JPS63195967A - Fuel cell - Google Patents

Fuel cell

Info

Publication number
JPS63195967A
JPS63195967A JP62028651A JP2865187A JPS63195967A JP S63195967 A JPS63195967 A JP S63195967A JP 62028651 A JP62028651 A JP 62028651A JP 2865187 A JP2865187 A JP 2865187A JP S63195967 A JPS63195967 A JP S63195967A
Authority
JP
Japan
Prior art keywords
cooling water
gas
fuel gas
gas flow
path
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62028651A
Other languages
Japanese (ja)
Inventor
Katsunori Sakai
勝則 酒井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP62028651A priority Critical patent/JPS63195967A/en
Publication of JPS63195967A publication Critical patent/JPS63195967A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04007Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids related to heat exchange
    • H01M8/04067Heat exchange or temperature measuring elements, thermal insulation, e.g. heat pipes, heat pumps, fins
    • H01M8/04074Heat exchange unit structures specially adapted for fuel cell
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/2465Details of groupings of fuel cells
    • H01M8/2484Details of groupings of fuel cells characterised by external manifolds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04007Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids related to heat exchange
    • H01M8/04029Heat exchange using liquids
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Abstract

PURPOSE:To prevent the corrosion of pipelines caused by an electrolyte by locating a cooling water inlet pipeline and a cooling water outlet pipeline on gas return side stacked surface where no manifold is mounted. CONSTITUTION:A fuel gas return passage 16 is arranged at a nearly right angle to a fuel gas going passage and a fuel gas return passage so that a fuel gas can return on an anode 2 substrate. A cooling water pipe 11 and a cooling water outlet pipe 12 of a cooling pipe 10 which are embedded in a cooling plate 9 are located on a fuel gas return side stacked surface. Since the pipelines are located outside a manifold, the corrosion of the pipeline caused by a phosphoric acid electrolyte can be prevented. Even if the cooling water leaks from cooling water pipeline joints, that has practically no effect on the cells. Therefore, a fuel cell having high reliability can be obtained.

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) 本発明は燃料電池に係り、特にガスリターン側積層面の
マニホールドを省略し、このガスリターン側積層面に冷
却管の冷却水入口および出口配管部を位置させるように
構成した燃料電池に関するものである。
[Detailed description of the invention] [Objective of the invention] (Industrial field of application) The present invention relates to a fuel cell, and in particular, the manifold on the gas return side stacked surface is omitted, and cooling pipes are provided on the gas return side stacked surface. The present invention relates to a fuel cell configured to locate water inlet and outlet piping sections.

(従来の技術) 従来、燃料の有している化学的エネルギーを直接電気的
エネルギーに変換する装置として燃料電池が知られてい
る。この燃料電池は通常、電解質を含浸保持したマトリ
ックスを挟んで、片面に触媒層がそれぞれ形成された燃
料極(以下、アノード電極と称する)および酸化剤極(
以下、カソード電極と称する)からなる一対の多孔質電
極を配置すると共に、アノード電極の背面に水素ガス等
の燃料ガスを接触させ、またカソード電極の背面に空気
等の酸化剤ガスを接触させ、このときに起こる電気化学
的反応を利用して上記両電楊間から電気エネルギーを取
出すようにしたものであり、上記燃料ガスと酸化剤ガス
が供給されている限り、高い変換効率で電気エネルギー
を取出すことができるものである。
(Prior Art) Fuel cells are conventionally known as devices that directly convert chemical energy contained in fuel into electrical energy. This fuel cell usually has a fuel electrode (hereinafter referred to as an anode) and an oxidizer electrode (hereinafter referred to as an anode electrode), which has a catalyst layer formed on one side with a matrix impregnated with an electrolyte sandwiched therebetween.
A pair of porous electrodes (hereinafter referred to as cathode electrodes) are arranged, and a fuel gas such as hydrogen gas is brought into contact with the back surface of the anode electrode, and an oxidizing gas such as air is brought into contact with the back surface of the cathode electrode. The electrochemical reaction that occurs at this time is used to extract electrical energy from between the two electric currents, and as long as the fuel gas and oxidizing gas are supplied, electrical energy can be extracted with high conversion efficiency. It is something that can be taken out.

