側縁側とで、凸部を非対称
に形成しているので、流れを乱す作用が、一方の側縁側
の凸部不連続部によるものと、他方の側縁側の凸部不連
続部によるものとで重複せず、効率がよい。その分、凸
部が形成されない凸部不連続部を減らすことができ、ガ
スの流れを乱す作用を減じることなく、凸部の占有面積
を確保することができる。これにより、集電性と、ガス
の拡散性および排水性とが両立する。
On the other hand, in the present invention, the convex portions are formed asymmetrically on one side edge side and the other side edge side of the flow path groove linear portion, so that the action of disturbing the flow is The convex edge discontinuous portion on the side edge side and the convex edge discontinuous portion on the other side edge side do not overlap with each other, and the efficiency is good. Accordingly, it is possible to reduce the discontinuous portion of the convex portion where the convex portion is not formed, and to secure the area occupied by the convex portion without reducing the effect of disturbing the gas flow. As a result, the current collecting property and the gas diffusibility and drainage property are compatible with each other.

【0012】請求項2記載の発明では、請求項1の発明
の構成において、流路溝の直線状部分に沿って配置する
凸部の形状を単一とし、前記縦列配置された複数の凸部
を、流路溝直線状部分の一方の側縁側に形成された凸部
と他方の側縁側に形成された凸部とが縦列方向にオフセ
ットするように配置する。
According to a second aspect of the present invention, in the structure of the first aspect of the invention, the convex portions arranged along the straight line portion of the flow channel have a single shape, and the plural convex portions arranged in the column are formed. Are arranged so that the convex portion formed on one side edge side of the flow path groove linear portion and the convex portion formed on the other side edge side are offset in the column direction.

【0013】前記凸部不連続部の位置が、流路溝直線状
部分の一方の側縁側と他方の側縁側とで、凸部の縦列方
向にオフセットする。したがって、ガスの流れを乱す作
用が、一方の側縁側の凸部不連続部によるものと、他方
の側縁側の凸部不連続部によるものとで重複しない。ま
た、凸部の形状は単純な長方形でよいから、セパレータ
の加工は容易である。
The positions of the protrusion discontinuities are offset in the column direction of the protrusions on one side edge side and the other side edge side of the flow path groove linear portion. Therefore, the effect of disturbing the gas flow does not overlap between the convex discontinuity portion on one side edge side and the convex discontinuity portion on the other side edge side. Moreover, since the shape of the convex portion may be a simple rectangle, the separator can be easily processed.

【0014】請求項3記載の発明では、請求項1の発明
の構成において、前記縦列配置された複数の凸部を、そ
の長辺の長さが、流路溝直線状部分の一方の側縁側に形
成された凸部と他方の側縁側に形成された凸部とで異な
る形状とする。
According to a third aspect of the present invention, in the configuration of the first aspect of the invention, the plurality of columnarly arranged convex portions have a long side whose one side is closer to one side edge of the linear portion of the flow channel. The convex portion formed on the side and the convex portion formed on the other side edge side have different shapes.

【0015】流路溝直線状部分の一方の側縁側と他方の
側縁側とで長辺の大きさが異なるので、縦列配置する凸
部の縦列方向の配置ピッチも前記一方の側縁側と他方の
側縁側とで異なる。したがって、凸部不連続部も、流路
溝直線状部分の一方の側縁側と他方の側縁側とでずれ
る。これにより、ガスの流れを乱す作用が、一方の側縁
側の凸部不連続部によるものと、他方の側縁側の凸部不
連続部によるものとで重複しない。また、凸部の形状は
単純な長方形でよいから、セパレータの加工は容易であ
る。
Since the size of the long side is different between the one side edge side and the other side edge side of the flow path groove linear portion, the pitch of the protrusions to be arranged in the column direction in the column direction is also different from the one side edge side and the other side edge side. It differs from the side edge. Therefore, the convex discontinuity also shifts between one side edge side and the other side edge side of the flow path groove linear portion. Accordingly, the action of disturbing the gas flow does not overlap between the convex discontinuity on one side edge and the convex discontinuity on the other side edge. Moreover, since the shape of the convex portion may be a simple rectangle, the separator can be easily processed.

【0016】請求項4記載の発明では、燃料電池の積層
する電池セルの隔壁をなすセパレータであって、その表
面に電池セルの電極と接触し導通する凸部が設けられる
とともに、凸部非形成部により、電極に供給する燃料ガ
スまたは酸化ガスが電極との間隙を流れる流路溝が形成
され、該流路溝には、互いに平行な複数の直線状の部分
を含む燃料電池用セパレータにおいて、流路溝の直線状
部分の側面または底面を、直線状部分の長さ方向に凹凸
を繰り返す段付きの形状とする。
According to a fourth aspect of the present invention, there is provided a separator forming a partition wall of battery cells stacked in a fuel cell, the surface of which is provided with a convex portion that is in contact with an electrode of the battery cell to conduct electricity, and a convex portion is not formed. The portion forms a flow channel groove in which the fuel gas or the oxidizing gas supplied to the electrode flows in the gap between the electrode and the flow channel groove, and in the fuel cell separator including a plurality of linear portions parallel to each other, The side surface or the bottom surface of the linear portion of the flow path groove has a stepped shape in which unevenness is repeated in the lengthwise direction of the linear portion.

【0017】流路溝直線状部分を流れるガスは、段部に
て流路溝の側面または底面が不連続になることで、流れ
が乱れて境界層の発達を阻害し、電極の表面近傍におけ
る流速を速めることができる。流路溝直線状部分におけ
る凹凸の繰り返し数に応じてガスの拡散性および排水性
が向上する。これは、流路溝の直線状部分の側壁が途切
れているかいないかによらないので、必要な集電性を確
保することができる。
The gas flowing in the straight portion of the flow channel is discontinuous on the side surface or the bottom surface of the flow channel at the step, and the flow is disturbed to hinder the development of the boundary layer, and the gas near the surface of the electrode is disturbed. The flow velocity can be increased. Gas diffusivity and drainage are improved according to the number of repetitions of irregularities in the straight portion of the flow channel groove. This does not depend on whether or not the side wall of the linear portion of the flow channel is interrupted, so that the required current collecting property can be secured.

【0018】[0018]

【発明の実施の形態】(第1実施形態)図1に本発明の
第1実施形態になる燃料電池用セパレータ(以下、適
宜、セパレータという)を示し、図2に前記セパレータ
を適用した燃料電池の要部の断面構造を示す。セパレー
タ11は、ガス不透性の、セパレータとして望ましい特
性を備えた緻密性カーボン等の公知の材料により、長方
形の板状に構成されたもので、燃料電池の電池セル12
と交互に積層し、電池セル12の隔壁となる。電池セル
12には電解質膜120の両面に、ガスが拡散可能な多
孔質層でなる電極121,122を重ねた一般的な構造
のものが用いられ得る。
BEST MODE FOR CARRYING OUT THE INVENTION (First Embodiment) FIG. 1 shows a fuel cell separator according to a first embodiment of the present invention (hereinafter, appropriately referred to as a separator), and FIG. 2 shows a fuel cell to which the separator is applied. The cross-sectional structure of the essential part of is shown. The separator 11 is made of a known material such as dense carbon, which is gas impermeable and has desirable characteristics as a separator, and has a rectangular plate shape.
Are alternately laminated to form a partition wall of the battery cell 12. The battery cell 12 may have a general structure in which electrodes 121 and 122 made of porous layers capable of diffusing gas are superposed on both surfaces of the electrolyte membrane 120.

