JP5041640B2 - Fuel cell separator - Google Patents

Fuel cell separator Download PDF

Info

Publication number
JP5041640B2
JP5041640B2 JP2001231189A JP2001231189A JP5041640B2 JP 5041640 B2 JP5041640 B2 JP 5041640B2 JP 2001231189 A JP2001231189 A JP 2001231189A JP 2001231189 A JP2001231189 A JP 2001231189A JP 5041640 B2 JP5041640 B2 JP 5041640B2
Authority
JP
Japan
Prior art keywords
convex
separator
flow
linear
portions
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001231189A
Other languages
Japanese (ja)
Other versions
JP2003045453A (en
Inventor
育康 加藤
史也 永井
稔幸 鈴木
剛 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Soken Inc
Original Assignee
Nippon Soken Inc
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Soken Inc, Toyota Motor Corp filed Critical Nippon Soken Inc
Priority to JP2001231189A priority Critical patent/JP5041640B2/en
Publication of JP2003045453A publication Critical patent/JP2003045453A/en
Application granted granted Critical
Publication of JP5041640B2 publication Critical patent/JP5041640B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Description

【0001】
【発明の属する技術分野】
本発明は燃料電池を構成する電池セルの隔壁をなす燃料電池用セパレータに関する。
【0002】
【従来の技術】
燃料電池は、電解質膜の上下面に、触媒を担持した電極を重ね合わせて電池セルとするとともに、電池セルとセパレータとを電極とセパレータとが対向するように交互に積層する構造となっている。セパレータは、電極側に突出する凸部が設けられて、セパレータを挟んで相隣れる電池セルの電極同志を導通する集電極としての機能を果たすとともに、セパレータと電極との間隙に燃料ガス、酸化ガスを流し電極に供給する機能を果たしている。セパレータの背向する表面の一方に沿って燃料ガスを流すとともに他方の表面に沿って酸化ガスを流し、これらのガスをそれぞれ、対応する電極に供給する。これにより、積層する電池セルが直列接続となり、積層数に応じて高電圧が取り出せる。
【0003】
したがって、セパレータには、燃料ガスおよび酸化ガスが電極の表面に十分に拡散しやすいこと(拡散性)、かつ、電極との導通が十分であること(集電性)が望まれる。
【0004】
セパレータの形状としては、表面に畝状に複数の細長の凸部を設けて複数の直線状の流路溝が平行に形成されるようにしたものがある。また、図12に示すように、セパレータ9の対向辺の近傍で流路が折り返し蛇行する形状としたものにおいて、一部に複数の直線状の流路溝が平行に形成されるようにしたものもある。図例では、複数の細長の凸部911,913により、直線状の流路溝921,923が形成されている。流路の折り返し部では、多数の小凸部912を縦横方向に配列することにより、流路溝922は格子状となっている(特開平10−106594号公報)。このような、直線状の流路溝を有するものでは、凸部の占有面積が大きいので、集電性がよく、また、電池セルの特性を高めるための加湿用としてガスに含められる水や、燃料ガスと酸化ガスとの化学反応により発生する水が流れやすいので、排水性が良好とされている。さらに、流路溝の上流から下流に向けて積極的な流れが形成されることによる流速の上昇で、ガスの拡散性の向上を図っている。
【0005】
【発明が解決しようとする課題】
ところで、前記特開平10−106594号公報のように、流路溝に直線状部分を有するものでは、発明者が鋭意実験研究を重ねた結果、次の問題が明らかとなった。すなわち、集電性の確保の必要から流路断面積が非常に狭く、直線状部分ではガスの流れが層流となりやすい。このため、電極の表面近傍に境界層が形成されて、流量から知られる平均流速の割りには電極の表面近傍ではさほど流れは速くなく、実際には、ガスの拡散性が十分には向上していないことが明らかとなった。また、このため壁面に水が付着しやすく、排水性の低下が懸念される。
【0006】
この問題は、直線状の流路溝に沿って配置される凸部を分断して、図13に示すように多数の小凸部914を縦列配置し、格子状の流路溝924とすれば、改善される。この構造では、流路溝直線状部分9241を流れるガスは、縦列配置された複数の凸部914を側壁として流れていくが、ある凸部914から次の凸部914に移る位置では流路溝924の側壁が途切れることになる。このため、ガスの流れが乱れて境界層の発達を阻害し、電極の表面近傍における流速を速めることができるからである。
【0007】
しかしながら、凸部が多数の小凸部に分断されることで、凸部の占有面積が減少し、集電性を損ねることになる。
【0008】
本発明は前記実情に鑑みなされたもので、集電性を損ねることなく、ガスの拡散性および排水性のよい燃料電池用セパレータを提供することを目的とする。
【0009】
【課題を解決するための手段】
請求項1記載の発明では、燃料電池の積層する電池セルの隔壁をなすセパレータであって、その表面に電池セルの電極と接触し導通する凸部が設けられるとともに、凸部非形成部により、電極に供給する燃料ガスまたは酸化ガスが電極との間隙を流れる流路溝が形成され、該流路溝には、互いに平行な複数の直線状の部分を含む燃料電池用セパレータにおいて、
流路溝の直線状部分に沿って配置する凸部として、直線状部分の側縁を規定する辺を長辺とする同じ形状の長方形の凸部であって、直線状部分に沿って縦列配置された複数の凸部を設け、
縦列配置された複数の前記長方形の凸部間に、前記直線状部分と直交する方向に形成されて、互いに平行な相隣れる2つの前記直線状部分を連通し、流れを乱す作用を有する不連続部を設け、
かつ、前記縦列配置された複数の凸部を、前記流路溝直線状部分の一方の側縁側に形成された凸部と他方の側縁側に形成された凸部とが縦列方向にオフセットするように配置し、一方の側縁側と他方の側縁側とで、凸部を非対称に形成する。
【0010】
前記のごとく、凸部が不連続で流路溝の側壁が途切れる位置では、流れを乱す作用が生じる。この作用は、凸部を挟んで相隣れる2つの流路溝直線状部分において生じる。このため、図13のような、流路溝を格子状の形状としたセパレータでは、流路溝直線状部分のそれぞれについて、一方の側縁側の凸部不連続部が生む前記作用と、他方の側縁側の凸部不連続部が生む前記作用とが重複している。
【0011】
これに対して、本発明では、流路溝直線状部分の一方の側縁側と他方の側縁側とで、凸部を非対称に形成しているので、流れを乱す作用が、一方の側縁側の凸部不連続部によるものと、他方の側縁側の凸部不連続部によるものとで重複せず、効率がよい。その分、凸部が形成されない凸部不連続部を減らすことができ、ガスの流れを乱す作用を減じることなく、凸部の占有面積を確保することができる。これにより、集電性と、ガスの拡散性および排水性とが両立する。
具体的には、前記凸部不連続部の位置が、流路溝直線状部分の一方の側縁側と他方の側縁側とで、凸部の縦列方向にオフセットする。したがって、ガスの流れを乱す作用が、一方の側縁側の凸部不連続部によるものと、他方の側縁側の凸部不連続部によるものとで重複しない。また、凸部の形状は単純な長方形でよいから、セパレータの加工は容易である。
【0016】
請求項記載の発明では、請求項1の発明の構成において、前記流路溝の直線状部分の側面または底面を、直線状部分の長さ方向に凹凸を繰り返す段付きの形状とする。
【0017】
流路溝直線状部分を流れるガスは、段部にて流路溝の側面または底面が不連続になることで、流れが乱れて境界層の発達を阻害し、電極の表面近傍における流速を速めることができる。流路溝直線状部分における凹凸の繰り返し数に応じてガスの拡散性および排水性が向上する。これは、流路溝の直線状部分の側壁が途切れているかいないかによらないので、必要な集電性を確保することができる。
【0018】
【発明の実施の形態】
(第1実施形態)
図1に本発明の第1実施形態になる燃料電池用セパレータ(以下、適宜、セパレータという)を示し、図2に前記セパレータを適用した燃料電池の要部の断面構造を示す。セパレータ11は、ガス不透性の、セパレータとして望ましい特性を備えた緻密性カーボン等の公知の材料により、長方形の板状に構成されたもので、燃料電池の電池セル12と交互に積層し、電池セル12の隔壁となる。電池セル12には電解質膜120の両面に、ガスが拡散可能な多孔質層でなる電極121,122を重ねた一般的な構造のものが用いられ得る。
【0019】
セパレータ11の背向する表面1101,1102のそれぞれには、電池セル12の電極121,122の方に突出する多数の凸部41,42,43が形成されて、段上面にて電池セル12の電極121,122と密着し、該電極121,122とセパレータ11とが導通するようになっている。また、凸部42等の非形成部位にできる空間は、水素を含有する水素リッチガス等の燃料ガスまたは酸素を含有する空気等の酸化ガスが電極121,122との間隙を流れる流路31,32となっており、流路31,32を流通するこれらのガスが、セパレータ11とは非接触の電極121,122の表面から電極121,122内に拡散する。
【0020】
セパレータ11の図1中左右の対向辺の近傍には、燃料ガスをセパレータ11の一方の表面1101の流路溝51,52に導入するための燃料ガス導入孔21と、燃料ガスを前記流路溝51,52から排出するための燃料ガス排出孔26とが対角位置に形成されている。また、酸化ガスをセパレータ11の他方の表面1102の図略の流路溝に導入するための酸化ガス導入孔24と、酸化ガスを前記流路溝から排出するための酸化ガス排出孔23とが別の対角位置に形成されている。また、冷却水を循環する冷却水流路を形成するための冷却水流路孔22,25が形成されている。
【0021】
セパレータ11の一方の表面1101における凸部41〜43とこれにより形状が規定される流路溝51,52について説明する。セパレータ11にはこれを縁取るように額縁状の凸部41が形成されている。額縁状凸部41は、前記燃料ガス導入孔21および燃料ガス排出孔26の形成部よりも外側に形成され、燃料ガスが額縁状凸部41で囲まれた範囲を流通可能となっている。
【0022】
額縁状凸部41からは2つの流路形成リブ411,412が延設されている。第1の流路形成リブ411は図中上から略1/3の位置を、燃料ガス導入孔21の近傍から横方向に伸び、第2の流路形成リブ412は図中下から略1/3の位置を、燃料ガス排出孔26の近傍から横方向に伸びている。これにより、全体としては、燃料ガス導入孔21からS字状に蛇行して燃料ガス排出孔26に到る燃料ガスの流路31が形成される。
【0023】
蛇行する流路31は、上流部311と中流部313との間、中流部313と下流部315との間で折り返す折り返し部312,314では、正方形の凸部44が縦横に等間隔に配置されており、流路溝52が格子状をなしている。これにより、折り返し部312,314においてガスや水が滞留することなく、流れ方向がスムーズに変化するようになっている。
【0024】
流路31の上流部311、中流部313、下流部315では、流路溝51は、流路形成リブ411,412と平行な方向に縦列配置された凸部42,43により形成される。かかる凸部42,43の縦列が、流路折り返し部312,314の凸部44の配置間隔と同じ間隔で流路形成リブ411,412と直交方向に複数配置してある。これにより、流路溝51には、それぞれの縦列配置された凸部42,43を側壁として、互いに平行な複数の直線状部分511が形成される。相隣れる直線状部分511同志は、側壁が途切れる位置、すなわち凸部42,43の不連続部42aにて連通する。なお、説明において、流路溝51は、上流部311と中流部313と下流部315とで、厳密には異なるが、単に長さの相違であり、本発明の本質部分ではないので、同じ符号で説明する。
【0025】
流路溝直線状部分511を規定する凸部42,43は、燃料ガス導入孔21に隣接する位置、折り返し部312,314に隣接する位置、燃料ガス排出孔26に隣接する位置に設けられる凸部43を除き、同じ形状の長方形で、その長手方向を縦列配置方向にとってある。凸部42の短辺の長さは折り返し部312,314の凸部44の辺の長さと同じである。
【0026】
ここで、縦列配置された複数の凸部42は、流路溝直線状部分511の一方の側縁側と他方の側縁側とで縦列方向にオフセットするように配置してあり、流路溝51があみだ状となっている。オフセット量は、凸部42の縦列方向の配置ピッチの半分に設定されている。凸部42に加えて前記凸部43が設けられるのは、かかるオフセットがあっても、燃料ガス導入孔21に隣接する位置、折り返し部312,314に隣接する位置、燃料ガス排出孔26に隣接する位置において、各縦列における凸部42,43の短辺の位置を合わせるためである。
【0027】
セパレータ11の他方の表面1102についても酸化ガス導入孔24から酸化ガス排出孔23に到るS字状蛇行流路32が形成されており、凸部が同様の形状および配置となっている。
【0028】
本セパレータ11の作動について説明する。燃料ガス導入孔21からの燃料ガスは前記S字蛇行流路31を通って燃料ガス排出孔26に抜けるが、燃料ガス導入孔21、折り返し部312,314からそれぞれ流路溝51に流れ込んだ燃料ガスは、複数の流路溝直線状部分511に分かれて流れていく。流路溝直線状部分511は狭く、これが、上流端から奥に進むほど流路溝壁面近傍における境界層の形成を助長する方向に作用する。ここで、相隣れる流路溝直線状部分511同志は、共通の流路溝側壁をなす凸部42,43が所定間隔をおいて途切れることで、連通する。このため、流路溝側壁が途切れる位置すなわち凸部不連続部42aにおいて、ガスの流れを乱す作用が生じる。このため、境界層の発達が阻害され、燃料ガスの拡散性および排水性が向上する。
【0029】
しかも、本セパレータ11では、前記のごとく流路溝直線状部分511の一方の側縁側と他方の側縁側とで縦列配置された複数の凸部42,43が縦列方向にオフセットするように配置してあるので、次の効果を奏する。
【0030】
図3に、本発明の効果を説明するための比較例を示す。比較例は、セパレータ11の構成において、流路溝51に代えて、凸部61,62により流路溝71を形成したものである。凸部61は凸部42と同じ形状で同数が配置され、凸部62は凸部43と同じ形状で同数が配置されている。したがって、凸部の総面積は本実施形態のセパレータと同じであり、集電性が本実施形態のセパレータと同等である。
【0031】
比較例の本実施形態のセパレータ11との相違点は凸部61,62の配置である。比較例のセパレータも、流路形成リブ411,412に平行に凸部61,62が縦列配置されてなり、本セパレータ11の流路溝直線状部分511と同数の流路溝直線状部分711が形成される。しかし、流路溝直線状部分711の一方の側縁側と他方の側縁側とで縦列配置された複数の凸部61,62がオフセットされておらず、図より知られるように、流路溝71があみだ状ではなく、前記折り返し部のごとく格子状となっている。
【0032】
図4(A)、図4(B)はセパレータの表面を拡大したもので、図4(A)は本実施形態のセパレータ11のもので、図4(B)は比較例のセパレータのものである。前記のごとく、流路溝直線状部分511,711の側壁が途切れる凸部不連続部42a,61aで、ガスの流れを乱す作用(以下、適宜、境界層防止作用という)が生じる。比較例の場合(図4(B))、図中矢印で示す流路溝直線状部分711に注目すると、ガスの流れを辿っていったとき、境界層防止作用は、例えば位置PB1で生じた次には位置PB2で生じる。一方、本実施形態の場合(図4(A))、図中矢印で示す流路溝直線状部分511に注目すると、ガスの流れを辿っていったとき、境界層防止作用は、例えば位置PA1で生じた次には位置PA2で生じる。
【0033】