第3図は、この種の燃料電池における従来の単位セルの
構成を示す斜視図である。第3図において単位セルは、
電解質を含浸保持したマトリックス1に接する面に触媒
が塗布され、多孔質体で形成されたアノード電極2を上
側に配置し、上記マトリックス1に接する面に触媒が塗
布され、同じく多孔質体で形成されたカソード電極3を
下側に配置して構成される。このアノード電極2および
カソード電極3は、それぞれマトリックス1の反対側に
燃料ガスおよび酸化剤ガスが流通する燃料ガス流通路4
および酸化剤ガス流通路5が、互いに直交する方向に設
けられている。
FIG. 3 is a perspective view showing the configuration of a conventional unit cell in this type of fuel cell. In Figure 3, the unit cell is
A catalyst is applied to the surface in contact with the matrix 1 impregnated with an electrolyte, and an anode electrode 2 formed of a porous material is placed on the upper side, and a catalyst is applied to the surface in contact with the matrix 1, which is also formed of a porous material. The cathode electrode 3 is arranged on the lower side. The anode electrode 2 and the cathode electrode 3 each have a fuel gas flow path 4 on the opposite side of the matrix 1 through which the fuel gas and the oxidant gas flow.
and an oxidizing gas flow path 5 are provided in directions orthogonal to each other.

さて、一般にリン酸を電解質とするリン酸型燃料電池に
おいては、燃料ガスは水素であり、酸化剤ガスは空気中
の酸素である。そして燃料電池は、単位セルより発生す
る電圧が1ボルト以下と低いため、通常は第4図に分解
斜視図を示すように、400〜500個の単位セル6を
耐熱性および耐リン酸性のセパレーター7を介して積層
しく以下、これを積層スタックと称する)、高電圧を得
るようにしている。また、上述の電気化学的反応は発熱
反応であることから、単位セル6の積層に際しては温度
上昇を防止するため、所定個数の単位セル6毎に冷却板
9を挿入設置し、燃料電池より発生す熱を外部へ取出す
ように構成している。ここで、冷却板9は通常圧縮成型
グラファイト樹脂組成物で作られており、第5図に平面
図を示すように内部に絶縁処理を施した直径3姻程度の
冷却管10が等間隔で複数本埋め込まれている。そして
、冷媒としては通常水が使用され、この水は冷却水入口
管11より導入されて、冷却水出口管12より排出され
る。
Generally, in a phosphoric acid fuel cell using phosphoric acid as an electrolyte, the fuel gas is hydrogen and the oxidant gas is oxygen in the air. Since the voltage generated by a fuel cell is as low as 1 volt or less, normally 400 to 500 unit cells 6 are separated by heat-resistant and phosphoric acid-resistant separators, as shown in the exploded perspective view of FIG. (hereinafter referred to as a laminated stack) to obtain a high voltage. In addition, since the above electrochemical reaction is an exothermic reaction, in order to prevent temperature rise when stacking unit cells 6, a cooling plate 9 is inserted and installed for every predetermined number of unit cells 6, and the heat generated by the fuel cell is The structure is such that the heat is extracted to the outside. Here, the cooling plate 9 is usually made of a compression-molded graphite resin composition, and as shown in the plan view in FIG. The book is embedded. Water is normally used as the refrigerant, and this water is introduced through the cooling water inlet pipe 11 and discharged through the cooling water outlet pipe 12.

しかしながら、上述した燃料電池においては次のような
問題がある。すなわち、冷却管10の冷却水入口管11
および冷却水出口管12は、図示しないマニホールド内
の高温高圧リン酸雰囲気中に設置されているため、耐熱
、耐腐蝕性のコーテイング材が塗布されていても、長時
間にわたる燃料電池の運転においては腐蝕する恐れがあ
る。また、冷却管10の冷却水入口管11および冷却水
出口管12は、マニホールドを介して積層スタック外部
の図示しない冷却水供給管および冷却水排出管に接続さ
れるため、この接続部からマニホールド内供給ガスの外
部へのガスリークが生じる恐れがある。さらに、マニホ
ールド内の冷却管において、接続部の緩み、溶接部の破
損等によって冷却水の漏れが生じた場合には、マニホー
ルド内に冷却水が溜ってセル供給ガス流通路の目づまり
However, the above-mentioned fuel cell has the following problems. That is, the cooling water inlet pipe 11 of the cooling pipe 10
Since the cooling water outlet pipe 12 is installed in a high-temperature, high-pressure phosphoric acid atmosphere in a manifold (not shown), even if a heat-resistant and corrosion-resistant coating material is applied, it is difficult to operate the fuel cell for a long time. There is a risk of corrosion. In addition, the cooling water inlet pipe 11 and the cooling water outlet pipe 12 of the cooling pipe 10 are connected to a cooling water supply pipe and a cooling water discharge pipe (not shown) outside the laminated stack via the manifold. Gas leakage of the supplied gas to the outside may occur. Furthermore, if cooling water leaks from the cooling pipes in the manifold due to loose connections, broken welds, etc., the cooling water will accumulate in the manifold and clog the cell supply gas flow path.

供給ガス配管の目づまり等の、運転不可能となる大きな
問題が生じる。
Major problems such as clogging of supply gas piping occur, which makes operation impossible.

(発明が解決しようとする問題点) 以上のように従来の燃料電池では、冷却管の冷却水入口
および出口配管部が電解質(リン酸〉によって腐蝕した
り、また冷却管の接続部等から冷却水漏れが生じたり等
により、燃料電池の信頼性の低下、短命化および性能の
低下を招くという問題があった。
(Problems to be Solved by the Invention) As described above, in conventional fuel cells, the cooling water inlet and outlet piping parts of the cooling pipes are corroded by the electrolyte (phosphoric acid), and the cooling water from the connecting parts of the cooling pipes, etc. There has been a problem in that water leakage occurs, leading to decreased reliability, shortened lifespan, and decreased performance of the fuel cell.

本発明は上述のような問題を解決するために成されたも
ので、その目的は冷却管の冷却水入口および出口配管部
の電解質による腐蝕を防止し、信頼性の向上、長寿命化
および高性能化を図ることが可能な燃料電池を提供する
ことにある。
The present invention was made to solve the above-mentioned problems, and its purpose is to prevent corrosion caused by electrolyte at the cooling water inlet and outlet piping parts of cooling pipes, improve reliability, extend service life, and improve The object of the present invention is to provide a fuel cell whose performance can be improved.

[発明の構成] (問題点を解決するための手段) 上記の目的を達成するために本発明の燃料電池は、電解
質を保持したマトリックスを挟んで対向配置される一対
の多孔質電極に設けられた燃料ガスおよび酸化剤ガスの
各流通路に、燃料ガスおよび酸化剤ガスが流通している
条件下で電気エネルギーを出力する単位セルの少なくと
も一方の電極基板のガス流通側にガス流通路と平行に仕
切帯を設け、この仕切帯の一方側をガス流通路の往路と
すると共に他方側をガス流通路の復路とし、仕切帯のガ
ス流通路リターン側の一部を削除して。
[Structure of the Invention] (Means for Solving the Problems) In order to achieve the above object, the fuel cell of the present invention includes a pair of porous electrodes that are disposed opposite to each other with a matrix holding an electrolyte in between. parallel to the gas flow passages on the gas flow side of at least one electrode substrate of the unit cell that outputs electrical energy under conditions where the fuel gas and oxidant gas are flowing. A partition band is provided in the partition band, one side of the partition band is used as an outgoing path of the gas flow path, and the other side is used as a return path of the gas flow path, and a part of the partition band on the return side of the gas flow path is deleted.

電極基板上でガスがリターンするようにガス流通往路お
よび復路とほぼ直角にガスリターン通路を設け、さらに
以上の構成の単位セルを所定個数の単位セル毎に冷却板
を挿入設置して複数個積層し、かつ冷却板に埋め込まれ
た冷却管の冷却水入口および出口配管部をガスリターン
側積層面に位置させるようにしたことを特徴とする。
A gas return passage is provided almost at right angles to the outgoing and incoming gas distribution paths so that the gas returns on the electrode substrate, and a plurality of unit cells having the above configuration are stacked by inserting and installing cooling plates for each of a predetermined number of unit cells. In addition, the cooling water inlet and outlet piping portions of the cooling pipes embedded in the cooling plate are located on the gas return side laminated surface.

(作用) 上述の燃料電池においては、単位セルの少なくとも一方
の多孔質電極内にガスリターン通路を設けていることに
より、電極上でガスがリターンしてマニホールドの一つ
または二つを省略することができる。また、このマニホ
ールドが省略された部分のガスリターン側積層面に冷却
管の冷却水入口および出口配管部を位置させていること
により、これらの配管部の電解質による腐蝕が防止でき
、さらに冷却水配管接続部等から万一冷却水の漏れが生
じたような場合でもセルにほとんど影響を与えず、燃料
電池の信頼性を高め、長寿命化および高性能化を図るこ
とができる。さらにまた、上記配管部がマニホールド外
に位置していることにより、積層スタック積層作業時の
配管作業が容易となる。
(Function) In the above fuel cell, by providing a gas return passage in at least one porous electrode of the unit cell, gas returns on the electrode and one or two manifolds can be omitted. Can be done. In addition, by locating the cooling water inlet and outlet piping parts of the cooling pipes on the laminated surface on the gas return side where this manifold is omitted, corrosion of these piping parts due to electrolyte can be prevented, and furthermore, the cooling water piping can be prevented from being corroded by electrolyte. Even in the unlikely event that cooling water leaks from a connection part, etc., it will have almost no effect on the cell, and the reliability of the fuel cell can be increased, resulting in longer life and higher performance. Furthermore, since the piping section is located outside the manifold, piping work during lamination work is facilitated.

(実施例) 以下、本発明の一実施例について図面を参照して説明す
る。
(Example) Hereinafter, an example of the present invention will be described with reference to the drawings.

第1図(a)および(b)は本発明による燃料電池の構
成例を夫々示し、第1図(a)はアノード電極の詳細を
示す平面図、第1図(b)は積層スタックの積層面を示
す拡大図である。なお、第1因(a)、(b)において
第3図乃至第5図と同一部分には同一符号を付して示し
ている。
1(a) and 1(b) respectively show configuration examples of a fuel cell according to the present invention, FIG. 1(a) is a plan view showing details of the anode electrode, and FIG. 1(b) is a laminated layer of a stack. It is an enlarged view showing a surface. Note that in the first factors (a) and (b), the same parts as in FIGS. 3 to 5 are denoted by the same reference numerals.

まず第1図(a)において、前述した単位セルを構成す
るアノード電極2基板上のガス流通側中央部付近に、燃
料ガス流通路と平行に仕切帯13を設け、この仕切帯1
3の一方側を燃料ガス流通路の往路14とすると共に他
方側を燃料ガス流通路の復路15とする。そして、仕切
帯13の燃料ガス流通路リターン側の一部を削除し、か
つアノード電極2基板上で燃料ガスがリターンするよう
に、燃料ガス流通往路14および燃料ガス流通復路15
とほぼ直角に燃料ガスリターン通路16を設ける。また
、以上のように構成した単位セル6を、第1図(1))
に示すようにセパレーター7を介し、かつ所定個数の単
位セル毎に冷却板9を挿入設置して多数個積層し、さら
にこの燃料ガスリターン側積層面に、冷却板9に埋め込
まれた冷却管10の冷却水入口管11および冷却水出口
管12を位置させるように構成する。
First, in FIG. 1(a), a partition band 13 is provided in parallel with the fuel gas flow path near the center of the gas flow side of the anode electrode 2 substrate constituting the unit cell described above.
One side of the fuel gas flow path 3 is an outgoing path 14 of the fuel gas flow path, and the other side is a return path 15 of the fuel gas flow path. Then, a part of the partition band 13 on the return side of the fuel gas flow path is removed, and a fuel gas flow outward path 14 and a fuel gas return path 15 are created so that the fuel gas returns on the anode electrode 2 substrate.
A fuel gas return passage 16 is provided approximately at right angles to the. In addition, the unit cell 6 configured as described above is shown in FIG. 1 (1)).
As shown in the figure, a large number of cooling plates 9 are inserted and installed through a separator 7 and for each predetermined number of unit cells, and a large number of cooling plates 9 are stacked. The cooling water inlet pipe 11 and the cooling water outlet pipe 12 are located in the cooling water inlet pipe 11 and the cooling water outlet pipe 12.

なお、第1図(a)において、17は燃料ガス入口マニ
ホールド、18は燃料ガス出口マニホールド、19はエ
ツジシール部を示すものである。
In FIG. 1(a), 17 is a fuel gas inlet manifold, 18 is a fuel gas outlet manifold, and 19 is an edge seal portion.

また、カソード電極3側の構成は前述と全く同様である
ので、ここではその図示説明を省略する。
Furthermore, since the configuration on the cathode electrode 3 side is exactly the same as described above, illustration and explanation thereof will be omitted here.

以上のように構成した燃料電池において、運転時に供給
される燃料ガスは燃料ガス入口マニホールド17.燃料
ガス流通往路14を介して燃料ガスリターン通路16で
リターンし、燃料ガス流通復路15.燃料ガス出口マニ
ホールド18を介して排出される。また運転状態時には
、積層スタック周辺の窒素圧力と供給燃料ガスおよび空
気圧力が同一となるように制御されるため、エツジシー
ル部19において気密が十分に保たれる。一方、燃料ガ
スリターン側積層面に位置する冷却管10の冷却水入口
管11および冷却水出口管12は、図示しない圧力容器
内の窒素雰囲気中に位置することにより、リン酸による
腐蝕を受けない。また、冷却管の接続部等で冷却水の漏
れが生じた場合でも、冷却水は圧力容器に溜るだけでセ
ル自身にはほとんど影響を与えない。
In the fuel cell configured as described above, the fuel gas supplied during operation is supplied to the fuel gas inlet manifold 17. The fuel gas returns through the fuel gas return passage 16 via the outgoing fuel gas distribution path 14, and returns to the fuel gas distribution inbound path 15. The fuel gas is discharged via the fuel gas outlet manifold 18. Further, in the operating state, the nitrogen pressure around the laminated stack is controlled to be the same as the supplied fuel gas and air pressure, so that the edge seal portion 19 is sufficiently airtight. On the other hand, the cooling water inlet pipe 11 and the cooling water outlet pipe 12 of the cooling pipe 10 located on the laminated surface on the fuel gas return side are not corroded by phosphoric acid because they are located in a nitrogen atmosphere in a pressure vessel (not shown). . Furthermore, even if cooling water leaks from a connection part of a cooling pipe or the like, the cooling water only accumulates in the pressure vessel and has almost no effect on the cell itself.

すなわち、本実、施例の燃料電池においては、次のよう
な作用効果が得られるものである。まず、単位セルのア
ノード電極2内に燃料ガスリターン通路16を形成して
いるので、アノード電極2上で燃料ガスがリターンする
ことにより、積層スタックの西側面に従来配設されてい
たマニホールドの一つを省略することができ、安価とな
る。また、このマニホールドが省略された部分の燃料ガ
スリターン側積層面に、冷却板9に埋め込まれた冷却管
10の冷却水入口管11および冷却水出口管12を位置
させるようにしているので、これらの配管部がマニホー
ルド外に位置することにより、電解質であるリン酸によ
る腐蝕を防止することができ、さらに冷却水配管接続部
等から万一冷却水の漏れが生じたような場合でもセルに
ほとんど影響を与えないため、燃料電池の信頼性を高め
、長寿命化および高性能化を図ることができる。さらに
、冷却管10の冷却水入口管11および冷却水出口管1
2がマニホールド外に位置しているため、積層スタック
積層作業時の配管作業を極めて容易に行なうことが可能
となる。
That is, in the fuel cells of the present embodiments and examples, the following effects can be obtained. First, since the fuel gas return passage 16 is formed in the anode electrode 2 of the unit cell, the fuel gas returns on the anode electrode 2, allowing the manifold that was conventionally disposed on the west side of the stack to be removed. One can be omitted, making it cheaper. In addition, since the cooling water inlet pipe 11 and the cooling water outlet pipe 12 of the cooling pipe 10 embedded in the cooling plate 9 are located on the stacked surface on the fuel gas return side of the part where this manifold is omitted, these By locating the piping section outside the manifold, it is possible to prevent corrosion caused by phosphoric acid, which is an electrolyte, and even in the unlikely event that cooling water leaks from the cooling water piping connection, there will be little damage to the cell. Since it does not affect the fuel cell, it is possible to improve the reliability of the fuel cell, extend its lifespan, and improve its performance. Furthermore, the cooling water inlet pipe 11 and the cooling water outlet pipe 1 of the cooling pipe 10
2 is located outside the manifold, it becomes possible to perform piping work extremely easily during stacking work.