【0019】セパレータ11の背向する表面1101,
1102のそれぞれには、電池セル12の電極121,
122の方に突出する多数の凸部41,42,43が形
成されて、段上面にて電池セル12の電極121,12
2と密着し、該電極121,122とセパレータ11と
が導通するようになっている。また、凸部42等の非形
成部位にできる空間は、水素を含有する水素リッチガス
等の燃料ガスまたは酸素を含有する空気等の酸化ガスが
電極121,122との間隙を流れる流路31,32と
なっており、流路31,32を流通するこれらのガス
が、セパレータ11とは非接触の電極121,122の
表面から電極121,122内に拡散する。
The back surface 1101 of the separator 11
Each of the electrodes 1102 has electrodes 121 of the battery cell 12,
A large number of protrusions 41, 42, 43 protruding toward 122 are formed, and the electrodes 121, 12 of the battery cell 12 are formed on the upper surface of the step.
The electrodes 121 and 122 and the separator 11 are electrically connected to each other. Further, the spaces formed in the non-formation portions such as the convex portions 42 are flow paths 31, 32 in which a fuel gas such as hydrogen-rich gas containing hydrogen or an oxidizing gas such as air containing oxygen flows through the gaps with the electrodes 121, 122. These gases flowing through the flow channels 31 and 32 diffuse into the electrodes 121 and 122 from the surfaces of the electrodes 121 and 122 that are not in contact with the separator 11.

【0020】セパレータ11の図1中左右の対向辺の近
傍には、燃料ガスをセパレータ11の一方の表面110
1の流路溝51,52に導入するための燃料ガス導入孔
21と、燃料ガスを前記流路溝51,52から排出する
ための燃料ガス排出孔26とが対角位置に形成されてい
る。また、酸化ガスをセパレータ11の他方の表面11
02の図略の流路溝に導入するための酸化ガス導入孔2
4と、酸化ガスを前記流路溝から排出するための酸化ガ
ス排出孔23とが別の対角位置に形成されている。ま
た、冷却水を循環する冷却水流路を形成するための冷却
水流路孔22,25が形成されている。
In the vicinity of the left and right opposing sides of the separator 11 in FIG.
The fuel gas introduction hole 21 for introducing the first flow path groove 51, 52 and the fuel gas discharge hole 26 for discharging the fuel gas from the flow path groove 51, 52 are formed at diagonal positions. . In addition, the oxidizing gas is applied to the other surface 11 of the separator 11.
Oxidation gas introduction hole 2 for introduction into the channel groove (not shown) of 02.
4 and an oxidizing gas discharge hole 23 for discharging the oxidizing gas from the channel groove are formed at different diagonal positions. Further, cooling water passage holes 22 and 25 for forming cooling water passages for circulating the cooling water are formed.

【0021】セパレータ11の一方の表面1101にお
ける凸部41〜43とこれにより形状が規定される流路
溝51,52について説明する。セパレータ11にはこ
れを縁取るように額縁状の凸部41が形成されている。
額縁状凸部41は、前記燃料ガス導入孔21および燃料
ガス排出孔26の形成部よりも外側に形成され、燃料ガ
スが額縁状凸部41で囲まれた範囲を流通可能となって
いる。
The convex portions 41 to 43 on the one surface 1101 of the separator 11 and the flow channel grooves 51 and 52 whose shapes are defined by the convex portions 41 to 43 will be described. A frame-shaped convex portion 41 is formed on the separator 11 so as to frame it.
The frame-shaped convex portion 41 is formed outside the formation portion of the fuel gas introduction hole 21 and the fuel gas discharge hole 26, and the fuel gas can flow in the range surrounded by the frame-shaped convex portion 41.

【0022】額縁状凸部41からは2つの流路形成リブ
411,412が延設されている。第1の流路形成リブ
411は図中上から略1/3の位置を、燃料ガス導入孔
21の近傍から横方向に伸び、第2の流路形成リブ41
2は図中下から略1/3の位置を、燃料ガス排出孔26
の近傍から横方向に伸びている。これにより、全体とし
ては、燃料ガス導入孔21からS字状に蛇行して燃料ガ
ス排出孔26に到る燃料ガスの流路31が形成される。
Two flow path forming ribs 411 and 412 are extended from the frame-shaped convex portion 41. The first flow path forming rib 411 extends laterally from the vicinity of the fuel gas introducing hole 21 at a position of about 1/3 from the top in the drawing, and the second flow path forming rib 41 is formed.
2 is the fuel gas discharge hole 26 at a position approximately 1/3 from the bottom in the figure.
It extends laterally from the vicinity of. Thereby, as a whole, the flow path 31 of the fuel gas that meanders in an S shape from the fuel gas introduction hole 21 and reaches the fuel gas discharge hole 26 is formed.

【0023】蛇行する流路31は、上流部311と中流
部313との間、中流部313と下流部315との間で
折り返す折り返し部312,314では、正方形の凸部
44が縦横に等間隔に配置されており、流路溝52が格
子状をなしている。これにより、折り返し部312,3
14においてガスや水が滞留することなく、流れ方向が
スムーズに変化するようになっている。
In the meandering flow path 31, in the folded-back portions 312 and 314 which are folded back between the upstream portion 311 and the midstream portion 313 and between the midstream portion 313 and the downstream portion 315, the square convex portions 44 are vertically and horizontally equally spaced. And the flow path grooves 52 are in the shape of a lattice. As a result, the folded portions 312, 3
In 14, the gas and water do not stay and the flow direction changes smoothly.

