JPS63178455A - Free electrolyte type fuel cell - Google Patents

Free electrolyte type fuel cell

Info

Publication number
JPS63178455A
JPS63178455A JP62009247A JP924787A JPS63178455A JP S63178455 A JPS63178455 A JP S63178455A JP 62009247 A JP62009247 A JP 62009247A JP 924787 A JP924787 A JP 924787A JP S63178455 A JPS63178455 A JP S63178455A
Authority
JP
Japan
Prior art keywords
electrolyte
chamber
cell
fuel
fuel cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62009247A
Other languages
Japanese (ja)
Inventor
Shunji Watanabe
俊二 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP62009247A priority Critical patent/JPS63178455A/en
Publication of JPS63178455A publication Critical patent/JPS63178455A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04276Arrangements for managing the electrolyte stream, e.g. heat exchange
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0271Sealing or supporting means around electrodes, matrices or membranes
    • H01M8/0273Sealing or supporting means around electrodes, matrices or membranes with sealing or supporting means in the form of a frame
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/2465Details of groupings of fuel cells
    • H01M8/2483Details of groupings of fuel cells characterised by internal manifolds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04007Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids related to heat exchange
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04007Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids related to heat exchange
    • H01M8/04029Heat exchange using liquids
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

PURPOSE:To increase the efficiency of a fuel cell and to make the fuel cell compact by installing an electrolyte chamber frame which surroundings a unit cell and has holes connecting with the electrolyte chamber of the unit cell in the upper and lower parts, constituting a cell stack by stacking unit cells via the electrolyte chamber frames, and putting the cell stack in the electrolyte in an electrolyte tank. CONSTITUTION:An electrolyte chamber frame 18 which surroundings a unit cell and has holes 18b, 18c connecting with the electrolyte chamber 2 of the unit cell in the upper part and the lower part is installed. Unit cells are stacked via the electrolyte chamber frame 18 to form a cell stack, and the cell stack is put in the electrolyte in an electrolyte tank 25. The power generation of a fuel cell is performed by reaction gasses supplied to the cell stack through reaction gas passages in the electrolyte chamber frame. The temperature of the electrolyte in the electrolyte chamber 2 is increased by heat generated by power generation, and the electrolyte forms rising flow and is discharged from the hole 18b. The temperature of the discharged electrolyte is decreased by heat radiation from the periphery of the electrolyte tank 25, and the electrolyte forms falling flow and is supplied from the hole 18c to the electrolyte chamber 2 to naturally circulate. Thereby, the fuel is made compact and steadily operated.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、電解質にアルカリ水溶液等を使用する自由電
解液形燃料電池に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a free electrolyte fuel cell that uses an alkaline aqueous solution or the like as an electrolyte.

〔従来の技術〕[Conventional technology]

自由電解液形燃料電池は第5図に示すように燃料電池1
と電解液タンク5および電解液タンク5と燃料電池1の
電解液室2との間に電解液を循環させる循環管路10と
から構成されている。そして燃料電池1はアルカリ水溶
液等の電解質が循環される電解液室2を挟持して図示し
ない燃料電極に燃料ガスを供給する燃料室3と図示しな
い酸化剤電極に酸化剤ガスを供給する酸化剤室4とが配
されて構成されている。なお、12.13はそれぞれ燃
料室3に燃料ガスを供給、排出する供給管と排出管であ
り、14.15はそれぞれ酸化剤室4に酸化剤ガスを供
給、排出する供給管と排出管である。
A free electrolyte fuel cell is a fuel cell 1 as shown in FIG.
, an electrolyte tank 5 , and a circulation pipe 10 for circulating the electrolyte between the electrolyte tank 5 and the electrolyte chamber 2 of the fuel cell 1 . The fuel cell 1 has an electrolyte chamber 2 in which an electrolyte such as an alkaline aqueous solution is circulated, and a fuel chamber 3 that supplies fuel gas to a fuel electrode (not shown), and an oxidizer that supplies oxidant gas to an oxidizer electrode (not shown). The chamber 4 is arranged and configured. Note that 12.13 is a supply pipe and a discharge pipe for supplying and discharging fuel gas to the fuel chamber 3, respectively, and 14.15 is a supply pipe and a discharge pipe for supplying and discharging oxidant gas to and from the oxidizer chamber 4, respectively. be.

電解液タンク5は大気開放弁11と液面レベル計6とを
備え、電解液タンク5に滞溜する電解液液面を大気開放
弁11を開にして大気に開放して大気圧による一定圧力
をかけ、また液面レベル計6により電解液の液面レベル
を監視して電解液濃度を保つ監視手段としている。
The electrolyte tank 5 is equipped with an atmosphere release valve 11 and a liquid level gauge 6, and the electrolyte level accumulated in the electrolyte tank 5 is released to the atmosphere by opening the atmosphere release valve 11 to maintain a constant pressure at atmospheric pressure. In addition, a liquid level meter 6 is used as a monitoring means to monitor the level of the electrolytic solution and maintain the concentration of the electrolytic solution.