尚、本発明は上述した各実施例に限定されるものではな
く、次のようにしても同様に実施することができるもの
である。
It should be noted that the present invention is not limited to the above-described embodiments, but can be similarly implemented in the following manner.

上記実施例では、アノード電橋2側にのみ仕切帯を設け
たが、これに限らずカソード電極3側にも仕切帯を設け
るようにしてもよい。すなわち第2図に平面図を示すよ
うに、カソード電極3側についてもアノード電極2側と
同様に仕切帯2oを設け、運転時に供給される酸化剤ガ
スを酸化剤ガス人口マニホールド21.酸化剤ガス流通
往路22を介して酸化剤ガスリターン通路23でリター
ンし、酸化剤ガス流通復路24.酸化剤ガス出口マニホ
ールド25を介して排出するように構成してもよい。
In the above embodiment, the partition strip is provided only on the anode bridge 2 side, but the present invention is not limited to this, and a partition strip may also be provided on the cathode electrode 3 side. That is, as shown in the plan view in FIG. 2, a partition band 2o is provided on the cathode electrode 3 side as well as on the anode electrode 2 side, and the oxidant gas supplied during operation is passed through the oxidant gas artificial manifold 21. The oxygen-containing gas returns through the oxygen-containing gas return path 23 via the oxygen-containing gas distribution path 22, and returns to the oxygen-containing gas distribution path 24. The oxygen-containing gas may be discharged via the oxidizing gas outlet manifold 25.

以上のように構成した単位セルを多数個積層した場合に
は、燃料ガス側の一方のマニホールドのみでなく酸化剤
ガス側の一方のマニホールドの合計2個のマニホールド
を省略できるので、冷却管U字部26もマニホールド外
へ位置させることができる。この結果、冷却管10.冷
却水入口管11、冷却水出口管12に加えて、冷却管U
字部26も圧力容器内の窒素雰囲気中に位置することに
なり、リン酸による腐蝕を受けず、燃料電池の信頼性を
より一層高めることが可能となる。
When a large number of unit cells configured as described above are stacked, a total of two manifolds, not only one manifold on the fuel gas side but also one manifold on the oxidant gas side, can be omitted, so the U-shaped cooling pipes can be omitted. Section 26 can also be located outside the manifold. As a result, the cooling pipe 10. In addition to the cooling water inlet pipe 11 and the cooling water outlet pipe 12, the cooling pipe U
Since the portion 26 is also located in the nitrogen atmosphere within the pressure vessel, it is not corroded by phosphoric acid, making it possible to further improve the reliability of the fuel cell.

また上記実施例において、アノード電極2側はそのまま
とし、カソード電極3側にのみ仕切帯を設けるようにし
てもよい。
Further, in the above embodiment, the anode electrode 2 side may be left as is, and a partition band may be provided only on the cathode electrode 3 side.

その他、本発明はその要旨を変更しない範囲で、種々に
変形して実施することができるものである。
In addition, the present invention can be modified and implemented in various ways without changing the gist thereof.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明によれば、冷却管の冷却水入
口および出口配管部の電解質による腐蝕を防止し、信頼
性の向上、長寿命化および高性能化を図り、しかも単位
セル積層組立て時の配管営業が容易な燃料電池が提供で
きる。
As explained above, according to the present invention, corrosion caused by electrolyte at the cooling water inlet and outlet piping portions of cooling pipes is prevented, reliability is improved, lifespan is extended, and performance is improved. It is possible to provide fuel cells with easy piping operations.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a>および(1))は本発明の一実施例を夫々
示すもので、第1図(a)はアノード電極の詳細を示す
平面図、第1図(b)は積層スタックの積層面を示す拡
大図、第2図は本発明の他の実施例を示す平面図、第3
図は従来の燃料電池における単位セルの構成を示す斜視
図、第4図は従来の燃料電池における積層スタック外面
を示す斜視図、第5図は第4図における冷却板を示す平
面図である。 1・・・マトリックス、2・・・アノード電極、3・・
・カソード電極、4・・・燃料ガス流通路、5・・・酸
化剤ガス流通路、6・・・単位セル、7・・・セパレー
ター、9・・・冷却板、10・・・冷却管、11・・・
冷却水入口管、12・・・冷却水出口管、13.20・
・・仕切帯、14・・・燃料ガス流通往路、15・・・
燃料ガス流通復路、16・・・燃料ガスリターン通路、
17・・・燃料ガス入口マニホールド、18・・・燃料
ガス出口マニホールド、19・・・エツジシール部、2
1・・・酸化剤ガス入口マニホールド、22・・・酸化
剤ガス流通往路、23・・・酸化剤ガスリターン通路、
24・・・酸化5剤ガス流通復路、25・・・酸化剤ガ
ス出口マニホールド、26・・・冷却管U字部。
Figures 1 (a) and (1) respectively show one embodiment of the present invention, where Figure 1 (a) is a plan view showing details of the anode electrode, and Figure 1 (b) is a plan view of the laminated stack. FIG. 2 is an enlarged view showing the laminated surface; FIG. 2 is a plan view showing another embodiment of the present invention; FIG.
FIG. 4 is a perspective view showing the configuration of a unit cell in a conventional fuel cell, FIG. 4 is a perspective view showing the outer surface of a laminated stack in a conventional fuel cell, and FIG. 5 is a plan view showing a cooling plate in FIG. 4. 1... Matrix, 2... Anode electrode, 3...
- Cathode electrode, 4... Fuel gas flow path, 5... Oxidizing gas flow path, 6... Unit cell, 7... Separator, 9... Cooling plate, 10... Cooling pipe, 11...
Cooling water inlet pipe, 12... Cooling water outlet pipe, 13.20.
...Partition strip, 14...Fuel gas distribution outbound path, 15...
Fuel gas distribution return path, 16...Fuel gas return passage,
17...Fuel gas inlet manifold, 18...Fuel gas outlet manifold, 19...Edge seal portion, 2
DESCRIPTION OF SYMBOLS 1... Oxidizing gas inlet manifold, 22... Oxidizing gas distribution path, 23... Oxidizing gas return passage,
24... Oxidizing gas return path, 25... Oxidizing gas outlet manifold, 26... Cooling pipe U-shaped portion.

Claims (1)

【特許請求の範囲】[Claims] 電解質を保持したマトリックスを挟んで対向配置される
一対の多孔質電極に設けられた燃料ガスおよび酸化剤ガ
スの各流通路に、燃料ガスおよび酸化剤ガスが流通して
いる条件下で電気エネルギーを出力する単位セルの少な
くとも一方の電極基板のガス流通側にガス流通路と平行
に仕切帯を設け、この仕切帯の一方側をガス流通路の往
路とすると共に他方側をガス流通路の復路とし、前記仕
切帯のガス流通路リターン側の一部を削除して、電極基
板上でガスがリターンするように前記ガス流通往路およ
び復路とほぼ直角にガスリターン通路を設け、さらに以
上の構成の単位セルを所定個数の単位セル毎に冷却板を
挿入設置して複数個積層し、かつ前記冷却板に埋め込ま
れた冷却管の冷却水入口および出口配管部をガスリター
ン側積層面に位置させるようにしたことを特徴とする燃
料電池。
Electrical energy is supplied under conditions where fuel gas and oxidant gas are flowing through each of the fuel gas and oxidant gas flow paths provided in a pair of porous electrodes that are placed opposite each other with a matrix holding an electrolyte in between. A partition strip is provided on the gas flow side of at least one electrode substrate of the output unit cell in parallel with the gas flow path, one side of the partition band is used as the outgoing path of the gas flow path, and the other side is used as the return path of the gas flow path. , a part of the gas flow path return side of the partition band is removed, and a gas return path is provided approximately at right angles to the gas flow outbound path and inbound path so that the gas returns on the electrode substrate, and further a unit having the above configuration is provided. A plurality of cells are stacked by inserting a cooling plate into each unit cell of a predetermined number, and the cooling water inlet and outlet piping portions of the cooling pipes embedded in the cooling plate are located on the stacked surface on the gas return side. A fuel cell characterized by:
JP62028651A 1987-02-10 1987-02-10 Fuel cell Pending JPS63195967A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62028651A JPS63195967A (en) 1987-02-10 1987-02-10 Fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62028651A JPS63195967A (en) 1987-02-10 1987-02-10 Fuel cell

Publications (1)

Publication Number Publication Date
JPS63195967A true JPS63195967A (en) 1988-08-15

Family

ID=12254413

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62028651A Pending JPS63195967A (en) 1987-02-10 1987-02-10 Fuel cell

Country Status (1)

Country Link
JP (1) JPS63195967A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0940868A2 (en) * 1998-03-02 1999-09-08 Honda Giken Kogyo Kabushiki Kaisha Fuel cell stack
JP2000294261A (en) * 1999-04-09 2000-10-20 Honda Motor Co Ltd Fuel cell stack
DE102010011206A1 (en) * 2010-03-09 2011-09-15 Kai Klinder Fuel cell stack i.e. proton exchange membrane fuel cell stack, for producing power, has bipolar plates whose edges rest against outer structure, where supply of fuel and oxidant and removal of products takes place over edges of plates

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0940868A2 (en) * 1998-03-02 1999-09-08 Honda Giken Kogyo Kabushiki Kaisha Fuel cell stack
EP0940868A3 (en) * 1998-03-02 2001-10-17 Honda Giken Kogyo Kabushiki Kaisha Fuel cell stack
JP2000294261A (en) * 1999-04-09 2000-10-20 Honda Motor Co Ltd Fuel cell stack
JP4523089B2 (en) * 1999-04-09 2010-08-11 本田技研工業株式会社 Fuel cell stack
DE102010011206A1 (en) * 2010-03-09 2011-09-15 Kai Klinder Fuel cell stack i.e. proton exchange membrane fuel cell stack, for producing power, has bipolar plates whose edges rest against outer structure, where supply of fuel and oxidant and removal of products takes place over edges of plates

Similar Documents

Publication Publication Date Title
JP3460346B2 (en) Solid polymer electrolyte fuel cell
US7309542B2 (en) Membrane electrode assembly and fuel cell
US10297854B2 (en) Fuel cell stack
US10074858B2 (en) Fuel cell separator and fuel cell stack and reactant gas control method thereof
US7790326B2 (en) Fuel cell and separator for fuel cell
JPH09259910A (en) Molten carbonate fuel battery and power generator using this battery
KR20150048407A (en) Fuel cell stack having dummy cell
US5811202A (en) Hybrid molten carbonate fuel cell with unique sealing
WO2006085172A2 (en) Fuel cell separator
US8916308B2 (en) Fuel cell
JP2008004532A (en) Fuel cell separator
JP2005056671A (en) Fuel cell
KR100418626B1 (en) Molten Carbonate Fuel Cell
JP3673252B2 (en) Fuel cell stack
KR101856330B1 (en) Structure of fuel cell
JPS63195967A (en) Fuel cell
JP5596112B2 (en) Sealed fuel cell stack
JPS61148766A (en) Fused carbonate type fuel cell
JPH08138699A (en) Solid polyelectrolyte fuel cell
CN117766795A (en) Fuel cell stack
JPS63128562A (en) Fuel cell
US8951692B2 (en) Fuel cell
KR20240003986A (en) Plate type manifold for fuel cell and fuel cell system, fabricating method of the same
JP4228895B2 (en) Solid oxide fuel cell
JP2001202974A (en) Solid polymer fuel cell stack