【0024】流路31の上流部311、中流部313、
下流部315では、流路溝51は、流路形成リブ41
1,412と平行な方向に縦列配置された凸部42,4
3により形成される。かかる凸部42,43の縦列が、
流路折り返し部312,314の凸部44の配置間隔と
同じ間隔で流路形成リブ411,412と直交方向に複
数配置してある。これにより、流路溝51には、それぞ
れの縦列配置された凸部42,43を側壁として、互い
に平行な複数の直線状部分511が形成される。相隣れ
る直線状部分511同志は、側壁が途切れる位置、すな
わち凸部42,43の不連続部42aにて連通する。な
お、説明において、流路溝51は、上流部311と中流
部313と下流部315とで、厳密には異なるが、単に
長さの相違であり、本発明の本質部分ではないので、同
じ符号で説明する。
The upstream portion 311, the middle flow portion 313 of the flow path 31,
In the downstream portion 315, the flow channel groove 51 has the flow channel forming rib 41.
Convex portions 42, 4 arranged in parallel in a direction parallel to 1, 412
3 is formed. The columns of the convex portions 42 and 43 are
Plural elements are arranged in the direction orthogonal to the flow path forming ribs 411 and 412 at the same intervals as the arrangement intervals of the convex portions 44 of the flow path turn-back portions 312 and 314. As a result, a plurality of linear portions 511 that are parallel to each other are formed in the flow path groove 51, with the convex portions 42 and 43 arranged in the respective columns as side walls. The adjacent linear portions 511 communicate with each other at the position where the side wall is interrupted, that is, at the discontinuous portion 42a of the convex portions 42 and 43. In the description, the flow path groove 51 is strictly different in the upstream portion 311, the midstream portion 313, and the downstream portion 315, but is simply the difference in length and is not an essential part of the present invention. Described in.

【0025】流路溝直線状部分511を規定する凸部4
2,43は、燃料ガス導入孔21に隣接する位置、折り
返し部312,314に隣接する位置、燃料ガス排出孔
26に隣接する位置に設けられる凸部43を除き、同じ
形状の長方形で、その長手方向を縦列配置方向にとって
ある。凸部42の短辺の長さは折り返し部312,31
4の凸部44の辺の長さと同じである。
Convex portion 4 that defines the linear portion 511 of the flow channel.
Reference numerals 2 and 43 are rectangles of the same shape except for the convex portion 43 provided at a position adjacent to the fuel gas introduction hole 21, a position adjacent to the folded portions 312 and 314, and a position adjacent to the fuel gas discharge hole 26. The longitudinal direction is the column arrangement direction. The length of the short side of the convex portion 42 is equal to that of the folded portions 312, 31.
4 is the same as the length of the side of the convex portion 44.

【0026】ここで、縦列配置された複数の凸部42
は、流路溝直線状部分511の一方の側縁側と他方の側
縁側とで縦列方向にオフセットするように配置してあ
り、流路溝51があみだ状となっている。オフセット量
は、凸部42の縦列方向の配置ピッチの半分に設定され
ている。凸部42に加えて前記凸部43が設けられるの
は、かかるオフセットがあっても、燃料ガス導入孔21
に隣接する位置、折り返し部312,314に隣接する
位置、燃料ガス排出孔26に隣接する位置において、各
縦列における凸部42,43の短辺の位置を合わせるた
めである。
Here, a plurality of convex portions 42 arranged in a row are arranged.
Are arranged so as to be offset in the column direction on one side edge side and the other side edge side of the flow path groove linear portion 511, and the flow path groove 51 has a crease shape. The offset amount is set to half the arrangement pitch of the convex portions 42 in the column direction. The convex portion 43 is provided in addition to the convex portion 42 so that the fuel gas introduction hole 21 can be provided even if such an offset is present.
This is because the positions of the short sides of the protrusions 42 and 43 in each column are aligned at the position adjacent to the, the position adjacent to the folded portions 312 and 314, and the position adjacent to the fuel gas discharge hole 26.

【0027】セパレータ11の他方の表面1102につ
いても酸化ガス導入孔24から酸化ガス排出孔23に到
るS字状蛇行流路32が形成されており、凸部が同様の
形状および配置となっている。
On the other surface 1102 of the separator 11 is also formed an S-shaped meandering channel 32 extending from the oxidizing gas introducing hole 24 to the oxidizing gas discharging hole 23, and the convex portions have the same shape and arrangement. There is.

【0028】本セパレータ11の作動について説明す
る。燃料ガス導入孔21からの燃料ガスは前記S字蛇行
流路31を通って燃料ガス排出孔26に抜けるが、燃料
ガス導入孔21、折り返し部312,314からそれぞ
れ流路溝51に流れ込んだ燃料ガスは、複数の流路溝直
線状部分511に分かれて流れていく。流路溝直線状部
分511は狭く、これが、上流端から奥に進むほど流路
溝壁面近傍における境界層の形成を助長する方向に作用
する。ここで、相隣れる流路溝直線状部分511同志
は、共通の流路溝側壁をなす凸部42,43が所定間隔
をおいて途切れることで、連通する。このため、流路溝
側壁が途切れる位置すなわち凸部不連続部42aにおい
て、ガスの流れを乱す作用が生じる。このため、境界層
の発達が阻害され、燃料ガスの拡散性および排水性が向
上する。
The operation of the separator 11 will be described. The fuel gas from the fuel gas introduction hole 21 passes through the S-shaped meandering flow path 31 and escapes to the fuel gas discharge hole 26, but the fuel flowing into the flow path groove 51 from the fuel gas introduction hole 21 and the folded portions 312 and 314, respectively. The gas is divided into a plurality of flow path groove linear portions 511 and flows. The flow path groove linear portion 511 is narrow, and this acts in a direction that promotes the formation of a boundary layer near the wall surface of the flow path groove as it goes deeper from the upstream end. Here, the adjacent flow path groove linear portions 511 communicate with each other by the projections 42 and 43 forming the common flow path groove side wall being interrupted at a predetermined interval. Therefore, at the position where the side wall of the flow path groove is interrupted, that is, at the convex discontinuous portion 42a, the action of disturbing the gas flow occurs. Therefore, the development of the boundary layer is hindered, and the fuel gas diffusivity and drainage are improved.

【0029】しかも、本セパレータ11では、前記のご
とく流路溝直線状部分511の一方の側縁側と他方の側
縁側とで縦列配置された複数の凸部42,43が縦列方
向にオフセットするように配置してあるので、次の効果
を奏する。
Moreover, in the present separator 11, as described above, the plurality of convex portions 42, 43 arranged in a column on one side edge side and the other side edge side of the flow path groove linear portion 511 are offset in the column direction. Since it is located at, it has the following effects.

【0030】図3に、本発明の効果を説明するための比
較例を示す。比較例は、セパレータ11の構成におい
て、流路溝51に代えて、凸部61,62により流路溝
71を形成したものである。凸部61は凸部42と同じ
形状で同数が配置され、凸部62は凸部43と同じ形状
で同数が配置されている。したがって、凸部の総面積は
本実施形態のセパレータと同じであり、集電性が本実施
形態のセパレータと同等である。
FIG. 3 shows a comparative example for explaining the effect of the present invention. In the comparative example, in the configuration of the separator 11, instead of the channel groove 51, the channel groove 71 is formed by the convex portions 61 and 62. The convex portions 61 have the same shape and the same number as the convex portions 42, and the convex portions 62 have the same shape and the same number as the convex portions 43. Therefore, the total area of the convex portions is the same as that of the separator of this embodiment, and the current collecting property is equivalent to that of the separator of this embodiment.

【0031】比較例の本実施形態のセパレータ11との
相違点は凸部61,62の配置である。比較例のセパレ
ータも、流路形成リブ411,412に平行に凸部6
1,62が縦列配置されてなり、本セパレータ11の流
路溝直線状部分511と同数の流路溝直線状部分711
が形成される。しかし、流路溝直線状部分711の一方
の側縁側と他方の側縁側とで縦列配置された複数の凸部
61,62がオフセットされておらず、図より知られる
ように、流路溝71があみだ状ではなく、前記折り返し
部のごとく格子状となっている。
The difference from the separator 11 of the present embodiment of the comparative example is the arrangement of the convex portions 61 and 62. The separator of the comparative example also has the convex portion 6 parallel to the flow path forming ribs 411 and 412.
1, 62 are arranged in tandem, and the same number of flow channel linear portions 711 as the flow channel linear portions 511 of the separator 11 are provided.
Is formed. However, the plurality of convex portions 61 and 62 that are arranged in series on one side edge side and the other side edge side of the flow path groove linear portion 711 are not offset, and as is known from the figure, the flow path groove 71 is formed. It is not a hump-like shape, but a lattice shape like the folded-back portion.

【0032】図4(A)、図4(B)はセパレータの表
面を拡大したもので、図4(A)は本実施形態のセパレ
ータ11のもので、図4(B)は比較例のセパレータの
ものである。前記のごとく、流路溝直線状部分511,
711の側壁が途切れる凸部不連続部42a,61a
で、ガスの流れを乱す作用(以下、適宜、境界層防止作
用という)が生じる。比較例の場合(図4(B))、図
中矢印で示す流路溝直線状部分711に注目すると、ガ
スの流れを辿っていったとき、境界層防止作用は、例え
ば位置PB1で生じた次には位置PB2で生じる。一方、本
実施形態の場合(図4(A))、図中矢印で示す流路溝
直線状部分511に注目すると、ガスの流れを辿ってい
ったとき、境界層防止作用は、例えば位置PA1で生じた
次には位置PA2で生じる。
4A and 4B are enlarged views of the surface of the separator, FIG. 4A shows the separator 11 of the present embodiment, and FIG. 4B shows the separator of the comparative example. belongs to. As described above, the flow channel groove linear portion 511,
711 the side wall of 711 is interrupted and the convex discontinuous portions 42a, 61a
Thus, an action of disturbing the gas flow (hereinafter, appropriately referred to as a boundary layer prevention action) occurs. In the case of the comparative example (FIG. 4 (B)), paying attention to the flow path groove linear portion 711 indicated by the arrow in the figure, when the gas flow is followed, the boundary layer prevention action occurs at the position PB1, for example. Next occurs at position PB2. On the other hand, in the case of the present embodiment (FIG. 4 (A)), paying attention to the flow path groove linear portion 511 indicated by the arrow in the figure, when the gas flow is traced, the boundary layer prevention action is performed at, for example, the position PA1. Then, it occurs at position PA2.

【0033】前記図4(A),(B)には、前記位置P
A1,PA2,PB1,PB2において作用する境界層防止作用
を生む凸部不連続部42a,61aを図中「・」で示し
ている。凸部不連続部42a,61aが生む境界層防止
作用は、相隣れる流路溝直線状部分511,711のい
ずれにもおよぶが、流路溝71が格子状である比較例で
は、流路溝直線状部分711の一方の側縁側の凸部不連
続部61aと、他方の側縁側の凸部不連続部61aとが
重複しているのに対して、本実施形態では、重複してい
ない。このため、比較例では位置PB1から位置PB2まで
の距離は凸部61の縦列方向の配置ピッチであるのに対
して、本実施形態では、位置PA1から位置PA2までの距
離は凸部42の縦列方向の配置ピッチの1/2となる。
このように、本実施形態の方が、各流路溝直線状部分5
11において、境界層防止作用が生じる部位が2倍にな
る。
In FIGS. 4A and 4B, the position P is shown.
The convex discontinuities 42a and 61a which produce the boundary layer preventing action acting on A1, PA2, PB1 and PB2 are indicated by "." The boundary layer preventing action generated by the convex discontinuous portions 42a and 61a extends to both of the adjacent flow path groove linear portions 511 and 711, but in the comparative example in which the flow path grooves 71 are in the grid shape, While the convex portion discontinuous portion 61a on one side edge side of the groove linear portion 711 and the convex portion discontinuous portion 61a on the other side edge side overlap, in the present embodiment, they do not overlap. . Therefore, in the comparative example, the distance from the position PB1 to the position PB2 is the arrangement pitch in the column direction of the protrusions 61, whereas in the present embodiment, the distance from the position PA1 to the position PA2 is the column of the protrusions 42. It becomes 1/2 of the arrangement pitch in the direction.
As described above, according to the present embodiment, each flow path groove linear portion 5 is
In 11, the site where the boundary layer prevention action occurs is doubled.

【0034】図5は流路溝におけるガスの流速の、流路
溝の幅方向の分布を示すもので、本実施形態(図中A)
と比較例(図中B)とを併せて示している。計測位置
は、境界層防止作用が生じる前記位置PA1(PB1)と次
に生じる位置PA2(PB2)との中間となるA−A線に沿
う断面位置、B−B線に沿う断面位置にとってある。流
速は図6に示すように、溝幅方向(Y)および溝深さ方
向(Z)に対して直交する方向すなわち凸部の縦列方向
である。本実施形態では、比較例に比して溝幅方向の中
心部における流速と、流路溝の側縁の近傍における流速
との差が小さく、境界層防止作用が大きいことが分か
る。したがって、本実施形態は、電極におけるガスの拡
散性および排水性の点で比較例よりも優れているものと
認められる。
FIG. 5 shows the distribution of the gas flow velocity in the flow channel in the width direction of the flow channel. This embodiment (A in the figure).
And a comparative example (B in the figure) are also shown. The measurement position is located at a cross-sectional position along the line AA and a cross-sectional position along the line BB, which is intermediate between the position PA1 (PB1) where the boundary layer preventing action occurs and the position PA2 (PB2) which occurs next. As shown in FIG. 6, the flow velocity is a direction orthogonal to the groove width direction (Y) and the groove depth direction (Z), that is, the vertical direction of the convex portions. It can be seen that in the present embodiment, the difference between the flow velocity in the central portion in the groove width direction and the flow velocity in the vicinity of the side edge of the flow channel is smaller and the boundary layer prevention action is greater than in the comparative example. Therefore, it is recognized that the present embodiment is superior to the comparative example in terms of gas diffusibility and drainage at the electrode.

【0035】このように、本実施形態によれば、集電性
とガスの拡散性および排水性とを両立することができ
る。
As described above, according to this embodiment, it is possible to achieve both current collection, gas diffusion and drainage.