前記図4(A),(B)には、前記位置PA1,PA2,PB1,PB2において作用する境界層防止作用を生む凸部不連続部42a,61aを図中「・」で示している。凸部不連続部42a,61aが生む境界層防止作用は、相隣れる流路溝直線状部分511,711のいずれにもおよぶが、流路溝71が格子状である比較例では、流路溝直線状部分711の一方の側縁側の凸部不連続部61aと、他方の側縁側の凸部不連続部61aとが重複しているのに対して、本実施形態では、重複していない。このため、比較例では位置PB1から位置PB2までの距離は凸部61の縦列方向の配置ピッチであるのに対して、本実施形態では、位置PA1から位置PA2までの距離は凸部42の縦列方向の配置ピッチの1/2となる。このように、本実施形態の方が、各流路溝直線状部分511において、境界層防止作用が生じる部位が2倍になる。
【0034】
図5は流路溝におけるガスの流速の、流路溝の幅方向の分布を示すもので、本実施形態(図中A)と比較例(図中B)とを併せて示している。計測位置は、境界層防止作用が生じる前記位置PA1(PB1)と次に生じる位置PA2(PB2)との中間となるA−A線に沿う断面位置、B−B線に沿う断面位置にとってある。流速は図6に示すように、溝幅方向(Y)および溝深さ方向(Z)に対して直交する方向すなわち凸部の縦列方向である。本実施形態では、比較例に比して溝幅方向の中心部における流速と、流路溝の側縁の近傍における流速との差が小さく、境界層防止作用が大きいことが分かる。したがって、本実施形態は、電極におけるガスの拡散性および排水性の点で比較例よりも優れているものと認められる。
【0035】
このように、本実施形態によれば、集電性とガスの拡散性および排水性とを両立することができる。
【0036】
表1に、セパレータが電極と密着する面積(すなわち凸部の面積)の割合(集電部面積割合)と、境界層防止作用がおよぶ部位(図4(A)、図4(B)の位置PA1,PA2,PB1,PB2等に相当する部位)の数(境界層防止部位数)とを示す。
【0037】
【表1】
【0038】
実施例1は本実施形態(図1)に対応するものであり、参考例2、実施例3は後述する第2形態、第3実施形態に対応するものである。従来例1は前記図12に示したセパレータに、従来例2は前記図13に示したセパレータに対応するものである。比較例は前記図3のセパレータに対応するものである。集電部面積割合は、図7に示すように、蛇行流路の中流部の面積に対する凸部の総面積の割合で算出している。
【0039】
実施例1は、集電部面積割合では従来例1や比較例と遜色なく、境界層防止部位数では、遙に従来例1や比較例を凌いでいる。なお、従来例2は境界層防止部位数では大きな値をとるものの、集電部面積割合が半減してしまっている。
【0040】
(第2形態
図8に本発明の参考例として第2形態になるセパレータの要部を示す。第1実施形態において、蛇行流路の上流部、中流部および下流部において、流路溝直線状部分を構成する凸部を別の構成に代えたもので、第1実施形態との相違点を中心に説明する。なお、説明の便宜のため、第1実施形態と同じ部分の説明において、第1実施形態と同じ番号を付すものとする。
【0041】
本セパレータ11Aも、凸部45,46が流路形成リブ411,412と平行に縦列配置されてその両側に流路溝53を構成する直線状部分531が形成されるものであるが、流路溝直線状部分531の一方の側縁側の凸部45と、他方の側縁側の凸部46とで、長辺の長さが違えてあり、長辺が長い方の凸部45の縦列方向の配置ピッチが、長辺が短い方の凸部46の縦列方向の配置ピッチの4倍となっている。これにより、流路溝直線状部分531の一方の側縁側が凸部不連続部45aとなっていても、他方の側縁側が凸部不連続部46aとなるのは、4回に1回であり、流路溝直線状部分531の一方の側縁側の凸部不連続部45aと、他方の側縁側の凸部不連続部46aとが殆ど重複しない。その分、集電性を損なうことなくガスの拡散性および排水性を向上することができる。
【0042】
このように凸部45と凸部46とでその長辺の長さおよび縦列方向の配置ピッチを違えたものを参考例2とすれば、参考例2も、比較例に比して境界層防止部位が倍増することになる。したがって、参考例2は、前掲表1に示すごとく、集電部面積割合では従来例や比較例と遜色なく、境界層防止部位数では、遙に従来例1や従来例2を凌ぐ。
【0043】
なお、図例では、長辺が長い方の凸部45が縦列する方の凸部不連続部45aが境界層防止作用を生む部位では、凸部不連続部45aと、凸部不連続部46aとが重複するが、この重複は、例えば、長辺が短い方の凸部46の縦列方向配置ピッチの1/2、長辺が長い方の凸部45と長辺が短い方の凸部46とでオフセットするように配置することで解消することができる。
【0044】
また、長辺の長さの異なる2種類の凸部の配置ピッチの比は1:4に限られず、任意である。
【0045】
(第3実施形態)
セパレータの凸部の配置が前記比較例のものでも、流路溝直線状部分を規定する凸部の形状の変更でガスの拡散性を向上することができる。図9に本実施形態になるセパレータを拡大したものを示す。本セパレータ11Bの流路溝54の直線状部分541を規定する凸部47は、全体形状が比較例と等価である。凸部47の長辺の側面4701には、長手方向の中程位置に段差4701aが形成されて、凸部47の幅を細らせてある。そして、側面4701の段下側の半部が凸部47の角部にかけて傾斜し、幅が戻るようになっている。すなわち、流路溝直線状部分541の側壁面である凸部側面4701が、凸部不連続部47aを挟んで、流路溝直線状部分541の長さ方向に凹凸を繰り返す段付きの形状となっている。
【0046】
流路溝直線状部分541を流れるガスは、凸部不連続部47aに加えて、凸部側面4701に形成された段差4701aにおいて、流れが乱される。
【0047】
したがって、流路溝直線状部分541は、凸部側面4701の段差4701a位置も、凸部不連続部47aで側壁が途切れる位置と同様に境界層防止部位であり、段差4701aを設けた分、ガス拡散性および排水性が向上する。
【0048】
各凸部側面4701に段差4701aを設けたものを実施例3とすれば、実施例3は比較例に比して境界層防止部位が倍増することになる。したがって、実施例3は、前掲表1に示すごとく、集電部面積割合では従来例1や比較例と遜色なく、境界層防止部位数では、遙に従来例1や比較例を凌ぐ。
【0049】
なお、凸部側面4701の段差4701aは背向するもう一方の側面にも形成してもよい。また、側面の形状も図9のものに限定されるものではない。例えば、図10に示すように、凸部48の側面4801が段差4801aの段上部分と段下部分とで平行な形状でもよい。
【0050】
なお、本実施形態の特徴部分は、第1実施形態、第2形態の凸部に適用することができ、さらにガス拡散性および排水性を向上することができる。
【0051】
(第4実施形態)
セパレータの凸部の配置が比較例のものにおいて、ガスの拡散性および排水性を向上した別の実施形態を図11に示す。図は蛇行流路の上流部、中流部および下流部のものである。なお、説明の便宜のため、第1実施形態と同じ部分の説明において、第1実施形態と同じ番号を付すものとする。
【0052】
本セパレータ11Cの流路溝直線状部分551を規定する凸部49は比較例と同一である。そして、流路溝直線状部分551の底面5501に、縦列配置される凸部49の縦列方向配置ピッチの1/2の間隔で、段差5501aが設けてあり、凸部49の縦列方向に鋸歯状に凹凸を繰り返す段付きの形状となっている。
【0053】
流路溝直線状部分551に流入したガスは、底面5501に形成された各段差5501a位置において、流れが乱される。したがって、流路溝直線状部分551は、かかる段差5501a位置も、凸部不連続部49aで側壁が途切れる位置と同様に境界層防止部位であり、段差5501aを設けた分、ガス拡散性および排水性が向上する。
【0054】
なお、本実施形態の特徴部分は、第1実施形態、第2形態、第3実施形態、第3実施形態の特徴部分を適用した第1、第2実施形態の流路溝底面に適用することができ、さらにガス拡散性および排水性を向上することができる。
【図面の簡単な説明】
【図1】 本発明の第1実施形態になる燃料電池用セパレータの平面図である。
【図2】 前記燃料電池用セパレータを適用した燃料電池の要部断面図である。
【図3】 前記燃料電池用セパレータと比較する燃料電池用セパレータの平面図である。
【図4】 (A)は図1の拡大図であり、(B)は図3の拡大図である。
【図5】 流路溝における流速分布を示すグラフである。
【図6】 前記流路溝における流速分布を説明する図である。
【図7】 表1を説明する図である。
【図8】 本発明の第2形態になる燃料電池用セパレータの要部の平面図である。
【図9】 本発明の第3実施形態になる燃料電池用セパレータの要部の平面図である。
【図10】 前記燃料電池用セパレータの変形例の要部の平面図である。
【図11】 (A)は本発明の第4実施形態になる燃料電池用セパレータの要部の平面図であり、(B)は(A)におけるXIB−XIB線に沿う断面図である。
【図12】 従来の燃料電池用セパレータの代表例の平面図である。
【図13】 従来の燃料電池用セパレータの別の代表例の平面図である。
【符号の説明】
11,11A,11B,11C セパレータ
12 電池セル
120 電解質膜
121,122 電極
1101,1102 表面
21 燃料ガス導入孔
23 酸化ガス排出孔
24 酸化ガス導入孔
26 燃料ガス排出孔
22,25 冷却水流路孔
31,32 流路
311 上流部
312 折り返し部
313 中流部
314 折り返し部
315 下流部
41 額縁状凸部
411,412 流路形成用リブ
42,43,44,45,46,47,48,49 凸部
42a,43a,45a,46a,47a,49a 凸部不連続部
4701,4801 側面
4701a,4801a 段差
51,52,53,54 流路溝
511,531,541,551 流路溝直線状部分
5501 底面
5501a 段差
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a fuel cell separator that forms partition walls of battery cells constituting a fuel cell.
[0002]
[Prior art]
A fuel cell has a structure in which electrodes carrying a catalyst are superimposed on the upper and lower surfaces of an electrolyte membrane to form a battery cell, and battery cells and separators are alternately stacked so that the electrodes and separators face each other. . The separator is provided with a convex portion protruding to the electrode side, and functions as a collecting electrode for conducting the electrodes of battery cells adjacent to each other with the separator interposed therebetween, and in the gap between the separator and the electrode, fuel gas, oxidation It fulfills the function of flowing gas and supplying it to the electrodes. A fuel gas flows along one of the back-facing surfaces of the separator and an oxidizing gas flows along the other surface, and these gases are respectively supplied to the corresponding electrodes. Thereby, the battery cells to be stacked are connected in series, and a high voltage can be taken out according to the number of stacked layers.
[0003]
Therefore, the separator is desired that the fuel gas and the oxidizing gas are sufficiently easily diffused on the surface of the electrode (diffusibility) and that the separator is sufficiently conductive with the electrode (current collection).
[0004]
As a shape of the separator, there is one in which a plurality of elongated protrusions are provided in a bowl shape on the surface so that a plurality of linear flow channel grooves are formed in parallel. In addition, as shown in FIG. 12, in the shape in which the flow path folds and meanders in the vicinity of the opposing side of the separator 9, a plurality of linear flow path grooves are formed in part in parallel. There is also. In the illustrated example, linear flow channel grooves 921 and 923 are formed by a plurality of elongated protrusions 911 and 913. In the folded portion of the flow channel, a large number of small convex portions 912 are arranged in the vertical and horizontal directions so that the flow channel grooves 922 have a lattice shape (Japanese Patent Laid-Open No. 10-106594). Such a straight channel groove has a large occupied area of the convex portion, so that current collection is good, and water included in the gas for humidification to enhance the characteristics of the battery cell, Since the water generated by the chemical reaction between the fuel gas and the oxidizing gas is easy to flow, the drainage is considered good. Furthermore, the diffusibility of the gas is improved by increasing the flow velocity by forming a positive flow from the upstream to the downstream of the flow channel.
[0005]
[Problems to be solved by the invention]
By the way, as described in Japanese Patent Application Laid-Open No. 10-106594, in the case where the channel groove has a linear portion, the following problems have been clarified as a result of the inventors conducting extensive experimental research. That is, the cross-sectional area of the flow path is very narrow due to the need to ensure current collecting properties, and the gas flow tends to be a laminar flow in the straight portion. For this reason, a boundary layer is formed near the surface of the electrode, and the flow is not so fast near the surface of the electrode for the average flow rate known from the flow rate. In practice, the gas diffusivity is sufficiently improved. It became clear that it was not. In addition, for this reason, water easily adheres to the wall surface, and there is a concern that the drainage performance may deteriorate.
[0006]
This problem can be solved by dividing the convex portions arranged along the linear flow channel grooves and arranging a large number of small convex portions 914 in a tandem arrangement as shown in FIG. Improved. In this structure, the gas flowing through the channel groove linear portion 9241 flows with the plurality of ridges 914 arranged in tandem as side walls, but the channel groove is located at a position where it moves from one projection 914 to the next projection 914. The side wall of 924 will be interrupted. For this reason, the gas flow is disturbed to inhibit the development of the boundary layer, and the flow velocity in the vicinity of the surface of the electrode can be increased.
[0007]
However, when the convex portion is divided into a large number of small convex portions, the occupied area of the convex portion is reduced, and the current collecting property is impaired.
[0008]
The present invention has been made in view of the above circumstances, and an object thereof is to provide a fuel cell separator having good gas diffusibility and drainage without impairing current collecting performance.
[0009]
[Means for Solving the Problems]
The invention according to claim 1 is a separator that forms a partition of a battery cell in which fuel cells are stacked, and a convex portion that is in contact with and conductive with the electrode of the battery cell is provided on the surface thereof, and a convex portion non-forming portion is provided. In the fuel cell separator including a plurality of linear portions parallel to each other, a flow channel groove in which fuel gas or oxidizing gas supplied to the electrode flows through a gap with the electrode is formed.
As convex portions to be arranged along the linear portion of the flow channel groove, rectangular convex portions having the same shape with the side defining the side edge of the linear portion as the long side and arranged in tandem along the linear portion Provided with a plurality of convex portions,
Between the plurality of rectangular convex portions arranged in tandem, the two linear portions which are formed in a direction orthogonal to the linear portion and are parallel to each other are connected to each other, and have an effect of disturbing the flow. A continuous part,
In addition, the plurality of convex portions arranged in the column are offset in the column direction between the convex portion formed on one side edge side of the flow channel groove linear portion and the convex portion formed on the other side edge side. The protrusions are asymmetrically formed on one side edge side and the other side edge side.
[0010]
As described above, at the position where the convex part is discontinuous and the side wall of the flow channel is interrupted, an action of disturbing the flow occurs. This action occurs in two linear portions of the flow channel adjacent to each other with the convex portion interposed therebetween. For this reason, in the separator having the flow channel grooves in a lattice shape as shown in FIG. 13, with respect to each of the linear portions of the flow channel grooves, the above-described action produced by the convex discontinuity on one side edge side and the other The effect produced by the convex discontinuity on the side edge side overlaps.
[0011]
On the other hand, in the present invention, since the convex portion is formed asymmetrically on one side edge side and the other side edge side of the flow channel groove linear portion, the action of disturbing the flow is caused on the one side edge side. It is efficient because there is no overlap between the convex part discontinuous part and the convex part discontinuous part on the other side edge side. Accordingly, it is possible to reduce the convex discontinuity where the convex is not formed, and to secure the area occupied by the convex without reducing the effect of disturbing the gas flow. Thereby, the current collecting property and the gas diffusibility and drainage properties are compatible.
Specifically, the position of the convex discontinuity portion is offset in the column direction of the convex portion on one side edge side and the other side edge side of the flow channel groove linear portion. Therefore, the effect of disturbing the gas flow does not overlap between the one caused by the convex discontinuity on one side edge and the one caused by the convex discontinuity on the other side. Moreover, since the shape of a convex part may be a simple rectangle, the process of a separator is easy.
[0016]
According to a second aspect of the present invention, in the configuration of the first aspect of the invention, the side surface or the bottom surface of the linear portion of the flow channel groove has a stepped shape in which irregularities are repeated in the length direction of the linear portion.
[0017]
The gas flowing in the linear part of the channel groove becomes discontinuous in the side or bottom surface of the channel groove at the step part, disturbing the flow and inhibiting the development of the boundary layer, and increasing the flow velocity near the surface of the electrode be able to. The gas diffusibility and drainage are improved according to the number of repetitions of the irregularities in the linear portion of the flow channel. This does not depend on whether or not the side wall of the linear portion of the flow channel is interrupted, so that the necessary current collecting property can be ensured.
[0018]
DETAILED DESCRIPTION OF THE INVENTION
(First embodiment)
FIG. 1 shows a fuel cell separator (hereinafter referred to as a separator as appropriate) according to a first embodiment of the present invention, and FIG. 2 shows a cross-sectional structure of a main part of a fuel cell to which the separator is applied. The separator 11 is formed of a rectangular plate shape with a known material such as dense carbon that is gas-impermeable and has desirable characteristics as a separator, and is alternately stacked with the battery cells 12 of the fuel cell, It becomes a partition of the battery cell 12. The battery cell 12 may have a general structure in which electrodes 121 and 122 made of a porous layer capable of diffusing gas are superimposed on both surfaces of the electrolyte membrane 120.
[0019]
A large number of convex portions 41, 42, 43 projecting toward the electrodes 121, 122 of the battery cell 12 are formed on the back-facing surfaces 1101, 1102 of the separator 11, respectively. The electrodes 121 and 122 are in close contact with each other so that the electrodes 121 and 122 and the separator 11 are electrically connected. In addition, the space formed in the non-formed portion such as the convex portion 42 has flow paths 31 and 32 in which a fuel gas such as a hydrogen rich gas containing hydrogen or an oxidizing gas such as air containing oxygen flows through the gap between the electrodes 121 and 122. These gases flowing through the flow paths 31 and 32 diffuse into the electrodes 121 and 122 from the surfaces of the electrodes 121 and 122 that are not in contact with the separator 11.