電解液タンク5と燃料電池1の電解液室2との間に形成
された循・環管路10は、電解液タンク5の下方と電解
液室2の入口とを接続する送液ポンプ7を備えた電解液
の供給管路8および電解液室2の出口と電解液タンク5
の電解液液面上の上部空間17に接続する電解液の排出
管路18からなっている。なお送液ポンプ7の出口側の
供給管路8と電解液タンク5の上部空間17とを接続し
て調整弁9aを備えたバイパス管路9を配設し、調整弁
9の調整により電解液室2に供給する電解液量を調整し
ている。
A circulation pipe 10 formed between the electrolyte tank 5 and the electrolyte chamber 2 of the fuel cell 1 is connected to a liquid supply pump 7 that connects the lower part of the electrolyte tank 5 and the inlet of the electrolyte chamber 2. The electrolyte supply pipe 8 and the outlet of the electrolyte chamber 2 and the electrolyte tank 5 provided
It consists of an electrolyte discharge pipe 18 connected to an upper space 17 above the electrolyte level. A bypass pipe 9 equipped with a regulating valve 9a is provided to connect the supply pipe 8 on the outlet side of the liquid sending pump 7 and the upper space 17 of the electrolyte tank 5, and the electrolyte can be adjusted by adjusting the regulating valve 9. The amount of electrolyte supplied to chamber 2 is adjusted.

このような構成により電解液を送液ポンプ7により電解
液室2を経て循環管路10を循環送流し、また燃料ガス
を供給管12を経て燃料室3に、一方酸化剤ガスを供給
管14を経て酸化剤室4に供給することにより電池反応
を起こさせ、燃料電池に電気を発生させている。
With this configuration, the electrolyte is circulated through the circulation pipe 10 via the electrolyte chamber 2 by the liquid sending pump 7, the fuel gas is sent through the supply pipe 12 to the fuel chamber 3, and the oxidant gas is sent through the supply pipe 14. By supplying the oxidizer to the oxidizer chamber 4 through the oxidizer chamber 4, a cell reaction is caused and electricity is generated in the fuel cell.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上記のような電解液の循環管路を有する自由電解液形燃
料電池を長時間運転すると、循環管路の管継手部、例え
ば電解液タンクと配管、ポンプと配管等の接続部のシー
ルが劣化して不完全になるため、この接続部から電解液
が漏洩したり、また電気品の故障等が生じ燃料電池の運
転に支障があった。また電解液をポンプにより送液する
ため、ポンプの事故等による回転数の異常等の税調によ
る送液量のアンバランスが生じ、燃料電池内の燃料ガス
や酸化剤ガスによる反応ガス圧力と電解液の液圧との圧
力平衡関係を乱す。このためいわゆる電池反応が行われ
る三相界面の適正な領域が崩れることにより電極の触媒
層に悪影響を与えるので、電池としての寿命を縮めると
いう問題があった。また循環管路は外部に配設されるの
で、燃料電池装置は大型になり、スペース効率が悪いと
いう問題があった。
If a free electrolyte fuel cell with an electrolyte circulation line as described above is operated for a long time, the seals at the joints of the circulation line, such as the connection between the electrolyte tank and the pipe, the pump and the pipe, etc., may deteriorate. As a result, the electrolyte leaks from this connection, and electrical components break down, causing problems in the operation of the fuel cell. In addition, since the electrolyte is delivered by a pump, an imbalance in the amount of delivered liquid may occur due to tax regulations such as abnormal rotation speed due to pump accidents, etc., and the reaction gas pressure due to the fuel gas and oxidant gas in the fuel cell and the electrolyte This disturbs the pressure equilibrium relationship with the liquid pressure. For this reason, the proper region of the three-phase interface where so-called battery reactions occur is disrupted, which adversely affects the catalyst layer of the electrode, resulting in a problem of shortening the life of the battery. Furthermore, since the circulation pipe is disposed outside, the fuel cell device becomes large and there is a problem of poor space efficiency.

本発明は、上述のような点に鑑み小型でかつ寿命が長く
、さらに長期にわたって安定した運転ができる自由電解
液形燃料電池を提供することを目的とする。
In view of the above-mentioned points, an object of the present invention is to provide a free electrolyte fuel cell that is small in size, has a long life, and can operate stably over a long period of time.