【0036】表1に、セパレータが電極と密着する面積
(すなわち凸部の面積)の割合(集電部面積割合)と、
境界層防止作用がおよぶ部位(図4(A)、図4(B)
の位置PA1,PA2,PB1,PB2等に相当する部位)の数
(境界層防止部位数)とを示す。
In Table 1, the ratio of the area where the separator is in close contact with the electrode (that is, the area of the convex portion) (area ratio of the current collecting portion),
Boundary layer prevention area (Figs. 4 (A) and 4 (B))
The number of parts corresponding to the positions PA1, PA2, PB1, PB2, etc.) (the number of boundary layer prevention parts) is shown.

【0037】[0037]

【表1】 [Table 1]

【0038】実施例1は本実施形態(図1)に対応する
ものであり、実施例2、実施例3は後述する第2、第3
実施形態に対応するものである。従来例1は前記図12
に示したセパレータに、従来例2は前記図13に示した
セパレータに対応するものである。比較例は前記図3の
セパレータに対応するものである。集電部面積割合は、
図7に示すように、蛇行流路の中流部の面積に対する凸
部の総面積の割合で算出している。
Example 1 corresponds to the present embodiment (FIG. 1), and Examples 2 and 3 are second and third, which will be described later.
This corresponds to the embodiment. Conventional example 1 is shown in FIG.
The conventional example 2 corresponds to the separator shown in FIG. 13 and the separator shown in FIG. The comparative example corresponds to the separator shown in FIG. The current collector area ratio is
As shown in FIG. 7, it is calculated by the ratio of the total area of the convex portions to the area of the midstream portion of the meandering channel.

【0039】実施例1は、集電部面積割合では従来例1
や比較例と遜色なく、境界層防止部位数では、遙に従来
例1や比較例を凌いでいる。なお、従来例2は境界層防
止部位数では大きな値をとるものの、集電部面積割合が
半減してしまっている。
The first embodiment is the conventional example 1 in terms of the area ratio of the current collecting portion.
In comparison with the comparative example, the number of boundary layer prevention sites far exceeds the conventional example 1 and the comparative example. In Conventional Example 2, the number of boundary layer prevention sites is large, but the current collector area ratio is halved.

【0040】(第2実施形態)図8に本発明の第2実施
形態になるセパレータの要部を示す。第1実施形態にお
いて、蛇行流路の上流部、中流部および下流部におい
て、流路溝直線状部分を構成する凸部を別の構成に代え
たもので、第1実施形態との相違点を中心に説明する。
なお、説明の便宜のため、第1実施形態と同じ部分の説
明において、第1実施形態と同じ番号を付すものとす
る。
(Second Embodiment) FIG. 8 shows a main part of a separator according to a second embodiment of the present invention. In the first embodiment, in the upstream part, the midstream part and the downstream part of the meandering flow path, the convex parts forming the linear part of the flow path groove are replaced with another configuration, which is different from the first embodiment. I will explain mainly.
For convenience of description, in the description of the same parts as those in the first embodiment, the same numbers as those in the first embodiment are used.

【0041】本セパレータ11Aも、凸部45,46が
流路形成リブ411,412と平行に縦列配置されてそ
の両側に流路溝53を構成する直線状部分531が形成
されるものであるが、流路溝直線状部分531の一方の
側縁側の凸部45と、他方の側縁側の凸部46とで、長
辺の長さが違えてあり、長辺が長い方の凸部45の縦列
方向の配置ピッチが、長辺が短い方の凸部46の縦列方
向の配置ピッチの4倍となっている。これにより、流路
溝直線状部分531の一方の側縁側が凸部不連続部45
aとなっていても、他方の側縁側が凸部不連続部46a
となるのは、4回に1回であり、流路溝直線状部分53
1の一方の側縁側の凸部不連続部45aと、他方の側縁
側の凸部不連続部46aとが殆ど重複しない。その分、
集電性を損なうことなくガスの拡散性および排水性を向
上することができる。
Also in the present separator 11A, the convex portions 45 and 46 are arranged in parallel in parallel with the flow passage forming ribs 411 and 412, and the linear portions 531 forming the flow passage grooves 53 are formed on both sides thereof. The long side length is different between the convex portion 45 on one side edge side of the flow path groove linear portion 531 and the convex portion 46 on the other side edge side of the convex portion 45 of the longer side. The arrangement pitch in the column direction is four times the arrangement pitch in the column direction of the convex portions 46 whose shorter sides are shorter. As a result, one side edge side of the flow path groove linear portion 531 is provided with the convex portion discontinuous portion 45.
Even if it is a, the other side edge side is the convex discontinuous portion 46a.
Is once in four times, and the flow path groove linear portion 53
The convex discontinuity portion 45a on one side edge side and the convex discontinuity portion 46a on the other side edge side hardly overlap each other. That much
It is possible to improve gas diffusibility and drainage without impairing current collection.

【0042】このように凸部45と凸部46とでその長
辺の長さおよび縦列方向の配置ピッチを違えたものを実
施例2とすれば、実施例2も、比較例に比して境界層防
止部位が倍増することになる。したがって、実施例2
は、前掲表1に示すごとく、集電部面積割合では従来例
や比較例と遜色なく、境界層防止部位数では、遙に従来
例1や従来例2を凌ぐ。
If the convex portion 45 and the convex portion 46 differ in the length of the long side and the arrangement pitch in the column direction as described above, the second embodiment is also compared with the comparative example. The boundary layer prevention site will be doubled. Therefore, Example 2
As shown in Table 1 above, the current collector area ratio is comparable to that of the conventional example and the comparative example, and the number of boundary layer prevention sites far exceeds those of the conventional example 1 and the conventional example 2.

【0043】なお、図例では、長辺が長い方の凸部45
が縦列する方の凸部不連続部45aが境界層防止作用を
生む部位では、凸部不連続部45aと、凸部不連続部4
6aとが重複するが、この重複は、例えば、長辺が短い
方の凸部46の縦列方向配置ピッチの1/2、長辺が長
い方の凸部45と長辺が短い方の凸部46とでオフセッ
トするように配置することで解消することができる。
In the illustrated example, the convex portion 45 having the longer long side is formed.
In the part where the convex discontinuous portion 45a in which the columns are cascaded produces the boundary layer preventing action, the convex discontinuous portion 45a and the convex discontinuous portion 4 are formed.
6a overlaps, but this overlap is, for example, 1/2 of the arrangement pitch in the column direction of the convex portion 46 having the shorter long side, the convex portion 45 having the longer long side and the convex portion having the shorter long side. This can be solved by arranging so as to offset with 46.

【0044】また、長辺の長さの異なる2種類の凸部の
配置ピッチの比は1:4に限られず、任意である。
The ratio of the arrangement pitches of the two types of convex portions having different long sides is not limited to 1: 4, but may be any ratio.

【0045】(第3実施形態)セパレータの凸部の配置
が前記比較例のものでも、流路溝直線状部分を規定する
凸部の形状の変更でガスの拡散性を向上することができ
る。図9に本実施形態になるセパレータを拡大したもの
を示す。本セパレータ11Bの流路溝54の直線状部分
541を規定する凸部47は、全体形状が比較例と等価
である。凸部47の長辺の側面4701には、長手方向
の中程位置に段差4701aが形成されて、凸部47の
幅を細らせてある。そして、側面4701の段下側の半
部が凸部47の角部にかけて傾斜し、幅が戻るようにな
っている。すなわち、流路溝直線状部分541の側壁面
である凸部側面4701が、凸部不連続部47aを挟ん
で、流路溝直線状部分541の長さ方向に凹凸を繰り返
す段付きの形状となっている。
(Third Embodiment) Even when the arrangement of the convex portions of the separator is the same as that of the comparative example, the gas diffusibility can be improved by changing the shape of the convex portions which define the linear portions of the flow channel. FIG. 9 shows an enlarged view of the separator according to the present embodiment. The entire shape of the convex portion 47 that defines the linear portion 541 of the flow channel 54 of the separator 11B is equivalent to that of the comparative example. A step 4701a is formed on the long side surface 4701 of the convex portion 47 at a middle position in the longitudinal direction, and the width of the convex portion 47 is narrowed. The half of the side surface 4701 on the lower step side is inclined toward the corner of the convex portion 47 so that the width is restored. That is, the convex side surface 4701, which is the side wall surface of the flow channel linear portion 541, has a stepped shape that repeats unevenness in the lengthwise direction of the flow channel linear portion 541 with the convex discontinuous portion 47a interposed therebetween. Has become.

【0046】流路溝直線状部分541を流れるガスは、
凸部不連続部47aに加えて、凸部側面4701に形成
された段差4701aにおいて、流れが乱される。
The gas flowing through the straight portion 541 of the flow channel is
In addition to the convex discontinuous portion 47a, the flow is disturbed in the step 4701a formed on the convex side surface 4701.

【0047】したがって、流路溝直線状部分541は、
凸部側面4701の段差4701a位置も、凸部不連続
部47aで側壁が途切れる位置と同様に境界層防止部位
であり、段差4701aを設けた分、ガス拡散性および
排水性が向上する。
Therefore, the flow path groove linear portion 541 is
The position of the step 4701a on the side surface 4701 of the convex portion is also a boundary layer preventing portion similarly to the position where the side wall is interrupted by the discontinuous portion 47a of the convex portion, and gas diffusion and drainage are improved by the provision of the step 4701a.

【0048】各凸部側面4701に段差4701aを設
けたものを実施例3とすれば、実施例3は比較例に比し
て境界層防止部位が倍増することになる。したがって、
実施例3は、前掲表1に示すごとく、集電部面積割合で
は従来例1や比較例と遜色なく、境界層防止部位数で
は、遙に従来例1や比較例を凌ぐ。
If the convex side surface 4701 is provided with a step 4701a as the third embodiment, the boundary layer preventing portion of the third embodiment is doubled as compared with the comparative example. Therefore,
As shown in Table 1 above, Example 3 is comparable to the conventional example 1 and the comparative example in the area ratio of the current collecting portion, and far exceeds the conventional example 1 and the comparative example in the number of boundary layer prevention sites.

【0049】なお、凸部側面4701の段差4701a
は背向するもう一方の側面にも形成してもよい。また、
側面の形状も図9のものに限定されるものではない。例
えば、図10に示すように、凸部48の側面4801が
段差4801aの段上部分と段下部分とで平行な形状で
もよい。
A step 4701a on the side surface 4701 of the convex portion 4701a
May be formed on the other side facing away. Also,
The shape of the side surface is not limited to that shown in FIG. For example, as shown in FIG. 10, the side surface 4801 of the convex portion 48 may be parallel to the stepped portion and the stepped portion of the step 4801a.

【0050】なお、本実施形態の特徴部分は、第1、第
2実施形態の凸部に適用することができ、さらにガス拡
散性および排水性を向上することができる。
The characteristic part of this embodiment can be applied to the convex portions of the first and second embodiments, and the gas diffusibility and drainage can be further improved.

【0051】(第4実施形態)セパレータの凸部の配置
が比較例のものにおいて、ガスの拡散性および排水性を
向上した別の実施形態を図11に示す。図は蛇行流路の
上流部、中流部および下流部のものである。なお、説明
の便宜のため、第1実施形態と同じ部分の説明におい
て、第1実施形態と同じ番号を付すものとする。
(Fourth Embodiment) FIG. 11 shows another embodiment in which the arrangement of the convex portions of the separator is a comparative example and the gas diffusivity and drainage are improved. The figure shows the upstream, middle and downstream parts of the meandering flow path. For convenience of description, in the description of the same parts as those in the first embodiment, the same numbers as those in the first embodiment are used.

【0052】本セパレータ11Cの流路溝直線状部分5
51を規定する凸部49は比較例と同一である。そし
て、流路溝直線状部分551の底面5501に、縦列配
置される凸部49の縦列方向配置ピッチの1/2の間隔
で、段差5501aが設けてあり、凸部49の縦列方向
に鋸歯状に凹凸を繰り返す段付きの形状となっている。
The flow path groove linear portion 5 of the present separator 11C
The convex portion 49 defining 51 is the same as that of the comparative example. Further, on the bottom surface 5501 of the flow path groove linear portion 551, steps 5501a are provided at an interval of ½ of the arrangement pitch in the column direction of the protrusions 49 arranged in the column, and the saw tooth shape is formed in the column direction of the protrusions 49. It has a stepped shape that repeats unevenness.

【0053】流路溝直線状部分551に流入したガス
は、底面5501に形成された各段差5501a位置に
おいて、流れが乱される。したがって、流路溝直線状部
分551は、かかる段差5501a位置も、凸部不連続
部49aで側壁が途切れる位置と同様に境界層防止部位
であり、段差5501aを設けた分、ガス拡散性および
排水性が向上する。
The flow of the gas flowing into the flow path groove linear portion 551 is disturbed at each position of the steps 5501a formed on the bottom surface 5501. Therefore, the flow path groove straight line portion 551 is also a boundary layer preventing portion at the position of the step 5501a as well as the position where the side wall is interrupted by the convex discontinuous portion 49a, and the step 5501a is provided, so that the gas diffusivity and drainage are increased. The property is improved.

【0054】なお、本実施形態の特徴部分は、第1、第
2、第3実施形態、第3実施形態の特徴部分を適用した
第1、第2実施形態の流路溝底面に適用することがで
き、さらにガス拡散性および排水性を向上することがで
きる。
The characteristic part of this embodiment is applied to the bottom surface of the flow channel groove of the first, second, and third embodiments to which the characteristic parts of the first, second, third, and third embodiments are applied. It is possible to improve gas diffusibility and drainage.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1実施形態になる燃料電池用セパレ
ータの平面図である。
FIG. 1 is a plan view of a fuel cell separator according to a first embodiment of the present invention.

【図2】前記燃料電池用セパレータを適用した燃料電池
の要部断面図である。
FIG. 2 is a cross-sectional view of a main part of a fuel cell to which the fuel cell separator is applied.

【図3】前記燃料電池用セパレータと比較する燃料電池
用セパレータの平面図である。
FIG. 3 is a plan view of a fuel cell separator for comparison with the fuel cell separator.

【図4】(A)は図1の拡大図であり、(B)は図3の
拡大図である。
4A is an enlarged view of FIG. 1, and FIG. 4B is an enlarged view of FIG.

【図5】流路溝における流速分布を示すグラフである。FIG. 5 is a graph showing a flow velocity distribution in a flow channel.

【図6】前記流路溝における流速分布を説明する図であ
る。
FIG. 6 is a diagram illustrating a flow velocity distribution in the flow channel.

【図7】表1を説明する図である。FIG. 7 is a diagram illustrating Table 1.

【図8】本発明の第2実施形態になる燃料電池用セパレ
ータの要部の平面図である。
FIG. 8 is a plan view of an essential part of a fuel cell separator according to a second embodiment of the present invention.

【図9】本発明の第3実施形態になる燃料電池用セパレ
ータの要部の平面図である。
FIG. 9 is a plan view of an essential part of a fuel cell separator according to a third embodiment of the present invention.

【図10】前記燃料電池用セパレータの変形例の要部の
平面図である。
FIG. 10 is a plan view of a main part of a modified example of the fuel cell separator.

【図11】(A)は本発明の第4実施形態になる燃料電
池用セパレータの要部の平面図であり、(B)は(A)
におけるXIB−XIB線に沿う断面図である。
FIG. 11A is a plan view of an essential part of a fuel cell separator according to a fourth embodiment of the present invention, and FIG.
3 is a cross-sectional view taken along line XIB-XIB in FIG.

【図12】従来の燃料電池用セパレータの代表例の平面
図である。
FIG. 12 is a plan view of a typical example of a conventional fuel cell separator.

【図13】従来の燃料電池用セパレータの別の代表例の
平面図である。
FIG. 13 is a plan view of another typical example of a conventional fuel cell separator.

【符号の説明】[Explanation of symbols]

11,11A,11B,11C セパレータ 12 電池セル 120 電解質膜 121,122 電極 1101,1102 表面 21 燃料ガス導入孔 23 酸化ガス排出孔 24 酸化ガス導入孔 26 燃料ガス排出孔 22,25 冷却水流路孔 31,32 流路 311 上流部 312 折り返し部 313 中流部 314 折り返し部 315 下流部 41 額縁状凸部 411,412 流路形成用リブ 42,43,44,45,46,47,48,49 凸
部 42a,43a,45a,46a,47a,49a 凸
部不連続部 4701,4801 側面 4701a,4801a 段差 51,52,53,54 流路溝 511,531,541,551 流路溝直線状部分 5501 底面 5501a 段差
11, 11A, 11B, 11C Separator 12 Battery cell 120 Electrolyte membrane 121, 122 Electrode 1101, 1102 Surface 21 Fuel gas introducing hole 23 Oxidizing gas discharging hole 24 Oxidizing gas introducing hole 26 Fuel gas discharging hole 22, 25 Cooling water flow path hole 31 , 32 flow path 311 upstream part 312 folding part 313 middle part 314 folding part 315 downstream part 41 frame-shaped convex part 411, 412 flow path forming ribs 42, 43, 44, 45, 46, 47, 48, 49 convex part 42a , 43a, 45a, 46a, 47a, 49a Convex portion discontinuous portion 4701, 4801 Side surface 4701a, 4801a Steps 51, 52, 53, 54 Flow channel grooves 511, 531, 541, 551 Flow channel linear portion 5501 Bottom surface 5501a Step

───────────────────────────────────────────────────── フロントページの続き (72)発明者 永井 史也 愛知県西尾市下羽角町岩谷14番地 株式会 社日本自動車部品総合研究所内 (72)発明者 鈴木 稔幸 愛知県豊田市トヨタ町1番地 トヨタ自動 車株式会社内 (72)発明者 高橋 剛 愛知県豊田市トヨタ町1番地 トヨタ自動 車株式会社内 Fターム(参考) 5H026 AA01 CC03 CC04    ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Fumiya Nagai             14 Iwatani Shimohakaku-cho, Nishio-shi, Aichi Stock Association             Company Japan Auto Parts Research Institute (72) Inventor Toshiyuki Suzuki             1 Toyota Town, Toyota City, Aichi Prefecture Toyota Auto             Car Co., Ltd. (72) Inventor Tsuyoshi Takahashi             1 Toyota Town, Toyota City, Aichi Prefecture Toyota Auto             Car Co., Ltd. F-term (reference) 5H026 AA01 CC03 CC04

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 燃料電池の積層する電池セルの隔壁をな
すセパレータであって、その表面に電池セルの電極と接
触し導通する凸部が設けられるとともに、凸部非形成部
により、電極に供給する燃料ガスまたは酸化ガスが電極
との間隙を流れる流路溝が形成され、該流路溝には、互
いに平行な複数の直線状の部分を含む燃料電池用セパレ
ータにおいて、 流路溝の直線状部分に沿って配置する凸部として、直線
状部分の側縁を規定する辺を長辺とする長方形の凸部で
あって、直線状部分に沿って縦列配置された複数の凸部
を設け、 かつ、前記流路溝直線状部分の一方の側縁側と他方の側
縁側とで、凸部を非対称に形成したことを特徴とする燃
料電池用セパレータ。
1. A separator forming a partition wall of battery cells stacked in a fuel cell, the surface of which is provided with a convex portion that is in contact with an electrode of the battery cell to conduct electricity, and is supplied to the electrode by a convex portion non-forming portion. In the fuel cell separator, a flow channel groove is formed in which a fuel gas or an oxidizing gas that flows flows through a gap between the electrode and the flow channel groove, and the flow channel groove includes a plurality of linear portions that are parallel to each other. As the convex portion arranged along the portion, a rectangular convex portion having a long side that defines the side edge of the linear portion, and provided with a plurality of convex portions arranged in a row along the linear portion, Further, the fuel cell separator is characterized in that a convex portion is formed asymmetrically on one side edge side and the other side edge side of the flow path groove linear portion.
【請求項2】 請求項1記載の燃料電池用セパレータに
おいて、流路溝の直線状部分に沿って配置する凸部の形
状を単一とし、 前記縦列配置された複数の凸部を、流路溝直線状部分の
一方の側縁側に形成された凸部と他方の側縁側に形成さ
れた凸部とが縦列方向にオフセットするように配置した
燃料電池用セパレータ。
2. The fuel cell separator according to claim 1, wherein the protrusions arranged along the straight line portion of the flow channel groove have a single shape, and the plurality of columnarly disposed protrusions are formed in the flow channel. A fuel cell separator in which a convex portion formed on one side edge side of a groove linear portion and a convex portion formed on the other side edge side are arranged to be offset in the column direction.
【請求項3】 請求項1記載の燃料電池用セパレータに
おいて、前記縦列配置された複数の凸部を、その長辺の
長さが、流路溝直線状部分の一方の側縁側に形成された
凸部と他方の側縁側に形成された凸部とで異なる形状と
した燃料電池用セパレータ。
3. The fuel cell separator according to claim 1, wherein the plurality of vertically arranged convex portions are formed such that the lengths of their long sides are on one side edge side of the flow path groove linear portion. A fuel cell separator having different shapes for a convex portion and a convex portion formed on the other side edge side.
【請求項4】 燃料電池の積層する電池セルの隔壁をな
すセパレータであって、その表面に電池セルの電極と接
触し導通する凸部が設けられるとともに、凸部非形成部
により、電極に供給する燃料ガスまたは酸化ガスが電極
との間隙を流れる流路溝が形成され、該流路溝には、互
いに平行な複数の直線状の部分を含む燃料電池用セパレ
ータにおいて、 流路溝の直線状部分の側面または底面を、直線状部分の
長さ方向に凹凸を繰り返す段付きの形状としたことを特
徴とする燃料電池用セパレータ。
4. A separator forming a partition wall of battery cells stacked in a fuel cell, the surface of which is provided with a convex portion that is in contact with and electrically connected to the electrode of the battery cell, and is supplied to the electrode by the convex portion non-forming portion. In the fuel cell separator, a flow channel groove is formed in which a fuel gas or an oxidizing gas that flows flows through a gap between the electrode and the flow channel groove, and the flow channel groove includes a plurality of linear portions that are parallel to each other. A fuel cell separator, wherein a side surface or a bottom surface of the portion has a stepped shape in which unevenness is repeated in the lengthwise direction of the linear portion.
JP2001231189A 2001-07-31 2001-07-31 Fuel cell separator Expired - Fee Related JP5041640B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001231189A JP5041640B2 (en) 2001-07-31 2001-07-31 Fuel cell separator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001231189A JP5041640B2 (en) 2001-07-31 2001-07-31 Fuel cell separator

Publications (2)

Publication Number Publication Date
JP2003045453A true JP2003045453A (en) 2003-02-14
JP5041640B2 JP5041640B2 (en) 2012-10-03

Family

ID=19063276

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001231189A Expired - Fee Related JP5041640B2 (en) 2001-07-31 2001-07-31 Fuel cell separator

Country Status (1)

Country Link
JP (1) JP5041640B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005108505A (en) * 2003-09-29 2005-04-21 Honda Motor Co Ltd Internal manifold type fuel cell
JP2006134866A (en) * 2004-11-02 2006-05-25 General Electric Co <Ge> Flow field structure of fuel cell of high fuel utilization rate
JP2006190673A (en) * 2004-12-31 2006-07-20 Samsung Sdi Co Ltd Direct liquid fuel cell and portable electronic equipment equipped with the same
JP2007323969A (en) * 2006-06-01 2007-12-13 Fuji Electric Holdings Co Ltd Fuel cell power generation device
US20180237966A1 (en) * 2015-10-20 2018-08-23 Mitsubishi Chemical Corporation Wadding

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59184466U (en) * 1983-05-25 1984-12-07 三菱電機株式会社 Fuel cell
JPS63190255A (en) * 1987-02-02 1988-08-05 Hitachi Ltd Fuel cell structure
JPH10106594A (en) * 1996-08-08 1998-04-24 Aisin Seiki Co Ltd Gas passage plate of fuel cell
JP2000251907A (en) * 1999-02-24 2000-09-14 Sanyo Electric Co Ltd Solid polymer fuel cell
JP2001052723A (en) * 1999-08-13 2001-02-23 Honda Motor Co Ltd Fuel cell stack

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59184466U (en) * 1983-05-25 1984-12-07 三菱電機株式会社 Fuel cell
JPS63190255A (en) * 1987-02-02 1988-08-05 Hitachi Ltd Fuel cell structure
JPH10106594A (en) * 1996-08-08 1998-04-24 Aisin Seiki Co Ltd Gas passage plate of fuel cell
JP2000251907A (en) * 1999-02-24 2000-09-14 Sanyo Electric Co Ltd Solid polymer fuel cell
JP2001052723A (en) * 1999-08-13 2001-02-23 Honda Motor Co Ltd Fuel cell stack

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005108505A (en) * 2003-09-29 2005-04-21 Honda Motor Co Ltd Internal manifold type fuel cell
JP2006134866A (en) * 2004-11-02 2006-05-25 General Electric Co <Ge> Flow field structure of fuel cell of high fuel utilization rate
US7759018B2 (en) 2004-12-13 2010-07-20 Samsung Sdi Co., Ltd. Direct liquid feed fuel cell and portable electronic apparatus including the same
JP2006190673A (en) * 2004-12-31 2006-07-20 Samsung Sdi Co Ltd Direct liquid fuel cell and portable electronic equipment equipped with the same
JP2007323969A (en) * 2006-06-01 2007-12-13 Fuji Electric Holdings Co Ltd Fuel cell power generation device
US20180237966A1 (en) * 2015-10-20 2018-08-23 Mitsubishi Chemical Corporation Wadding

Also Published As

Publication number Publication date
JP5041640B2 (en) 2012-10-03

Similar Documents

Publication Publication Date Title
JP4312290B2 (en) Fuel cell and separator
JP5985892B2 (en) Porous separator for fuel cell
JP5560728B2 (en) Fuel cell
EP2311124B1 (en) Interconnect for a fuel cell, a method for manufacturing an interconnect for a fuel cell
KR102107529B1 (en) Solid oxide fuel cell
KR102109057B1 (en) Solid oxide fuel cell or solid oxide electrolyzing cell and method for operating such a cell
MXPA04004279A (en) Fuel cell fluid flow field plates.
US20220149392A1 (en) Separator plate for an electrochemical system
JP2008171615A (en) Sealing-integrated membrane electrode assembly
CN100546082C (en) Fuel cell pack
JP2006331916A (en) Fuel cell
JP2007115525A (en) Separator for fuel cell and fuel cell
JP2003323905A (en) Solid polymer fuel cell
JP2006202570A (en) Fuel cell and fuel cell distribution plate
WO2012090618A1 (en) Fuel cell
JP2010251068A (en) Fuel cell stack
JP5098212B2 (en) Fuel cell
JP2003045453A (en) Separator for fuel cell
JP2017201617A (en) Gas channel forming plate for fuel cell and fuel cell stack
JP2003077497A (en) Fuel cell separator
KR20220094755A (en) Multiple perforation plate for separator of fuel cell
EP3240079B1 (en) Gas channel forming plate for fuel cell and fuel cell stack
KR20200029797A (en) Seperator for fuelcell
JP2007504601A (en) Gas supply panel for fuel cell and fuel cell having gas supply panel
JP5415122B2 (en) Fuel cell stack

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080319

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110620

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110628

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110824

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120327

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120525

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120612

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120710

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150720

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees