JPS63128562A - Fuel cell - Google Patents

Fuel cell

Info

Publication number
JPS63128562A
JPS63128562A JP61272901A JP27290186A JPS63128562A JP S63128562 A JPS63128562 A JP S63128562A JP 61272901 A JP61272901 A JP 61272901A JP 27290186 A JP27290186 A JP 27290186A JP S63128562 A JPS63128562 A JP S63128562A
Authority
JP
Japan
Prior art keywords
cooling
plate
graphite
fuel cell
cooling pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61272901A
Other languages
Japanese (ja)
Inventor
Toshiaki Seki
関 敏昭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP61272901A priority Critical patent/JPS63128562A/en
Publication of JPS63128562A publication Critical patent/JPS63128562A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04007Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids related to heat exchange
    • H01M8/04067Heat exchange or temperature measuring elements, thermal insulation, e.g. heat pipes, heat pumps, fins
    • H01M8/04074Heat exchange unit structures specially adapted for fuel cell
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Abstract

PURPOSE:To increase the thermal conductivity of a cooling plate, and to improve the cooling performance and efficiency, by composing the cooling plate in laminating a plate which consists of a plate with a groove processed, mainly of graphite, a cooling pipe buried in the groove, and a conductive adhesive filled in the gap between the cooling pipe and the groove; an expansion graphite sheet; and a glassy carbon. CONSTITUTION:Two sets of a pair of electrodes 2 and 3 are furnished at both sides of an electrolyte layer 1, and a fuel gas is permeated at the rear side of an electrode while an oxidizer gas is permeated at the rear side of the other electrode, to form a unit cell to output the electric energy. And plural unit cells are laminated through plates, cooling plates 30 are furnished at every specific numbers of unit cells, to form this fuel cell. In this case, as the cooling plate 30, first a plate mainly of graphite, in which a cooling pipe 31 with no anticorrosive treatment is buried fully in a groove 42 by using a conductive adhesive, and the outlet and the inlet of the cooling water are set and buried at the position to pick up freely at the outside of a manifold, is formed. Then this plate and a glassy carbon 45 are superposed through a sheet formed with an expansion graphite 46, to make up a cooling plate for this purpose. In such a composition, the cooling performance and efficiency can be improved.

Description

【発明の詳細な説明】 (発明の目的) (産業上の利用分野) 本発明は燃料電池に係り、特に集電及び冷却機能を有す
る冷却プレートの構成を改良した燃料電池に関する。
DETAILED DESCRIPTION OF THE INVENTION (Object of the Invention) (Industrial Application Field) The present invention relates to a fuel cell, and more particularly to a fuel cell having an improved configuration of a cooling plate having current collection and cooling functions.

(従来の技術) 従来、燃料の有している化学的エネルギーを直接電気的
エネルギーに変換する装置として燃料電池が知られてい
る。この燃料電池は通常、電解質店を挟んで一対の多孔
質の電極を配置するとともに、一方の電極の背面に水素
ガス等の燃料ガスを接触させ、また他方の電極の背面に
酸素ガス等の酸化剤ガスを接触させ、このとき起こる電
気化学的反応を利用して、上記両電極間から高いエネル
ギーの変換効率で電気エネルギーを取り出すことができ
るものである。
(Prior Art) Fuel cells are conventionally known as devices that directly convert chemical energy contained in fuel into electrical energy. This fuel cell usually has a pair of porous electrodes placed with an electrolyte store in between, and a fuel gas such as hydrogen gas is brought into contact with the back surface of one electrode, and an oxidizing gas such as oxygen gas is brought into contact with the back surface of the other electrode. Electrical energy can be extracted from between the two electrodes with high energy conversion efficiency by bringing the agent gas into contact and utilizing the electrochemical reaction that occurs at this time.

ところで、上記のような原理に基づく、特にリン酸を電
解質とした燃料電池の単位セルは、第6図に示すように
構成されており、またこの単位セルを複数個積層するこ
とによって、第7図に示すように燃料電池全体を構成し
ている。
By the way, the unit cell of a fuel cell based on the above principle, especially using phosphoric acid as an electrolyte, is constructed as shown in FIG. The entire fuel cell is configured as shown in the figure.

すなわち、第6図において単位セルは、電解質を含浸し
たマトリックス1を境にして両側に多孔質体で形成され
触媒が付加されているリブ付電極2.3(通常炭素材か
ら成る)を配置し、またこのリブ付電極2,3は触媒付
加面の反対面にそれぞれ流体燃料または流体酸化剤の流
通路4,5を有している。さらに、両リブ付電極2,3
のマトリックス1と反対側の背面には、それぞれセパレ
ータ6を配置している。このように、マトリックス1、
リブ付電極2,3およびセパレータ6を積層し、この状
態でそれぞれリブ付電極2,3の流体燃料流通路および
流体酸化剤流通路の両端開口だけを残し、各積層端面部
を気密にシールして単位セルを構成している。
That is, in FIG. 6, the unit cell has ribbed electrodes 2.3 (usually made of carbon material) formed of a porous material and provided with a catalyst on both sides of a matrix 1 impregnated with an electrolyte. Further, the ribbed electrodes 2, 3 have flow passages 4, 5 for fluid fuel or fluid oxidant, respectively, on the opposite side of the catalyst application surface. Furthermore, both ribbed electrodes 2 and 3
A separator 6 is disposed on the back surface opposite to the matrix 1. In this way, matrix 1,
The ribbed electrodes 2 and 3 and the separator 6 are stacked, and in this state, only the openings at both ends of the fluid fuel flow passage and the fluid oxidant flow passage of the ribbed electrodes 2 and 3 are left open, and the end faces of each stack are hermetically sealed. constitute a unit cell.

第6図のように構成された単位セルは複数個積層され、
第7図に示すように単位セル間の電気的導通を得るため
に、締付具10により所定圧で締゛付けられた後に、こ
の積層体の1つの対向する端面の一方に燃料供給口11
を有したマニホルド12と、他に燃料排出口13を有し
たマニホルド14とが当てがわれ、また他の対向する端
面の一方に酸化剤供給口15を有したマニホルド16と
、他方に酸化剤排出口17を有したマニホルド18とが
当てがわれ、これらマニホルド12.14.16.18
がボルト等で締付けられて気密保持され、これによって
燃料電池装置19が構成されている。したがってこの燃
料電池装置19によると、燃料供給口11から流体燃料
を供給すると、この燃料は各単位セルの流路4を分流し
て多孔性のリブ付電極2の背面に接しながら流れ、その
後燃料排出口13から排出される。また酸化剤供給口1
5から流体酸化剤を供給すると、この酸化剤は各単位セ
ルの流通路5を分流して多孔性のリア付電極3の背面に
浸蝕しながら流れ、その後酸化剤排出口17から排出さ
れることになり、そのとき流体燃料と流体酸化剤とはそ
れぞれ拡散によって多孔性のリブ付電極2,3内に供給
され、燃料電池としての電気エネルギーを発生する。な
お、図では出力端子を省略している。
A plurality of unit cells configured as shown in FIG. 6 are stacked,
As shown in FIG. 7, after being tightened with a predetermined pressure by a fastener 10 in order to obtain electrical continuity between the unit cells, a fuel supply port 11 is inserted into one of the opposing end faces of the stack.
A manifold 12 having a fuel outlet 13 and a manifold 14 having a fuel discharge port 13 on the other side, and a manifold 16 having an oxidizer supply port 15 on one of the opposite end faces and an oxidizer discharge port 15 on the other side. A manifold 18 with an outlet 17 is applied, these manifolds 12.14.16.18
are tightened with bolts or the like to maintain airtightness, thereby configuring the fuel cell device 19. Therefore, according to this fuel cell device 19, when fluid fuel is supplied from the fuel supply port 11, this fuel branches through the flow path 4 of each unit cell and flows while contacting the back surface of the porous ribbed electrode 2, and then the fuel It is discharged from the discharge port 13. Also, oxidant supply port 1
When a fluid oxidizing agent is supplied from 5, this oxidizing agent divides the flow path 5 of each unit cell, flows while corroding the back surface of the porous rear electrode 3, and is then discharged from the oxidizing agent outlet 17. At that time, the fluid fuel and the fluid oxidant are supplied into the porous ribbed electrodes 2 and 3 by diffusion, respectively, to generate electrical energy as a fuel cell. Note that the output terminal is omitted in the figure.

ところで、上述したような燃料電池においては、運転時
における単位セル部分の発熱による温度上昇のために、
触媒層の劣化、電解液の飛散の増大等による性能低下が
起こる。このため、通常では数個の単位セル毎に、第8
図に示すように冷却プレート30を配設し、単位セル内
部の発熱を外部に取り出して、電池温度の過度の上昇を
防止するようにしている。
By the way, in the above-mentioned fuel cell, due to the temperature rise due to heat generation in the unit cell part during operation,
Performance decreases due to deterioration of the catalyst layer, increased scattering of electrolyte, etc. For this reason, normally every few unit cells, the 8th
As shown in the figure, a cooling plate 30 is provided to extract heat generated inside the unit cell to the outside, thereby preventing an excessive rise in battery temperature.

一方この種の冷却プレートとしては、単位セルの積層方
向に高い熱伝導性および電気伝導性を有し、また耐リン
酸性、耐熱性ならびに寸法安定性が要求される。このた
め一般には、熱硬化性の樹脂と黒鉛粒子を混合成形して
得られる黒鉛樹脂板や、黒鉛板に樹脂を含浸してガスの
不浸透化を図った不浸透黒鉛板に、機械加工して冷却管
を伝熱性の接着剤で埋め込み固定し、更に同じ部材の合
せ板を導電性の高い接着剤で貼り合せることにより冷却
プレートを形成している。(たとえば、特開昭58−1
66661 > しかしながら、このような従来使用されている冷却管理
込型の冷却プレートにおいては、第9図に示すように、
冷却管31に冷却水を供給する冷却水母管32はマニホ
ルド33内に設けられている。このために電池内界囲気
による腐食防止を計るために、冷却水母管32及び冷却
管31に耐食チューブ又はコーテングが行われている。
On the other hand, this type of cooling plate is required to have high thermal conductivity and electrical conductivity in the stacking direction of the unit cells, as well as phosphoric acid resistance, heat resistance, and dimensional stability. For this reason, mechanical processing is generally performed on graphite resin plates obtained by mixing and molding thermosetting resin and graphite particles, or impermeable graphite plates obtained by impregnating graphite plates with resin to make them impermeable to gas. A cooling plate is formed by embedding and fixing a cooling pipe with a heat conductive adhesive, and then bonding a laminated plate of the same material with a highly conductive adhesive. (For example, JP-A-58-1
66661 > However, in such conventionally used cooling plates that include cooling management, as shown in FIG.
A cooling water main pipe 32 that supplies cooling water to the cooling pipe 31 is provided within a manifold 33. For this reason, the cooling water main tube 32 and the cooling pipe 31 are provided with corrosion-resistant tubes or coatings in order to prevent corrosion caused by the surrounding air inside the battery.

また冷却管については、マニホルド内に露出している部
分の他に、冷却管界面を通しての腐食性物質の浸透によ
る腐食防止のため実質的に冷却プレート内の冷却管も耐
食処理が行われている。
Regarding cooling pipes, in addition to the parts exposed inside the manifold, corrosion-resistant treatment is also applied to the cooling pipes inside the cooling plate to prevent corrosion due to penetration of corrosive substances through the cooling pipe interface. .

この耐食処理層のために、伝熱抵抗が増大し、冷却プレ
ートの熱効率の低下の原因となっている。
This corrosion-resistant treatment layer increases heat transfer resistance and causes a decrease in thermal efficiency of the cooling plate.

また、合せ板に同材質の黒鉛板を使用しているために、
合せ板の厚みの低減に限度があり冷却プレートとして厚
いものしか得られない。
In addition, since graphite plates of the same material are used for the laminated plates,
There is a limit to the reduction in the thickness of the laminated plate, and only thick cooling plates can be obtained.

以上のような観点から、冷却性能の優れた、よりコンパ
クトな冷却板の出現が望まれてきている。
From the above points of view, there has been a desire for a more compact cooling plate with excellent cooling performance.

(発明が解決しようとする問題点) 本発明は上記のような問題を解決するために成されたも
ので、その目的とするところは冷却プレートの伝熱性を
高くして冷却性能ならびに効率の向上を図ることが可能
な信頼性の高い、かつ、冷却プレートの厚みの低減によ
りコンパクトな燃料電池を提供することにある。
(Problems to be Solved by the Invention) The present invention was made to solve the above problems, and its purpose is to improve cooling performance and efficiency by increasing the heat conductivity of the cooling plate. The object of the present invention is to provide a fuel cell that is highly reliable and compact by reducing the thickness of the cooling plate.

(発明の構成〕 (問題点を解決するための手段) 上記の目的を達成するために本発明では、電解質層を挟
んで一対の電極を配置すると共に、一方の電極の背面に
燃料ガスをまた他方の電極の背面に酸化剤ガスを夫々流
通させて電気エネルギーを出力する単位セルを形成し、
上記燃料ガスと前記酸化剤ガスの混合を防止するととも
に上記単位セルを電気的に接続する機能を有するプレー
トを介して上記単位セルを複数個積層し、かつ冷却プレ
ートを上記所定個の単位セル毎に配設して成る燃料電池
において、上記冷却プレートとして、導電性接着剤を用
いて耐食処理をしていない冷却管を溝に全面に埋設し、
かつ冷却水の出入口がマニホルドの外部に取り出し可能
な位置に設置埋設してなる黒鉛を主体とするプレートと
、グラツシーカーボンから膨脹黒鉛を成形して得られる
シートを介して合せたものを用いるようにしたことを特
徴とする。
(Structure of the Invention) (Means for Solving the Problems) In order to achieve the above object, the present invention arranges a pair of electrodes with an electrolyte layer in between, and also injects fuel gas onto the back side of one electrode. Forming a unit cell that outputs electrical energy by flowing an oxidizing gas to the back side of the other electrode,
A plurality of the unit cells are stacked via a plate having a function of preventing mixing of the fuel gas and the oxidizing gas and electrically connecting the unit cells, and a cooling plate is provided for each predetermined number of unit cells. In the fuel cell arranged in the fuel cell, as the cooling plate, a cooling pipe which is not treated with anti-corrosion treatment is buried entirely in the groove using a conductive adhesive,
In addition, a plate mainly made of graphite is installed and buried at a position where the cooling water inlet and outlet can be taken out outside the manifold, and a plate made of graphite is used, which is combined with a sheet obtained by molding expanded graphite from glassy carbon. It is characterized by the following.

(作 用) 発明の特徴とするところは、前述した冷却プレートを、
熱硬化性樹脂と黒鉛粒子を混合し成形して得られる黒鉛
樹脂板、または黒鉛と結着剤を混合、成形し高温処理し
た黒鉛板に樹脂を含浸することによりガスの不浸透化を
図った黒鉛を主体とする板に、冷却管が実質的に電池雰
囲気ガスに曝露しないように、冷却管全面埋め込み用の
溝加工をして、伝熱抵抗の大きい耐食処理層を有しない
冷却管を上記黒鉛板に内側全面に伝導性の高い接着剤で
埋設し、かつ上記冷却管の出入口は、実質的に電池雰囲
気ガスに曝露しないようにマニホルド外になる位置に埋
設してなるプレートの上に、厚みを小ざくすることが可
能なグラツシーカーボンシートを厚みを小さくすること
が可能な膨脹黒鉛からなるシートを介して合せて形成す
ることにより、冷却プレートの伝熱抵抗を小ざくし、か
つ伝熱方向の厚みを小さくするようにした点にある。プ
(実施例) 以下、本発明を図面に示す具体的な一実施例に基づいて
説明する。
(Function) The feature of the invention is that the above-mentioned cooling plate is
Gas impermeability is achieved by impregnating a graphite resin plate obtained by mixing and molding thermosetting resin and graphite particles, or a graphite plate obtained by mixing graphite and a binder, molding, and high temperature treatment. In order to prevent the cooling tube from being substantially exposed to the battery atmosphere gas, the cooling tube is made of a plate mainly made of graphite with grooves for embedding the entire surface of the cooling tube, and the cooling tube does not have a corrosion-resistant layer with high heat transfer resistance. A graphite plate is embedded on the entire inside surface with a highly conductive adhesive, and the inlet and outlet of the cooling pipe is embedded in a position outside the manifold so as not to be exposed to the battery atmosphere gas. By forming a glassy carbon sheet that can be made small in thickness with a sheet made of expanded graphite that can be made small in thickness, the heat transfer resistance of the cooling plate can be made small and the heat transfer resistance can be reduced. The reason is that the thickness in the thermal direction is made smaller. Embodiment Hereinafter, the present invention will be described based on a specific embodiment shown in the drawings.

第1図は、本発明による冷却プレートの構成例を斜視図
にて示したものである。第2図は、本発明による冷却プ
レートの冷却管配置の1つの例を示した模式図である。
FIG. 1 is a perspective view showing an example of the configuration of a cooling plate according to the present invention. FIG. 2 is a schematic diagram showing one example of the cooling pipe arrangement of the cooling plate according to the present invention.

図において黒鉛粒子をピッチを結着剤として成形したも
のを2000℃で黒鉛化処理し、その後減圧化で樹脂を
含浸した600X700口の不浸透黒鉛板41に冷却管
埋込用溝42を形成する。次に、冷却管をカーボンフエ
ーノール導電接着剤43で埋設してプレートを形成する
In the figure, graphite particles formed using pitch as a binder are graphitized at 2000°C, and then a cooling pipe embedding groove 42 is formed in an impermeable graphite plate 41 of 600 x 700 size impregnated with resin by reducing the pressure. . Next, the cooling pipe is embedded with carbon phenol conductive adhesive 43 to form a plate.

ざらに、この第1のプレートの埋込み面44の表面研磨
を行い、600mX 700s口の厚み0.6履のグラ
ッシーカーボンプレート45を同形状の厚み0.4mの
膨脹黒鉛シート46を介して合せ冷却プレートを形成す
る。第3図に、かかる冷却プレートの断面図を併せて従
来の冷却プレートの断面図を第4図に示している。
The surface of the embedded surface 44 of this first plate is roughly polished, and a glassy carbon plate 45 of 600 m x 700 seconds and 0.6 mm thick is placed and cooled via an expanded graphite sheet 46 of the same shape and 0.4 m thick. Form a plate. FIG. 3 shows a sectional view of such a cooling plate, and FIG. 4 shows a sectional view of a conventional cooling plate.

次に、このようにして形成した冷却プレートの冷却効果
、すなわち、熱伝導性について検討した。
Next, the cooling effect, that is, the thermal conductivity, of the cooling plate formed in this manner was examined.

この場合、積層面方向面積を一定として、断熱された容
器に水を満し、その中に冷却プレートを浸漬し、一定温
度の温水を冷却管に流して水の温度上昇を測定した。第
3図のAに本実施例の場合を示し、第3図のBに従来の
場合を示している。図から明らかに、温度の上昇は従来
のものに比較して本実施例のものの方が高く、高い熱伝
導性を有していることがわかる。
In this case, an insulated container was filled with water with a constant area in the direction of the laminated surface, a cooling plate was immersed in the container, hot water at a constant temperature was flowed through the cooling pipe, and the temperature rise of the water was measured. FIG. 3A shows the case of this embodiment, and FIG. 3B shows the conventional case. It is clear from the figure that the temperature rise in this example is higher than that in the conventional example, indicating that it has high thermal conductivity.

また、埋込部及び合せ部界面のシール性について検討し
た。この場合、冷却管配管の一方の面から加圧して反対
面へのリークの凸を測定したところ、電池運転温度の2
00’C付近では殆んどリークは認められず、充分なる
シール性を有していることが確認された。
In addition, the sealability of the interface between the embedded part and the mating part was investigated. In this case, when we applied pressure from one side of the cooling pipe piping and measured the convexity of leakage to the opposite side, we found that
Almost no leakage was observed near 00'C, and it was confirmed that the seal had sufficient sealing performance.

次に表1は本実施例による冷却プレートの形状寸法を示
すものであり、併せて従来の冷却プレートについても示
している。
Next, Table 1 shows the shape and dimensions of the cooling plate according to this embodiment, and also shows the conventional cooling plate.

[表 1] 単− 表1から明らかなように本実施例によれば、冷却プレー
ト1枚について約2mだけ厚さを従来のものよりも薄く
することができる。このことは、大容量の400セル積
層の電池の場合、5セルにつき1枚の冷却プレートが配
設されるとすると、従来のものに比して約160mだけ
@層高さを低減することができることを意味するもので
ある。
[Table 1] As is clear from Table 1, according to this embodiment, the thickness of one cooling plate can be made thinner by about 2 m than the conventional one. This means that in the case of a large-capacity 400-cell stacked battery, if one cooling plate is provided for every 5 cells, the layer height can be reduced by about 160 m compared to the conventional one. It means that it is possible.

一方、表2は冷却プレートの軽量化について調べた結果
を、本実施例による合せ板及び膨脹黒鉛シートの単口お
よび従来の合せ板の重量について夫々示したものである
On the other hand, Table 2 shows the results of an investigation into the weight reduction of the cooling plate, with respect to the weights of the laminated plate according to the present example, the single-port expanded graphite sheet, and the conventional laminated plate, respectively.

[表 2] 表2から明らかなように本実施例によれば、600X 
700m形状の冷却プレート1枚当り、約1.69Kf
fの軽量化を図ることができる。このことは、上述の4
00セル積層の電池の場合に、約136Kgだけの軽量
化を図ることが可能となることを意味するものである。
[Table 2] As is clear from Table 2, according to this example, 600X
Approximately 1.69Kf per 700m shaped cooling plate
It is possible to reduce the weight of f. This is explained in 4 above.
This means that in the case of a battery with 00 cell stack, it is possible to reduce the weight by about 136 kg.

ざらに、本実施例の冷却プレートを単位セル5セル毎に
1枚組込んで電池発電試験を行った結果、同一冷却条件
でセルの最高温度を3〜5°C低下させることが可能で
あることが示され、かかる冷却効果はより高温、高負荷
の運転条件で著しいことが示された。
Roughly speaking, as a result of conducting a battery power generation test by incorporating one cooling plate of this example into every five unit cells, it was possible to lower the maximum temperature of the cell by 3 to 5°C under the same cooling conditions. It was shown that this cooling effect is significant under higher temperature and higher load operating conditions.

かくして、本実施例の冷却プレートを組み込んだ燃料電
池によれば、従来と異なり冷却管及び冷却水母管が直接
燃料電池の腐食性雰囲気に曝露されないために、それら
の熱抵抗の増大の主因である腐食迫理層を省略できるた
めに、冷却プレートとしての熱抵抗を低減でき、結果的
に伝熱性を高めて冷却性能を向上させ、高い一定した発
電効率を得ることができる。
Thus, according to the fuel cell incorporating the cooling plate of this embodiment, unlike the conventional case, the cooling pipe and the cooling water main pipe are not directly exposed to the corrosive atmosphere of the fuel cell, which is the main cause of the increase in their thermal resistance. Since the corroded mortar layer can be omitted, the thermal resistance as a cooling plate can be reduced, and as a result, heat transfer is improved, cooling performance is improved, and high and constant power generation efficiency can be obtained.

また、冷却プレートの厚みを小さくすることができるこ
とから、電池本体での一定積層当りの高さを低くして電
池の小形化を図ることが可能である。ざらに、上記理由
により冷却プレート重口を小さくできることから、結果
的に電池本体の軽量化を図ることが可能である。
Furthermore, since the thickness of the cooling plate can be reduced, the height per certain number of stacked layers in the battery body can be lowered, thereby making it possible to downsize the battery. In general, because the weight of the cooling plate can be made smaller for the above-mentioned reasons, it is possible to reduce the weight of the battery body as a result.

尚、上記各実施例では導電性接着剤としてカーボンフェ
ノ°−ル接着剤を用いた場合について述べたが、かかる
接着剤は接着機能と導電機能を有するものであれば上記
以外の接着剤、例えばエポキシ系樹脂の接着樹脂からな
るものであってもよいものである。
In each of the above embodiments, carbon phenol adhesive was used as the conductive adhesive, but other adhesives other than those mentioned above may be used as long as the adhesive has an adhesive function and a conductive function, such as It may be made of adhesive resin such as epoxy resin.

また、上記各実施例では第1のプレートとして不浸透黒
鉛板を用いたが、これに限らず前述したような黒鉛樹脂
板を用いるようにしてもよいものである。
Further, in each of the above embodiments, an impermeable graphite plate is used as the first plate, but the present invention is not limited to this, and a graphite resin plate as described above may be used.

その他、本発明はその要旨を変更しない範囲で、種々変
形して実施することができるものである。
In addition, the present invention can be implemented with various modifications without changing the gist thereof.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明によれば、冷却プレ−トの伝
熱性を高くして冷却性能ならびに効率の向上を図ること
が可能な極めて信頼性の高い、かつ装置の小型化、軽量
化が計れる燃料電池を提供できる。
As explained above, according to the present invention, it is possible to improve cooling performance and efficiency by increasing the heat conductivity of the cooling plate, and it is extremely reliable, and the device can be made smaller and lighter. We can provide fuel cells.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示す冷却プレートの分解斜
視図、第2図は同実施例による冷却プレートの模式図、
第3図は同実施例による冷却プレートの断面図、第4図
は従来の冷却プレートの断面図、第5図は本発明の一実
施例の効果を説明するための特性図、第6図は燃料電池
の単位セルを示す分解斜視図、第7図は同単位セルを組
込んだ30・・・冷却プレート   31・・・冷却管
41・・・不浸透黒鉛板   42・・・冷却管理込み
溝43・・・導電接着剤 45・・・グラッシーカーボン板 46・・・膨脹黒鉛シート 第  2  図 第  4 図 第  5 図 第  6  図 第  7 図 第 8 図
FIG. 1 is an exploded perspective view of a cooling plate showing an embodiment of the present invention, FIG. 2 is a schematic diagram of a cooling plate according to the same embodiment,
FIG. 3 is a sectional view of a cooling plate according to the same embodiment, FIG. 4 is a sectional view of a conventional cooling plate, FIG. 5 is a characteristic diagram for explaining the effects of an embodiment of the present invention, and FIG. FIG. 7 is an exploded perspective view showing a unit cell of a fuel cell. 30...Cooling plate 31...Cooling pipe 41...Impermeable graphite plate 42...Groove including cooling management 43...Conductive adhesive 45...Glassy carbon plate 46...Expanded graphite sheet Fig. 2 Fig. 4 Fig. 5 Fig. 6 Fig. 7 Fig. 8

Claims (5)

【特許請求の範囲】[Claims] (1)電解質層を挟んで一対の電極を配置すると共に、
一方の電極の電極の背面に燃料ガスまた他方の電極の背
面に酸化剤ガスを夫々流通させて電気エネルギーを出力
する単位セルを形成し、前記燃料ガスと前記酸化剤ガス
の混合を防止するとともに前記単位セルを電気的に接続
する機能を有するプレートを介して前記単位セルを複数
個積層し、かつ冷却管を埋設した冷却プレートを前記所
定個の単位セル毎に配設して成る燃料電池において、前
記冷却プレートは、溝を加工した黒鉛を主体とする板と
前記溝に埋設した冷却管とこの冷却管と前記溝との間隙
に充填する導電性接着剤とからなるプレートと、膨脹黒
鉛シートとクラッシーカーボンとを積層してなることを
特徴とする燃料電池。
(1) Arranging a pair of electrodes with an electrolyte layer in between,
A unit cell that outputs electrical energy is formed by flowing a fuel gas on the back surface of one electrode and an oxidizing gas on the back surface of the other electrode, and preventing mixing of the fuel gas and the oxidizing gas. In a fuel cell, a plurality of unit cells are stacked together via a plate having a function of electrically connecting the unit cells, and a cooling plate in which a cooling pipe is embedded is arranged for each predetermined number of unit cells. , the cooling plate is composed of a plate mainly made of graphite with grooves processed, a cooling pipe embedded in the groove, a conductive adhesive filled in the gap between the cooling pipe and the groove, and an expanded graphite sheet. and classy carbon.
(2)上記冷却管は主たる熱交換部では耐食層を具備し
ないことを特徴とする特許請求の範囲第(1)項記載の
燃料電池。
(2) The fuel cell according to claim (1), wherein the cooling pipe does not include a corrosion-resistant layer in the main heat exchange section.
(3)導電性接着剤は、カーボン又は銀のうちのいずれ
か一種類又はこれらの混合物を充填剤とすることを特徴
とする特許請求の範囲第(1)項記載の燃料電池。
(3) The fuel cell according to claim (1), wherein the conductive adhesive contains one of carbon and silver, or a mixture thereof, as a filler.
(4)導電性接着剤は、フェノール系樹脂又はエポキシ
系樹脂の接着樹脂からなることを特徴とする特許請求の
範囲第(1)項記載の燃料電池。
(4) The fuel cell according to claim (1), wherein the conductive adhesive is made of an adhesive resin such as a phenolic resin or an epoxy resin.
(5)黒鉛を主体とする板は、黒鉛樹脂結着体、黒鉛板
、樹脂含浸不浸透黒鉛のいずれかからなることを特徴と
する特許請求の範囲第(1)項記載の燃料電池。
(5) The fuel cell according to claim (1), wherein the plate mainly composed of graphite is made of any one of a graphite resin binder, a graphite plate, and resin-impregnated impermeable graphite.
JP61272901A 1986-11-18 1986-11-18 Fuel cell Pending JPS63128562A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61272901A JPS63128562A (en) 1986-11-18 1986-11-18 Fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61272901A JPS63128562A (en) 1986-11-18 1986-11-18 Fuel cell

Publications (1)

Publication Number Publication Date
JPS63128562A true JPS63128562A (en) 1988-06-01

Family

ID=17520337

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61272901A Pending JPS63128562A (en) 1986-11-18 1986-11-18 Fuel cell

Country Status (1)

Country Link
JP (1) JPS63128562A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998026464A3 (en) * 1996-12-13 1998-10-29 Siemens Ag Cooling system for a fuel cell battery
US6800328B2 (en) 2001-07-31 2004-10-05 Ballard Power Systems Inc. Process for impregnating porous parts
JP2009295295A (en) * 2008-06-02 2009-12-17 Showa Denko Kk Water cool-type bus bar and method of manufacturing the same
WO2010052033A1 (en) * 2008-11-05 2010-05-14 Belenos Clean Power Holding Ag Fuel cell system comprising a heat exchanger
US20140295300A1 (en) * 2011-10-25 2014-10-02 Richard D. Breault Acid Resistant, Monolithic Fuel Cell Cooler Assembly

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998026464A3 (en) * 1996-12-13 1998-10-29 Siemens Ag Cooling system for a fuel cell battery
US6800328B2 (en) 2001-07-31 2004-10-05 Ballard Power Systems Inc. Process for impregnating porous parts
JP2009295295A (en) * 2008-06-02 2009-12-17 Showa Denko Kk Water cool-type bus bar and method of manufacturing the same
WO2010052033A1 (en) * 2008-11-05 2010-05-14 Belenos Clean Power Holding Ag Fuel cell system comprising a heat exchanger
US8822095B2 (en) 2008-11-05 2014-09-02 Belenos Clean Power Holding Ag Fuel cell system comprising a heat exchanger
US20140295300A1 (en) * 2011-10-25 2014-10-02 Richard D. Breault Acid Resistant, Monolithic Fuel Cell Cooler Assembly
US10637080B2 (en) * 2011-10-25 2020-04-28 Doosan Fuel Cell America, Inc. Acid resistant, monolithic fuel cell cooler assembly

Similar Documents

Publication Publication Date Title
US5858569A (en) Low cost fuel cell stack design
JPH0421250Y2 (en)
JP3465379B2 (en) Solid polymer electrolyte fuel cell
KR100949423B1 (en) Fuel Cell
US8105731B2 (en) Fuel cell system
US7521143B2 (en) Polymer electrolyte fuel cell
US7390586B2 (en) Fuel cell stacks of alternating polarity membrane electrode assemblies
JP3535865B2 (en) Polymer electrolyte fuel cell
KR100612529B1 (en) Fuel cell power generator
JP3839978B2 (en) Polymer electrolyte fuel cell system
KR100751881B1 (en) Fuel cell stack
JPS63128562A (en) Fuel cell
JP3454722B2 (en) Polymer electrolyte fuel cell
JP2007502523A (en) End plate for electrochemical cell stack
JP2001229932A (en) Separator for fuel cell and fuel cell
JPS6398965A (en) Fuel cell
JPS6398964A (en) Fuel cell
JPS63128563A (en) Fuel cell
CN211929633U (en) Tension plate for fuel cell
JP3496819B2 (en) Polymer electrolyte fuel cell
JPS62229766A (en) Fuel cell
JPS59154771A (en) Fuel cell
JPH09293528A (en) Fuel cell
JPS63195967A (en) Fuel cell
JP2000067900A (en) Polymer electrolyte fuel cell