〔問題点を解決するための手段〕[Means for solving problems]

上記の目的を達成するため本発明によれば、単電池の全
外周を囲み、上部と下部とに単電池の電解液室に連通ず
る孔を有する液室枠を設け、単電池をこの液室枠を介し
て積み重ねてセルスタックを構成し、このセルスタック
を電解液タンクの電解液中に載置した。
In order to achieve the above object, according to the present invention, a liquid chamber frame is provided which surrounds the entire outer periphery of a unit cell and has holes in the upper and lower parts communicating with the electrolyte chamber of the unit cell. The cells were stacked together via a frame to form a cell stack, and this cell stack was placed in an electrolyte in an electrolyte tank.

〔作用〕[Effect]

燃料電池は液室枠の反応ガスの通路を経てセルスタック
に供給される反応ガスにより発電する。
A fuel cell generates electricity using a reactive gas that is supplied to the cell stack through a reactive gas passage in a liquid chamber frame.

この際発電に伴い発生する熱により電解液室内の電解液
の温度は上昇し、一方セルスタックの外周辺の電解液の
温度は電解液タンクの外周からの放熱により低下する。
At this time, the temperature of the electrolyte in the electrolyte chamber increases due to the heat generated during power generation, while the temperature of the electrolyte around the outer periphery of the cell stack decreases due to heat radiation from the outer periphery of the electrolyte tank.

このため電解液室の電解液はその温度上昇により上昇流
となり液室枠の上部の孔から放流され、そしてこの放流
された電解液は電解液タンクの外周からの放熱により温
度低下して下降流となり液室枠の下部の孔から電解液室
に流入し、いわゆる自然循環して電解液タンクの電解液
を電解液室にポンプを必要とせずに送流循環する。
As a result, the electrolyte in the electrolyte chamber flows upward due to its temperature and is discharged from the hole at the top of the chamber frame, and this discharged electrolyte decreases in temperature due to heat radiation from the outer circumference of the electrolyte tank and flows downward. Then, the electrolyte flows into the electrolyte chamber through the hole in the lower part of the electrolyte chamber frame, and in what is called natural circulation, the electrolyte in the electrolyte tank is circulated through the electrolyte chamber without the need for a pump.

〔発明の実施例〕[Embodiments of the invention]

以下図面に基づいて本発明の実施例について説明する。 Embodiments of the present invention will be described below based on the drawings.

第4図は本発明の実施例による自由電解液形燃料電池の
系統図である。なお、第4図ふよび後述する第1図ない
し第3図において第5図の従来例と同一部品に同じ符号
を付し、その説明を省略する。第4図において従来例と
異なるの(ま燃料電池本体1を電解液タンク5に収納し
、アルカリ水溶液等の電解液を燃料電池1の上部が完全
に埋没するまで充填したことである。この場合、燃料電
池1の各単電池はその全外周を後述する額縁状の液室枠
で囲み、液室枠の上部と下部とにそれぞれ設けられた孔
を介して電解液は電解液室2に流入、流出するようにし
ている。また燃料電池1に反応ガスを供給するために燃
料ガスの供給管32゜排出管32aと酸化剤ガスの供給
管33.排出管33aをそれぞれ電解液タンク5の側壁
を貫通して燃料電池の燃料室2と酸化剤室3とに接続し
ている。
FIG. 4 is a system diagram of a free electrolyte fuel cell according to an embodiment of the present invention. In FIG. 4 and FIGS. 1 to 3, which will be described later, the same parts as those in the conventional example shown in FIG. What is different from the conventional example in FIG. 4 is that the fuel cell main body 1 is housed in an electrolyte tank 5, and an electrolyte such as an aqueous alkaline solution is filled until the upper part of the fuel cell 1 is completely buried. The entire outer circumference of each cell of the fuel cell 1 is surrounded by a frame-like liquid chamber frame, which will be described later, and the electrolyte flows into the electrolyte chamber 2 through holes provided in the upper and lower parts of the liquid chamber frame, respectively. In addition, in order to supply reaction gas to the fuel cell 1, a fuel gas supply pipe 32 and a discharge pipe 32a and an oxidizing gas supply pipe 33 and a discharge pipe 33a are connected to the side wall of the electrolyte tank 5, respectively. It penetrates through and connects to the fuel chamber 2 and oxidizer chamber 3 of the fuel cell.

第1図は第4図の系統図における自由電解液形燃料電池
の部分断面図、第2図は第1図のA−A断面図、第3図
は第1図の燃料電池の単電池の分解斜視図である。第1
図ないし第3図にふいて方形状の多孔質の燃料電極3C
と酸化剤電極4Cとは対向して配され、電解液室2は燃
料電極3Cと酸化剤電極4Cとで画成されている。19
はガス不透過性のバイポーラプレートであり、一方の面
に燃料電極3Cに燃料ガスを供給する通路となる凹状の
複数の溝からなる燃料室3を、対向する他方の面に酸化
剤電極4Cに酸化剤ガスを供給する凹状の複数の溝から
なる酸化剤室4を有している。そしてバイポーラプレー
ト19の燃料室3に臨んで額縁状の燃料室パツキン21
(第3図参照)を介して燃料電極3Cが、一方酸化剤室
4に臨んで額縁状の酸化剤パツキン22(第3図参照)
を介して酸化剤電極4Cが配されている。単電池20は
電解液室2と、燃料室パツキン21と酸化剤室パツキン
22とをそれぞれ介して配される燃料電極3Cと酸化剤
電極4Cと燃料室3と酸化剤室4とで構成されている。
Figure 1 is a partial sectional view of the free electrolyte fuel cell in the system diagram of Figure 4, Figure 2 is a sectional view taken along line A-A in Figure 1, and Figure 3 is a cross-sectional view of the single cell of the fuel cell in Figure 1. It is an exploded perspective view. 1st
Rectangular porous fuel electrode 3C as shown in Figures 3 and 3
The fuel electrode 3C and the oxidizer electrode 4C are arranged to face each other, and the electrolyte chamber 2 is defined by the fuel electrode 3C and the oxidizer electrode 4C. 19
is a gas-impermeable bipolar plate, with a fuel chamber 3 consisting of a plurality of concave grooves serving as a passage for supplying fuel gas to the fuel electrode 3C on one surface, and an oxidizer electrode 4C on the opposite surface. It has an oxidizing agent chamber 4 consisting of a plurality of concave grooves for supplying oxidizing gas. A frame-shaped fuel chamber gasket 21 faces the fuel chamber 3 of the bipolar plate 19.
The fuel electrode 3C faces the oxidizer chamber 4 via the frame-shaped oxidizer gasket 22 (see FIG. 3).
An oxidizer electrode 4C is arranged through the oxidizer electrode 4C. The unit cell 20 is composed of an electrolyte chamber 2, a fuel electrode 3C, an oxidizer electrode 4C, a fuel chamber 3, and an oxidizer chamber 4, which are arranged via a fuel chamber packing 21 and an oxidizer chamber packing 22, respectively. There is.

なお、電解液室2内には波形状の液室スペーサ2Cを設
け、液室スペーサ2Cは燃料電極3Cおよび酸化剤電極
4Cがバイポーラプレート19に密着するように押し付
けている。
A wave-shaped liquid chamber spacer 2C is provided in the electrolyte chamber 2, and the liquid chamber spacer 2C is pressed against the bipolar plate 19 so that the fuel electrode 3C and the oxidizer electrode 4C are in close contact with each other.

単電池20の全周囲を囲んで額縁状の液室枠18が設け
られ、液室枠18は断面が凸形をなし、その凸部のっぽ
18aは電解液室2に挿入されている。そして液室枠1
8の上辺と下辺とにはそれぞれつば18aにて液室枠1
8を貫通し電解液が通流する孔18bと18cとが設け
られている。なお、液室枠18の下辺を横断して凹状の
流路18dが設けられ、孔18bは流路18dに開口し
ている。またつば18aの一方の側面には第2図に示す
ように通路としての燃料ガスの供給マニホールド孔31
dと酸化剤ガスの排出マニホールド孔41fを、他方の
側面には通路としての燃料ガスの排出マニホールド孔3
1fと酸化剤ガスの供給マニホールド孔41dとが設け
られ、これらのマニホールド孔は第3図に示すように屯
電池を構成するバイポーラプレート19とm 41 室
パツキン21と酸化剤室パツキン22に設けられた反応
ガス流路に連通している。すなわちバイポーラプレート
19には一方の側面に燃料室3に燃料ガスを供給する入
口流路3eが開口している燃料の供給マニホールド孔3
dと図示しない酸化剤室4から酸化剤ガスを排出する排
出流路4gが開口する酸化剤排出マニホールド孔4fが
、他方の側面には燃料室3から燃料ガスを排出する排出
流路3gが開口する燃料ガス排出マニホールド孔3fと
酸化剤室4に酸化剤を供給する人口流路4eが開口する
酸化剤ガス供給マニホールド孔4dとが設けられている
。また燃料室パツキン21と酸化剤室パツキン22とに
はそれぞれ燃料ガス供給マニホールド孔3dに連通ずる
孔21d、22dと、酸化剤ガス排出マニホールド孔4
fにそれぞれ連通する孔21f22fと、燃料ガス排出
マニホールド孔3fにそれぞれ連通ずる図示しない孔と
、酸化剤ガス供給マニホールド孔4dにそれぞれ連通す
る図示しない孔とが設けられている。そして液室枠18
の燃料ガスの供給マニホールド孔31dと排出マニホー
ルド孔31fおよび酸化剤ガスの供給マニホールド孔4
1dと排出マニホールド孔41fはそれぞれバイポーラ
プレート19の燃料ガス供給マニホールド孔3d燃料ガ
ス排出マニホールド孔3f、酸化剤ガス供給マニホール
ド孔4d、酸化剤ガス排出マニホールド孔4fに燃料室
、酸化剤室パツキンの前述した孔21d、22d等を経
て連通している。
A frame-shaped liquid chamber frame 18 is provided surrounding the entire periphery of the unit cell 20, and the liquid chamber frame 18 has a convex cross section, and the convex end 18a is inserted into the electrolyte chamber 2. And liquid chamber frame 1
The liquid chamber frame 1 is attached to the upper side and the lower side of the liquid chamber frame 1 with a collar 18a, respectively.
Holes 18b and 18c are provided that penetrate through the hole 8 and allow the electrolyte to flow therethrough. Note that a concave channel 18d is provided across the lower side of the liquid chamber frame 18, and the hole 18b is open to the channel 18d. Further, as shown in FIG. 2, one side of the collar 18a has a fuel gas supply manifold hole 31 as a passage.
d and an oxidant gas exhaust manifold hole 41f, and a fuel gas exhaust manifold hole 3 as a passage on the other side.
1f and an oxidant gas supply manifold hole 41d are provided, and these manifold holes are provided in the bipolar plate 19, the m41 chamber packing 21, and the oxidizing agent chamber packing 22, which constitute the ton battery, as shown in FIG. It communicates with the reactant gas flow path. That is, the bipolar plate 19 has a fuel supply manifold hole 3 having an inlet passage 3e opening on one side for supplying fuel gas to the fuel chamber 3.
d and an oxidizer discharge manifold hole 4f in which a discharge passage 4g for discharging oxidant gas from the oxidizer chamber 4 (not shown) opens, and a discharge passage 3g for discharging fuel gas from the fuel chamber 3 opens on the other side. A fuel gas discharge manifold hole 3f and an oxidant gas supply manifold hole 4d into which an artificial flow path 4e for supplying the oxidant to the oxidizer chamber 4 are provided. Further, the fuel chamber gasket 21 and the oxidizer chamber gasket 22 have holes 21d and 22d that communicate with the fuel gas supply manifold hole 3d, and an oxidizer gas discharge manifold hole 4, respectively.
A hole 21f22f that communicates with the fuel gas discharge manifold hole 3f, a hole not shown that communicates with the oxidant gas supply manifold hole 4d, and a hole not shown that communicates with the oxidizing gas supply manifold hole 4d are provided. And liquid chamber frame 18
A fuel gas supply manifold hole 31d, a discharge manifold hole 31f, and an oxidant gas supply manifold hole 4.
1d and exhaust manifold hole 41f are the fuel gas supply manifold hole 3d, fuel gas discharge manifold hole 3f, oxidant gas supply manifold hole 4d, and oxidant gas discharge manifold hole 4f of the bipolar plate 19, respectively. They communicate through holes 21d, 22d, etc.

セルスタック22は単電池20を液室枠18を介して積
み重ねて構成され、隣り合う液室枠18の間にはテフロ
ンからなる額縁状のシールプレート23が介挿されてい
る。なお、シールプレート23によす電解液が燃料室3
や酸化剤室4等に流入するのを防止している。
The cell stack 22 is constructed by stacking unit cells 20 with liquid chamber frames 18 interposed therebetween, and a frame-shaped seal plate 23 made of Teflon is inserted between adjacent liquid chamber frames 18. Note that the electrolyte introduced into the seal plate 23 is in the fuel chamber 3.
This prevents the oxidizer from flowing into the oxidizer chamber 4, etc.

セルスタック220両端面には集電板15を配し、集電
板15のセルスタック22側に接する単電池の液室枠1
8を延在させて突出した外縁板30により、またセルス
タック22の反対側は電気絶縁板16により挟持されて
いる。そして両端の電気絶$1216にそれぞれ密着し
て締付板12が配設されている。
Current collector plates 15 are arranged on both end faces of the cell stack 220, and the liquid chamber frame 1 of the unit cell is in contact with the cell stack 22 side of the current collector plate 15.
The opposite side of the cell stack 22 is sandwiched by an outer edge plate 30 extending and protruding from the cell stack 22, and by an electrically insulating plate 16 on the opposite side of the cell stack 22. A clamping plate 12 is disposed in close contact with the electrical insulation terminals 1216 at both ends.

電解液タンク25は底板26を有し、底板26を囲む4
枚の側板のうち対向する2枚の側板を締付板12として
使用している。また異なる対向する2枚の側板を伸縮可
能なベロー27を備えた側板28にしている。なお底板
26にもベロー27に接続してベローを設けている。
The electrolyte tank 25 has a bottom plate 26, and 4 holes surrounding the bottom plate 26.
Of the two side plates, two opposing side plates are used as the tightening plates 12. In addition, two different opposing side plates are made into side plates 28 having extendable bellows 27. Note that the bottom plate 26 is also provided with a bellows connected to the bellows 27.

このような構造による電解液タンク25内にセルスタッ
ク22を液室枠18の流路18dを底板26に臨ませて
載置し、セルスタックを電気絶縁板16を介して締付板
12を貫通する4本の締付スタッド35によリセルスタ
ックを締め付けて燃料電池1を形成する。この時の締付
力は皿ばね14により調整される。
The cell stack 22 is placed in the electrolyte tank 25 having such a structure with the flow path 18d of the liquid chamber frame 18 facing the bottom plate 26, and the cell stack is inserted through the clamping plate 12 through the electrical insulating plate 16. The fuel cell 1 is formed by tightening the recell stack with the four tightening studs 35. The tightening force at this time is adjusted by the disc spring 14.

なおこの際電解液タンク25の側板28と底板26とは
締付スタッド25の締め付けによりベロ一部で収縮し、
セルスタックの締め付けを容易にしている。
At this time, the side plate 28 and bottom plate 26 of the electrolyte tank 25 contract at a portion of the tongue due to the tightening of the tightening stud 25.
This makes it easy to tighten the cell stack.

また締付板12.電気絶縁板16等を貫通して燃料室3
に燃料ガスを供給する供給管32と排出管32aを、一
方酸化剤室4に酸化剤ガスを供給する供給管33と排出
管33aとが設けられている。
Also, the tightening plate 12. The fuel chamber 3 penetrates through the electrical insulating plate 16 etc.
A supply pipe 32 and a discharge pipe 32a are provided for supplying fuel gas to the oxidizer chamber 4, and a supply pipe 33 and a discharge pipe 33a for supplying oxidizer gas to the oxidizer chamber 4 are provided.

電解液は電解液タンク25内に充填され液面17aを形
成し、セルスタックは液面17a下に収納される。なお
、集電板15とこれを挟持する液室枠18の外縁板30
と電気絶縁板16の端部は液面28から突出し、電気の
取り出しを可能にしている。
The electrolytic solution is filled into the electrolytic solution tank 25 to form a liquid level 17a, and the cell stack is housed below the liquid level 17a. Note that the current collector plate 15 and the outer edge plate 30 of the liquid chamber frame 18 that sandwich the current collector plate 15
The ends of the electrically insulating plate 16 protrude from the liquid surface 28, making it possible to extract electricity.

電解液タンク25の上部には蓋29を設け、従来技術と
同じ作用を有する液面レベル計6と大気開放弁11とを
設けている。
A lid 29 is provided on the top of the electrolyte tank 25, and a liquid level gauge 6 and an atmosphere release valve 11 having the same functions as in the prior art are provided.

上記のような構成により、燃料ガスと酸化剤ガスとをそ
れぞれ供給管32.33を経てセルスタックに供給する
と、燃料ガスはバイポーラプレート19゜液室枠18等
の燃料ガスの供給マニホールド孔等の通路を経て燃料室
3に、一方酸化剤は酸化剤ガスの供給マニホールド孔等
の通路を経て酸化剤室4に棋給され、単電池にて電気化
学反応をして電気を発生する。この際発電に伴って熱が
発生するので電解液タンク25の電解液は温度が上昇す
る。このため電解液室2内の電解液は上昇流となって第
2図に示すように孔18bからセルスタック外に流出す
る。流出した電解液は電解液タンク25の外壁を介して
空冷されることにより温度が低下しセルスタックと電解
液タンク25の側壁との間を矢印のように下方に流れて
液室枠18の通路18dに流入し、液室枠18の孔18
cから電解液室2に流入する。流入した電解液は前述の
ように温度上昇して電解液室2を再び上昇し、いわゆる
自然対流が行われて電解液タンク25の電解液は電解液
室2に送流循環される。この際、自然循環により発電に
より生じた熱は除去されて電解液室2の電解液の温度は
運転温度に保持される。
With the above configuration, when fuel gas and oxidizing gas are supplied to the cell stack through the supply pipes 32 and 33, the fuel gas is supplied to the fuel gas supply manifold holes of the bipolar plate 19 and the liquid chamber frame 18, etc. The oxidizing agent is supplied to the fuel chamber 3 through a passage, and the oxidizing agent is supplied to the oxidizing agent chamber 4 through a passage such as an oxidizing gas supply manifold hole, where an electrochemical reaction occurs in the cell to generate electricity. At this time, since heat is generated with power generation, the temperature of the electrolyte in the electrolyte tank 25 increases. Therefore, the electrolyte in the electrolyte chamber 2 becomes an upward flow and flows out of the cell stack from the hole 18b as shown in FIG. The outflowing electrolyte is air-cooled through the outer wall of the electrolyte tank 25 to lower its temperature, and flows downward between the cell stack and the side wall of the electrolyte tank 25 as shown by the arrow, and flows into the passage of the liquid chamber frame 18. 18d, and the hole 18 of the liquid chamber frame 18.
It flows into the electrolyte chamber 2 from c. As described above, the temperature of the electrolytic solution that has flowed in increases and it rises again in the electrolytic solution chamber 2, so that so-called natural convection occurs, and the electrolytic solution in the electrolytic solution tank 25 is sent and circulated to the electrolytic solution chamber 2. At this time, heat generated by power generation is removed by natural circulation, and the temperature of the electrolyte in the electrolyte chamber 2 is maintained at the operating temperature.

なお、電気化学反応に寄与しない燃料はバイポーラプレ
ート19.液室枠18等の燃料ガスの排出72二ホール
ド孔等の通路を経て排出管32aから、また酸化剤ガス
は酸化剤ガスの排出マニホールド孔等の通路を経て排出
管3aから外部に排出される。
Note that the fuel that does not contribute to the electrochemical reaction is the bipolar plate 19. The fuel gas discharge 72 from the liquid chamber frame 18, etc. is discharged to the outside from the discharge pipe 32a through passages such as two hold holes, and the oxidant gas is discharged to the outside from the discharge pipe 3a through passages such as oxidant gas discharge manifold holes. .

〔発明の効果〕〔Effect of the invention〕

以上の説明で明らかなように単電池の全外周を囲む液室
枠を介して単電池を積み重ねてなるセルスタックを電解
液タンクの電解液中に載置し、液室枠の上辺と下辺に設
けた電解液が通流する孔を介して発電時発生する熱によ
り電解液の自然対流を行わせたことにより、燃料電池の
電解液室には電解液タンクの電解液を送流循環できるの
で、従来のように電解液タンクと電解液室とを循環させ
る管路が不要となり、またこれらに付属するポンプの脱
調による反応ガスの単電池内での圧力不平衡がなくなり
、同時に管路からの電解液の漏洩もなくなり、燃料電池
の安定した運転と長寿命が得られるという効果がある。
As is clear from the above explanation, a cell stack consisting of cells stacked together with a liquid chamber frame that surrounds the entire outer periphery of the cell is placed in the electrolyte in the electrolyte tank, and the cell stack is placed on the electrolyte in the electrolyte tank, and By causing natural convection of the electrolyte using the heat generated during power generation through the provided holes through which the electrolyte flows, the electrolyte in the electrolyte tank can be circulated through the electrolyte chamber of the fuel cell. This eliminates the need for pipes that circulate between the electrolyte tank and the electrolyte chamber as in the past, and also eliminates the pressure imbalance within the cell of reactant gas caused by the step-out of the pump attached to these. This eliminates leakage of the electrolyte, resulting in stable operation and long life of the fuel cell.

またポンプに必要な電力も不要となって燃料電池の効率
が向上し、また小型化がはかれるという効果もある。
In addition, the power required for the pump is no longer required, which improves the efficiency of the fuel cell, and it also has the effect of being smaller.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発胡の実施例による自由電解液形燃料電池の
部分断面図、第2図は第1図のA−A断面図、第3図は
第1図の単電池の分解斜視図、第4図は第1図の自由電
解液形燃料電池の概略図、第5図は従来の自由電解液形
燃料電池の構成回路図である。 1・燃料電池麟林、2 電解液室、3 燃料室、3C燃
料電極、4−酸化剤室1.4C酸化剤電極、5,25 
電解液タンク、15  集電板、16  絶縁板、18
  液室枠、19  バイポーラプレート。
Fig. 1 is a partial sectional view of a free electrolyte fuel cell according to an embodiment of the present invention, Fig. 2 is a sectional view taken along line AA in Fig. 1, and Fig. 3 is an exploded perspective view of the unit cell shown in Fig. 1. , FIG. 4 is a schematic diagram of the free electrolyte fuel cell shown in FIG. 1, and FIG. 5 is a structural circuit diagram of a conventional free electrolyte fuel cell. 1. Fuel cell Rinrin, 2. Electrolyte chamber, 3. Fuel chamber, 3C fuel electrode, 4. Oxidizer chamber 1.4C oxidizer electrode, 5, 25
Electrolyte tank, 15 Current collector plate, 16 Insulating plate, 18
Liquid chamber frame, 19 bipolar plate.

Claims (1)

【特許請求の範囲】[Claims] 1)対向し合う一対の多孔質電極の間に画成された燃料
電池の液室を電解液が自由に循環できる構造をもつ自由
電解液形燃料電池において、単電池の全外周を囲み、上
部と下部に電池の電解液室に連通する孔を有する液室枠
を設け、この液室枠を介して単電池を積層してなるセル
スタックを電解液タンク内の液中に載置したことを特徴
とする自由電解液形燃料電池。
1) In a free electrolyte fuel cell, which has a structure in which the electrolyte can freely circulate in the liquid chamber of the fuel cell defined between a pair of opposing porous electrodes, the upper part surrounds the entire outer periphery of the cell. A liquid chamber frame with a hole communicating with the electrolyte chamber of the battery is provided at the bottom of the cell, and a cell stack consisting of single cells is placed in the electrolyte tank via this liquid chamber frame. Characteristics of free electrolyte fuel cells.
JP62009247A 1987-01-19 1987-01-19 Free electrolyte type fuel cell Pending JPS63178455A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62009247A JPS63178455A (en) 1987-01-19 1987-01-19 Free electrolyte type fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62009247A JPS63178455A (en) 1987-01-19 1987-01-19 Free electrolyte type fuel cell

Publications (1)

Publication Number Publication Date
JPS63178455A true JPS63178455A (en) 1988-07-22

Family

ID=11715076

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62009247A Pending JPS63178455A (en) 1987-01-19 1987-01-19 Free electrolyte type fuel cell

Country Status (1)

Country Link
JP (1) JPS63178455A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998024138A1 (en) * 1996-11-29 1998-06-04 Siemens Aktiengesellschaft Liquid-cooled fuel cell batteries
WO2007102028A1 (en) * 2006-03-07 2007-09-13 Afc Energy Plc Fuel cell assembly
US8241796B2 (en) 2006-03-07 2012-08-14 Afc Energy Plc Electrodes of a fuel cell
WO2013137033A1 (en) * 2012-03-12 2013-09-19 コニカミノルタ株式会社 Secondary cell-type fuel cell system

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998024138A1 (en) * 1996-11-29 1998-06-04 Siemens Aktiengesellschaft Liquid-cooled fuel cell batteries
WO2007102028A1 (en) * 2006-03-07 2007-09-13 Afc Energy Plc Fuel cell assembly
US8241796B2 (en) 2006-03-07 2012-08-14 Afc Energy Plc Electrodes of a fuel cell
WO2013137033A1 (en) * 2012-03-12 2013-09-19 コニカミノルタ株式会社 Secondary cell-type fuel cell system
JPWO2013137033A1 (en) * 2012-03-12 2015-08-03 コニカミノルタ株式会社 Secondary battery type fuel cell system

Similar Documents

Publication Publication Date Title
JP3460346B2 (en) Solid polymer electrolyte fuel cell
JPH0286071A (en) Solid polymer fuel cell
JPH09259910A (en) Molten carbonate fuel battery and power generator using this battery
US3615838A (en) Fuel cell unit with novel fluid distribution drain and vent features
US3573104A (en) Fuel cell unit with novel fluid confining and directing features
US4714661A (en) Molten carbonate fuel cell
JPH08500692A (en) Ion conduction module with axially arranged solid electrolyte elements
JPS63178455A (en) Free electrolyte type fuel cell
JP2001202984A (en) Solid-polymer fuel cell stack
JPH0922717A (en) Solid highpolymer electrolyte type fuel cell
JPS63119166A (en) Fuel battery
JP3493097B2 (en) Solid polymer electrolyte membrane fuel cell
JP3096721B2 (en) Disc-stacked solid electrolyte fuel cell
JPH09167623A (en) Solid polymer electrolyte type fuel cell
JPS61148766A (en) Fused carbonate type fuel cell
JPS6010565A (en) Seal structure for fuel cell
JP2004134130A (en) Fuel cell stack
JPH09120833A (en) Solid high polymer electrolyte fuel cell
JPH0927334A (en) Solid polymer electrolyte film fuel cell and manufacture thereof
JPH08185884A (en) Solid electrolytic fuel cell
EP4273975A1 (en) Humidifier for fuel cell
JPH01276566A (en) Fuel cell
JPS63195967A (en) Fuel cell
JPH11233127A (en) Disc laminate solid electrolyte fuel cell
JPH0224972A (en) Gas exhaust structure for fuel cell