[0020]
In the vicinity of the left and right opposing sides of the separator 11 in FIG. 1, a fuel gas introduction hole 21 for introducing the fuel gas into the flow channel grooves 51 and 52 of one surface 1101 of the separator 11, and the fuel gas through the flow channel Fuel gas discharge holes 26 for discharging from the grooves 51 and 52 are formed at diagonal positions. Further, an oxidizing gas introduction hole 24 for introducing an oxidizing gas into a flow path groove (not shown) on the other surface 1102 of the separator 11 and an oxidizing gas discharge hole 23 for discharging the oxidizing gas from the flow path groove are provided. It is formed at another diagonal position. Further, cooling water passage holes 22 and 25 for forming a cooling water passage for circulating the cooling water are formed.
[0021]
The convex portions 41 to 43 on one surface 1101 of the separator 11 and the flow path grooves 51 and 52 whose shapes are defined thereby will be described. A frame-like convex portion 41 is formed on the separator 11 so as to border it. The frame-shaped convex portion 41 is formed outside the portion where the fuel gas introduction hole 21 and the fuel gas discharge hole 26 are formed, and the fuel gas can flow through the range surrounded by the frame-shaped convex portion 41.
[0022]
Two flow path forming ribs 411 and 412 are extended from the frame-shaped convex portion 41. The first flow path forming rib 411 extends approximately 1/3 from the top in the drawing in the lateral direction from the vicinity of the fuel gas introduction hole 21, and the second flow path forming rib 412 is approximately 1 / down from the bottom in the drawing. The position 3 extends laterally from the vicinity of the fuel gas discharge hole 26. Thus, as a whole, a fuel gas flow path 31 that snakes in an S shape from the fuel gas introduction hole 21 and reaches the fuel gas discharge hole 26 is formed.
[0023]
In the meandering flow path 31, square convex portions 44 are arranged at equal intervals in the vertical and horizontal directions in the folded portions 312 and 314 that are folded back between the upstream portion 311 and the midstream portion 313 and between the midstream portion 313 and the downstream portion 315. The channel grooves 52 are in a lattice shape. Thereby, the flow direction smoothly changes without gas or water staying in the folded portions 312 and 314.
[0024]
In the upstream portion 311, the midstream portion 313, and the downstream portion 315 of the flow channel 31, the flow channel groove 51 is formed by convex portions 42 and 43 arranged in tandem in a direction parallel to the flow channel forming ribs 411 and 412. A plurality of columns of the convex portions 42 and 43 are arranged in the direction orthogonal to the flow path forming ribs 411 and 412 at the same interval as the arrangement interval of the convex portions 44 of the flow path folding portions 312 and 314. As a result, a plurality of linear portions 511 parallel to each other are formed in the channel groove 51 with the convex portions 42 and 43 arranged in tandem as side walls. The adjacent linear portions 511 communicate with each other at a position where the side wall is interrupted, that is, at the discontinuous portions 42 a of the convex portions 42 and 43. In the description, the channel groove 51 is strictly different in the upstream portion 311, the midstream portion 313, and the downstream portion 315, but is merely a difference in length and is not an essential part of the present invention. I will explain it.
[0025]
The convex portions 42 and 43 that define the flow path groove linear portion 511 are provided at positions adjacent to the fuel gas introduction hole 21, positions adjacent to the folded portions 312 and 314, and positions adjacent to the fuel gas discharge hole 26. Except for the portion 43, it is a rectangle of the same shape, and its longitudinal direction is in the column arrangement direction. The length of the short side of the convex portion 42 is the same as the length of the side of the convex portion 44 of the folded portions 312 and 314.
[0026]
Here, the plurality of convex portions 42 arranged in tandem are arranged so as to be offset in the tandem direction on one side edge side and the other side edge side of the flow channel groove linear portion 511, and the flow channel groove 51 is formed. It is in the shape of a net. The offset amount is set to half the arrangement pitch of the convex portions 42 in the column direction. The protrusion 43 is provided in addition to the protrusion 42 even if there is such an offset, a position adjacent to the fuel gas introduction hole 21, a position adjacent to the folded portions 312 and 314, and a fuel gas discharge hole 26. This is because the positions of the short sides of the convex portions 42 and 43 in each column are aligned with each other.
[0027]
On the other surface 1102 of the separator 11, an S-shaped meandering channel 32 extending from the oxidizing gas introduction hole 24 to the oxidizing gas discharge hole 23 is formed, and the convex portions have the same shape and arrangement.
[0028]
The operation of the separator 11 will be described. The fuel gas from the fuel gas introduction hole 21 passes through the S-shaped meandering flow path 31 and escapes to the fuel gas discharge hole 26, but the fuel that has flowed into the flow path groove 51 from the fuel gas introduction hole 21 and the folded portions 312 and 314, respectively. The gas flows divided into a plurality of flow path groove linear portions 511. The channel groove linear portion 511 is narrow and acts in a direction that promotes the formation of a boundary layer in the vicinity of the channel groove wall surface as it goes from the upstream end to the back. Here, adjacent flow channel linear portions 511 communicate with each other when the convex portions 42 and 43 forming a common flow channel side wall are interrupted at a predetermined interval. For this reason, the gas flow is disturbed at the position where the channel groove side wall is interrupted, that is, at the convex discontinuity 42a. For this reason, the development of the boundary layer is inhibited, and the diffusibility and drainage of the fuel gas are improved.
[0029]
Moreover, in the separator 11, as described above, the plurality of convex portions 42 and 43 arranged in a column on one side edge side and the other side edge side of the flow channel groove linear portion 511 are arranged so as to be offset in the column direction. Therefore, the following effects are achieved.
[0030]
FIG. 3 shows a comparative example for explaining the effect of the present invention. In the configuration of the separator 11, the flow path groove 71 is formed by the convex portions 61 and 62 instead of the flow path groove 51 in the configuration of the separator 11. The convex portions 61 have the same shape as the convex portions 42 and the same number, and the convex portions 62 have the same shape as the convex portions 43 and the same number. Therefore, the total area of the convex portions is the same as that of the separator of this embodiment, and the current collecting property is equivalent to that of the separator of this embodiment.
[0031]
The difference from the separator 11 of this embodiment of the comparative example is the arrangement of the convex portions 61 and 62. Also in the separator of the comparative example, the convex portions 61 and 62 are arranged in parallel with the flow path forming ribs 411 and 412, and the same number of the flow groove linear portions 711 as the flow groove linear portions 511 of the separator 11 are provided. It is formed. However, the plurality of convex portions 61 and 62 arranged in tandem on one side edge side and the other side edge side of the flow channel groove linear portion 711 are not offset, and the flow channel groove 71 is known as shown in the figure. It is not a fringe shape but a lattice like the folded portion.
[0032]
4 (A) and 4 (B) are enlarged views of the separator surface, FIG. 4 (A) is the separator 11 of this embodiment, and FIG. 4 (B) is the comparative separator. is there. As described above, in the convex discontinuous portions 42a and 61a in which the side walls of the flow path groove linear portions 511 and 711 are interrupted, an action of disturbing the gas flow (hereinafter referred to as a boundary layer preventing action as appropriate) occurs. In the case of the comparative example (FIG. 4B), when attention is paid to the channel groove linear portion 711 indicated by an arrow in the figure, when the gas flow is traced, the boundary layer preventing action occurs, for example, at the position PB1. Next occurs at position PB2. On the other hand, in the case of the present embodiment (FIG. 4A), when attention is paid to the flow path groove linear portion 511 indicated by an arrow in the drawing, when the gas flow is traced, the boundary layer preventing action is, for example, at the position PA1. The next occurrence occurs at position PA2.
[0033]
4A and 4B, the convex discontinuities 42a and 61a that produce the boundary layer preventing action acting at the positions PA1, PA2, PB1, and PB2 are indicated by “·” in the drawing. The boundary layer preventing action produced by the convex discontinuous portions 42a and 61a extends to any of the adjacent flow channel linear portions 511 and 711, but in the comparative example in which the flow channel 71 has a lattice shape, the flow channel The convex discontinuity 61a on one side edge side of the groove linear portion 711 and the convex discontinuity 61a on the other side edge overlap, but in the present embodiment, no overlap. . Therefore, in the comparative example, the distance from the position PB1 to the position PB2 is the arrangement pitch of the convex portions 61 in the column direction, whereas in the present embodiment, the distance from the position PA1 to the position PA2 is the column of the convex portions 42. It becomes 1/2 of the arrangement pitch in the direction. As described above, in this embodiment, the portion where the boundary layer prevention action occurs in each flow channel groove linear portion 511 is doubled.
[0034]
FIG. 5 shows the distribution of the gas flow velocity in the flow channel in the width direction of the flow channel, and this embodiment (A in the figure) and the comparative example (B in the figure) are shown together. The measurement positions are at the cross-sectional position along the line AA and the cross-sectional position along the line BB, which are intermediate between the position PA1 (PB1) where the boundary layer prevention action occurs and the position PA2 (PB2) that occurs next. As shown in FIG. 6, the flow velocity is a direction orthogonal to the groove width direction (Y) and the groove depth direction (Z), that is, the column direction of the convex portions. In the present embodiment, it can be seen that the difference between the flow velocity at the center in the groove width direction and the flow velocity in the vicinity of the side edge of the channel groove is small as compared with the comparative example, and the boundary layer prevention effect is large. Therefore, this embodiment is recognized to be superior to the comparative example in terms of gas diffusibility and drainage at the electrode.
[0035]
Thus, according to the present embodiment, it is possible to achieve both current collecting properties, gas diffusibility, and drainage properties.
[0036]
Table 1 shows the ratio of the area where the separator is in close contact with the electrode (that is, the area of the convex portion) (the current collector area ratio) and the position where the boundary layer prevention effect is exerted (the positions in FIGS. 4A and 4B). The number of parts corresponding to PA1, PA2, PB1, PB2, etc. (number of boundary layer prevention parts) is shown.
[0037]
[Table 1]
[0038]
EXAMPLE 1 are those corresponding to this embodiment (FIG. 1), Example 2, Example 3 second embodiment to be described later, which corresponds to the third embodiment. Conventional Example 1 corresponds to the separator shown in FIG. 12, and Conventional Example 2 corresponds to the separator shown in FIG. The comparative example corresponds to the separator of FIG. As shown in FIG. 7, the current collector area ratio is calculated by the ratio of the total area of the protrusions to the area of the midstream portion of the meandering flow path.
[0039]
Example 1 is inferior to Conventional Example 1 and Comparative Example in the current collector area ratio, and far exceeds Conventional Example 1 and Comparative Example in the number of boundary layer prevention sites. In addition, although the prior art example 2 has a large value in the number of boundary layer prevention sites, the current collector area ratio is halved.
[0040]
(Second form )
FIG. 8 shows a main part of a separator according to the second embodiment as a reference example of the present invention. In the first embodiment, in the upstream part, the middle stream part and the downstream part of the meandering flow path, the convex part constituting the flow channel groove linear part is replaced with another structure, and the difference from the first embodiment is The explanation is centered. For convenience of explanation, the same reference numerals as those in the first embodiment are used in the description of the same parts as those in the first embodiment.
[0041]
In this separator 11A, the convex portions 45 and 46 are arranged in tandem in parallel with the flow path forming ribs 411 and 412 and the linear portions 531 forming the flow path grooves 53 are formed on both sides thereof. The convex part 45 on one side edge side of the groove linear part 531 and the convex part 46 on the other side edge side have different long side lengths, and the convex part 45 with the longer long side in the column direction. The arrangement pitch is four times the arrangement pitch in the column direction of the projections 46 having the shorter long sides. Thereby, even if one side edge side of the channel groove linear portion 531 is the convex discontinuous portion 45a, the other side edge side is the convex discontinuous portion 46a once in four times. Yes, the convex discontinuity 45a on one side edge side of the flow channel linear portion 531 and the convex discontinuity 46a on the other side edge hardly overlap each other. Accordingly, the gas diffusibility and drainage can be improved without impairing the current collecting ability.
[0042]
As described in Reference Example 2 in which the lengths of the long sides and the arrangement pitch in the column direction are different between the convex portions 45 and the convex portions 46 in this way, the reference example 2 also prevents the boundary layer compared to the comparative example. The site will double. Therefore, as shown in Table 1, the reference example 2 is not inferior to the conventional example and the comparative example in the current collector area ratio, and the number of boundary layer prevention sites is far superior to the conventional example 1 and the conventional example 2.
[0043]
In the example shown in the drawing, the convex discontinuity 45a and the convex discontinuity 46a are formed at the portion where the convex discontinuity 45a in which the long projections 45 having the long side are arranged in a row produces the boundary layer preventing action. This overlap is, for example, ½ of the arrangement pitch in the column direction of the convex part 46 with the shorter long side, and the convex part 45 with the longer long side and the convex part 46 with the shorter long side. It can be solved by arranging so as to be offset.
[0044]
Further, the ratio of the arrangement pitch of the two types of convex portions having different long side lengths is not limited to 1: 4, and is arbitrary.
[0045]
(Third embodiment)
Even if the arrangement of the protrusions of the separator is that of the comparative example, the gas diffusibility can be improved by changing the shape of the protrusions that define the flow channel groove linear part. FIG. 9 shows an enlarged separator according to the present embodiment. The convex portion 47 that defines the linear portion 541 of the flow channel 54 of the separator 11B has an overall shape equivalent to that of the comparative example. On the long side surface 4701 of the convex portion 47, a step 4701a is formed in the middle position in the longitudinal direction, and the width of the convex portion 47 is narrowed. Then, the half of the stepped side of the side surface 4701 is inclined toward the corner of the convex portion 47, and the width is returned. That is, the convex side surface 4701 which is the side wall surface of the channel groove linear part 541 has a stepped shape that repeats irregularities in the length direction of the channel groove linear part 541 across the convex part discontinuous part 47a. It has become.
[0046]
The flow of the gas flowing through the flow channel linear portion 541 is disturbed at the step 4701a formed on the convex side surface 4701 in addition to the convex discontinuous portion 47a.
[0047]
Therefore, the flow path groove linear portion 541 is a boundary layer prevention part in the same manner as the position where the side wall is cut off by the convex discontinuous portion 47a in the step 4701a position of the convex side surface 4701. Diffusibility and drainage are improved.
[0048]
Assuming that Example 3 is provided with a level difference 4701a on each convex side surface 4701, Example 3 doubles the boundary layer prevention site compared to the comparative example. Therefore, as shown in Table 1 above, Example 3 is inferior to Conventional Example 1 and Comparative Example in the current collector area ratio, and far exceeds Conventional Example 1 and Comparative Example in the number of boundary layer prevention sites.
[0049]
Note that the level difference 4701a of the convex side surface 4701 may be formed on the other side surface facing backward. Further, the shape of the side surface is not limited to that shown in FIG. For example, as shown in FIG. 10, the side surface 4801 of the convex portion 48 may be parallel to the stepped portion and the stepped portion of the step 4801a.
[0050]
In addition, the characteristic part of this embodiment can be applied to the convex part of 1st Embodiment and 2nd form , and can further improve gas diffusibility and drainage.
[0051]
(Fourth embodiment)
FIG. 11 shows another embodiment in which the arrangement of the convex portions of the separator is a comparative example and the gas diffusibility and drainage are improved. The figure shows the upstream, middle and downstream portions of the meandering flow path. For convenience of explanation, the same reference numerals as those in the first embodiment are used in the description of the same parts as those in the first embodiment.
[0052]
The convex portion 49 that defines the channel groove linear portion 551 of the separator 11C is the same as that in the comparative example. Steps 5501a are provided on the bottom surface 5501 of the linear portion 551 of the flow channel at intervals of ½ of the arrangement pitch of the projections 49 arranged in a column, and a sawtooth shape in the column direction of the projections 49 is provided. It has a stepped shape that repeats unevenness.
[0053]
The flow of the gas flowing into the flow channel straight portion 551 is disturbed at each step 5501a position formed on the bottom surface 5501. Therefore, the flow path groove linear portion 551 is also a boundary layer prevention portion in the same manner as the position where the side wall is interrupted at the convex discontinuous portion 49a, and the step 5501a is provided with the step 5501a. Improves.
[0054]
In addition, the characteristic part of this embodiment is applied to the flow-path groove bottom face of 1st, 2nd embodiment which applied the characteristic part of 1st Embodiment , 2nd form , 3rd Embodiment, and 3rd Embodiment. In addition, gas diffusibility and drainage can be improved.
[Brief description of the drawings]
FIG. 1 is a plan view of a fuel cell separator according to a first embodiment of the present invention.
FIG. 2 is a cross-sectional view of a main part of a fuel cell to which the fuel cell separator is applied.
FIG. 3 is a plan view of a fuel cell separator to be compared with the fuel cell separator.
4A is an enlarged view of FIG. 1, and FIG. 4B is an enlarged view of FIG.
FIG. 5 is a graph showing a flow velocity distribution in a channel groove.
FIG. 6 is a diagram for explaining a flow velocity distribution in the flow channel.
7 is a diagram illustrating Table 1. FIG.
FIG. 8 is a plan view of a main part of a fuel cell separator according to a second embodiment of the present invention.
FIG. 9 is a plan view of a main part of a fuel cell separator according to a third embodiment of the present invention.
FIG. 10 is a plan view of an essential part of a modification of the fuel cell separator.
11A is a plan view of a main part of a fuel cell separator according to a fourth embodiment of the present invention, and FIG. 11B is a cross-sectional view taken along line XIB-XIB in FIG.
FIG. 12 is a plan view of a typical example of a conventional fuel cell separator.
FIG. 13 is a plan view of another typical example of a conventional fuel cell separator.
[Explanation of symbols]
11, 11A, 11B, 11C Separator 12 Battery cell 120 Electrolyte membrane 121, 122 Electrode 1101, 1102 Surface 21 Fuel gas introduction hole 23 Oxidation gas discharge hole 24 Oxidation gas introduction hole 26 Fuel gas discharge hole 22, 25 Cooling water passage hole 31 , 32 Flow path 311 Upstream part 312 Folded part 313 Middle flow part 314 Folded part 315 Downstream part 41 Frame-shaped convex part 411,412 Flow path forming rib 42, 43, 44, 45, 46, 47, 48, 49 Convex part 42a , 43a, 45a, 46a, 47a, 49a Convex discontinuity 4701, 4801 Side surface 4701a, 4801a Step 51, 52, 53, 54 Channel groove 511, 531, 541, 551 Channel groove linear portion 5501 Bottom surface 5501a Step

Claims (2)

燃料電池の積層する電池セルの隔壁をなすセパレータであって、その表面に電池セルの電極と接触し導通する凸部が設けられるとともに、凸部非形成部により、電極に供給する燃料ガスまたは酸化ガスが電極との間隙を流れる流路溝が形成され、該流路溝には、互いに平行な複数の直線状の部分を含む燃料電池用セパレータにおいて、
流路溝の直線状部分に沿って配置する凸部として、直線状部分の側縁を規定する辺を長辺とする同じ形状の長方形の凸部であって、直線状部分に沿って縦列配置された複数の凸部を設け、
縦列配置された複数の前記長方形の凸部間に、前記直線状部分と直交する方向に形成されて、互いに平行な相隣れる2つの前記直線状部分を連通し、流れを乱す作用を有する不連続部を設け、
かつ、前記縦列配置された複数の凸部を、前記流路溝直線状部分の一方の側縁側に形成された凸部と他方の側縁側に形成された凸部とが縦列方向にオフセットするように配置し、一方の側縁側と他方の側縁側とで、凸部を非対称に形成したことを特徴とする燃料電池用セパレータ。
A separator that forms a partition of battery cells stacked in a fuel cell, and has a convex portion that is in contact with and electrically connected to the electrode of the battery cell on its surface, and a fuel gas or an oxidation that is supplied to the electrode by the non-convex portion forming portion. In the fuel cell separator including a plurality of linear portions parallel to each other, a flow channel groove in which a gas flows through a gap with the electrode is formed.
As convex portions to be arranged along the linear portion of the flow channel groove, rectangular convex portions having the same shape with the side defining the side edge of the linear portion as the long side and arranged in tandem along the linear portion Provided with a plurality of convex portions,
Between the plurality of rectangular convex portions arranged in tandem, the two linear portions which are formed in a direction orthogonal to the linear portion and are parallel to each other are connected to each other, and have an effect of disturbing the flow. A continuous part,
In addition, the plurality of convex portions arranged in the column are offset in the column direction between the convex portion formed on one side edge side of the flow channel groove linear portion and the convex portion formed on the other side edge side. A separator for a fuel cell, wherein the convex portions are formed asymmetrically on one side edge side and the other side edge side.
請求項1記載の燃料電池用セパレータにおいて、前記流路溝の直線状部分の側面または底面を、直線状部分の長さ方向に凹凸を繰り返す段付きの形状とした燃料電池用セパレータ。2. The fuel cell separator according to claim 1, wherein a side surface or a bottom surface of the linear portion of the flow path groove has a stepped shape in which irregularities are repeated in a length direction of the linear portion . 3.
JP2001231189A 2001-07-31 2001-07-31 Fuel cell separator Expired - Fee Related JP5041640B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001231189A JP5041640B2 (en) 2001-07-31 2001-07-31 Fuel cell separator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001231189A JP5041640B2 (en) 2001-07-31 2001-07-31 Fuel cell separator

Publications (2)

Publication Number Publication Date
JP2003045453A JP2003045453A (en) 2003-02-14
JP5041640B2 true JP5041640B2 (en) 2012-10-03

Family

ID=19063276

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001231189A Expired - Fee Related JP5041640B2 (en) 2001-07-31 2001-07-31 Fuel cell separator

Country Status (1)

Country Link
JP (1) JP5041640B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4803957B2 (en) * 2003-09-29 2011-10-26 本田技研工業株式会社 Internal manifold fuel cell
US20060093891A1 (en) * 2004-11-02 2006-05-04 General Electric Company Flow field design for high fuel utilization fuel cells
KR100624456B1 (en) 2004-12-31 2006-09-19 삼성에스디아이 주식회사 Direct liquid feed fuel cell and handheld electronic apparatus having the same
JP2007323969A (en) * 2006-06-01 2007-12-13 Fuji Electric Holdings Co Ltd Fuel cell power generation device
CN108138403B (en) * 2015-10-20 2020-12-11 三菱化学株式会社 Filling cotton

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59184466U (en) * 1983-05-25 1984-12-07 三菱電機株式会社 Fuel cell
JPS63190255A (en) * 1987-02-02 1988-08-05 Hitachi Ltd Fuel cell structure
JP3713912B2 (en) * 1996-08-08 2005-11-09 アイシン精機株式会社 Fuel cell gas passage plate
JP2000251907A (en) * 1999-02-24 2000-09-14 Sanyo Electric Co Ltd Solid polymer fuel cell
JP4590047B2 (en) * 1999-08-13 2010-12-01 本田技研工業株式会社 Fuel cell stack

Also Published As

Publication number Publication date
JP2003045453A (en) 2003-02-14

Similar Documents

Publication Publication Date Title
US20230083155A1 (en) Fuel Cell Flow Channels and Flow Fields
JP4312290B2 (en) Fuel cell and separator
JP5354908B2 (en) Separator plate and fuel cell
CN102725896B (en) Fuel cell
CN101849310B (en) Separator for fuel cell, and fuel cell
MXPA04004279A (en) Fuel cell fluid flow field plates.
JP2022037045A (en) Fuel battery cooling plate
CN108028397B (en) Separator and fuel cell stack including the same
CN100546082C (en) Fuel cell pack
JP2006331916A (en) Fuel cell
JP2021526298A (en) Separator plate for electrochemical system
US10381659B2 (en) Fuel cell
JP5041640B2 (en) Fuel cell separator
JP2017201617A (en) Gas channel forming plate for fuel cell and fuel cell stack
KR20220094755A (en) Multiple perforation plate for separator of fuel cell
JP2004296440A (en) Bipolar plate and fuel cell using the same
JP2003077497A (en) Fuel cell separator
KR102138129B1 (en) Seperator for fuelcell
JP6696279B2 (en) Fuel cell
JP2007504601A (en) Gas supply panel for fuel cell and fuel cell having gas supply panel
CN218996770U (en) Bipolar plate and fuel cell
JP2005050566A (en) Separator for fuel cell
JP2008287945A (en) Gas passage forming member of fuel cell and fuel cell
JP2005243651A (en) Fuel cell and current collector thereof
JP2005268049A (en) Fuel cell

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080319

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110620

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110628

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110824

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120327

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120525

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120612

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120710

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150720

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees