JP3454722B2 - Polymer electrolyte fuel cell - Google Patents

Polymer electrolyte fuel cell

Info

Publication number
JP3454722B2
JP3454722B2 JP23452298A JP23452298A JP3454722B2 JP 3454722 B2 JP3454722 B2 JP 3454722B2 JP 23452298 A JP23452298 A JP 23452298A JP 23452298 A JP23452298 A JP 23452298A JP 3454722 B2 JP3454722 B2 JP 3454722B2
Authority
JP
Japan
Prior art keywords
polymer electrolyte
gas
manifold
fuel cell
fuel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP23452298A
Other languages
Japanese (ja)
Other versions
JP2000067901A (en
Inventor
英夫 小原
久朗 行天
一仁 羽藤
和史 西田
誠 内田
栄一 安本
靖 菅原
輝壽 神原
敏宏 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP23452298A priority Critical patent/JP3454722B2/en
Priority to EP99116105A priority patent/EP0981175B1/en
Priority to CNB991180577A priority patent/CN100490240C/en
Priority to US09/377,651 priority patent/US6329093B1/en
Publication of JP2000067901A publication Critical patent/JP2000067901A/en
Application granted granted Critical
Publication of JP3454722B2 publication Critical patent/JP3454722B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Description

【発明の詳細な説明】 【0001】 【発明の属する技術分野】本発明は、ポータブル電源、
電気自動車用電源、家庭内コージェネシステム等に使用
される常温作動型の固体高分子型燃料電池に関する。 【0002】 【従来の技術】固体高分子型燃料電池は、水素などの燃
料ガスと空気などの酸化剤ガスをガス拡散電極において
電気化学的に反応させ、電気と熱を同時に発生させるも
のである。高分子電解質型燃料電池の一例を、図1を用
いて説明する。水素イオンを選択的に輸送する高分子電
解質膜3の両面に、白金系の金属触媒を担持したカーボ
ン粉末を主成分とする触媒反応層2が密着して配され
る。この触媒反応層2の外面には、ガス通気性と電子導
電性を併せ持つ拡散層1が密着して配される。触媒反応
層2とこの拡散層1とにより電極9が構成される。電極
9および高分子電解質膜3は、あらかじめ一体化されて
いて電極電解質膜接合体(以下、MEAとする)10を
構成している。また、電極9の周囲には、供給する燃料
ガスおよび酸化剤ガスが外にリークしたり、互いに混合
しないように、高分子電解質膜3を挟んでガスシール材
やガスケットが配置される。これらは、あらかじめME
A24と一体化していてもよい。 【0003】上記のような燃料電池においては、図2に
示すように、水素や空気が外へリークしたり互いに混合
しないように、電極9の周囲に、高分子電解質膜3を挟
んでシール材17やOリング18を配している。別のシ
ール方法としては図3に示すように、電極9の周りに、
樹脂や金属板からなり、電極9と同程度の厚さを有する
ガスケット19を配し、セパレータ板4とガスケット1
9の隙間をグリースや接着剤でシールした構造もある。
さらに近年では、図4に示すように、MEA10とし
て、ガスシール性を必要とする部分にあらかじめシール
効果を持つ樹脂21をしみこませ、これを固化させるこ
とで、セパレータ板との間にガスシール性を確保する方
法も提案されている。MEA10の外側には、これを機
械的に固定するとともに、隣接したMEA10を互いに
電気的に直列に接続するための導電性のセパレータ板4
が配される。セパレータ板4のMEA10と接触する部
分には、電極9の表面に燃料ガスおよび酸化剤ガスをそ
れぞれ供給し、反応により生成したガスや余剰のガスを
運び去るためのガス流路5が形成される。ガス流路5
は、セパレータ板4と別に設けることもできるが、図1
に示すようにセパレータ板4の表面に溝を設けてガス流
路5とする方式が一般的である。 【0004】多くの燃料電池は、単電池を数多く重ねた
積層構造を採っている。燃料電池運転時には電力ととも
に発生する熱を電池外に排出するために、積層電池では
単電池1〜2セル毎に冷却板が配されている。冷却板と
しては、薄い金属板の内部に、冷却水などの熱媒体が貫
流するような構造が一般的である。これにより、電池温
度を一定に保つと同時に、発生した熱エネルギーを温水
などの形で利用している。また、単電池を構成するセパ
レータ板4の背面、すなわち冷却水を流したい面に流路
を形成し、セパレータ板4自体を冷却板として機能させ
る方法もある。その際、冷却水などの熱媒体をシールす
るためにOリングやガスケットも必要となるが、このシ
ールではOリングを完全につぶすなどして冷却板の上下
間で十分な導電性を確保する必要がある。 【0005】このような積層電池では、マニホルドと呼
ばれる各単電池への燃料ガスや冷却水の供給排出孔が必
要である。これらマニホルドの配置形態により、内部マ
ニホルド型と外部マニホルド型に分類される。燃料ガス
や冷却水の供給排出孔を積層電池内部に確保した、いわ
いる内部マニホルド型が一般的である。しかしながら、
都市ガスを改質して、水素化した実ガスを用いて電池を
運転する場合、燃料ガス流路の下流域では、CO濃度が
上昇する結果、電極が、COにより被毒され、これによ
り温度が低下し、その温度の低下がさらに電極被毒を促
進させることがある。このような電池の性能を低下する
現象を緩和するため、マニホルドから各単電池へのガス
の供給排出部の間口をできるだけ広く取る構造として、
外部マニホルド型が見直されている。 【0006】内部マニホルド型および外部マニホルド型
のいずれを用いても、冷却部を含む複数の単電池を一方
向に積み重ね、その両端に一対の端板を配し、両端板間
を締結ロッドで固定することが必要である。締め付け方
式は、単電池を面内でできるだけ均一に締め付けること
が望ましい。機械的強度の観点から、端板や締結ロッド
には通常、ステンレス鋼などの金属材料を用いる。これ
らの端板や締結ロッドと、積層電池とは、絶縁板により
電気的に絶縁され、電流が端板を通して外部に漏れ出る
ことのない構造とする。締結ロッドについては、セパレ
ータ内部の貫通孔の中を通す方法や、積層池全体を端板
越しに金属のベルトで締め上げる方式が提案されてい
る。また、図2、図3および図4に示したいずれのシー
ル方式においても、シール性を維持しかつ電極とセパレ
ータ板の間やセパレータ板同士間の接触抵抗を小さく保
つため、恒常的な締め付け圧が必要である。そこで、締
結ロッドと端板の間にスクリューバネや皿バネを挿入す
るなどの構成が採用されている。この締め付け圧力によ
って、セパレータ板、電極、電解質膜など電池の構成部
材間の電気的接触が確保されている。 【0007】積層電池が安定的に性能を発揮するために
は、単電池に供給される燃料ガス、酸化剤ガスおよび冷
却水が、それぞれ各単電池に均一に分配されることが必
要である。一般的には、供給される各流体が流れるマニ
ホルド断面積を大きくし、各流体のマニホルド内流速を
低減させ、流体の動圧に起因して発生する圧力勾配によ
る影響を低減するよう工夫されているが、燃料電池の小
型軽量化を図ろうとするとマニホルドの断面積はできる
だけ小さくする必要がある。また従来、積層電池におい
て発生した電気は、集電板により集電され、その端部に
接続された外部機器に出力されていた。また、集電板の
一部が積層電池外形よりはみ出した形状の集電板を用い
た積層電池では、そのはみ出し部分から外部機器に接続
していた。そのため、電気的接続部位が積層電池外形よ
りも大きくはみ出る形状となり、電池全体が大型化した
り、機器搭載性の自由度が低かったりした。 【0008】 【発明が解決しようとする課題】本発明は、以上の問題
点を解決するもので、小型軽量で、機器搭載性の自由度
が高い固体高分子型燃料電池を提供することを目的とす
る。 【0009】 【課題を解決するための手段】本発明は、固体高分子電
解質膜と、前記固体高分子電解質膜を挟んで配された触
媒反応層を有する一対の電極と、前記電極の一方に水素
を含有する燃料ガスを供給しかつ他方に酸素を含む酸化
剤ガスを供給する手段とを具備した単電池が、導電性の
セパレータを介して複数個積層され、前記単電池に燃料
ガス、酸化剤ガスおよび冷却水をそれぞれ分配供給する
供給用マニホルドと、前記単電池のそれぞれから前記燃
料ガス、酸化剤ガスおよび冷却水が排出される排出用マ
ニホルドと、前記積層した単電池から発生する電気を集
電する集電板とを有する固体高分子型燃料電池であっ
て、前記供給用マニホルドの断面積が下流になるにつれ
て小さくなり、前記排出用マニホルドの断面積が下流に
なるにつれて大きくなる固体高分子型燃料電池に関す
る。 また、固体高分子型燃料電池において、燃料と酸化
剤ガスと冷却水とを、単電池の積層方向の端部より流入
し、各単電池を通過後、流入した方向とは逆の方向に流
出させる。また、単電池の集電を行う集電板が、前記高
分子電解質型燃料電池に締め付け圧力を与えるエンドプ
レートを、絶縁手段を介して、貫通した構成としてもよ
。 【0010】 【発明の実施の形態】本発明の固体高分子型燃料電池
は、固体高分子電解質膜と、固体高分子電解質膜を挟ん
で配された触媒反応層を有する一対の電極と、電極の一
方に水素を含有する燃料ガスを供給しかつ他方に酸素を
含む酸化剤ガスを供給する手段とを具備した単電池を、
導電性のセパレータを介して複数個積層した高分子電解
質型燃料電池であって、積層された単電池のうちの一方
の端部の単電池からその積層順に他方の端部の単電池ま
で燃料ガス、酸化剤ガスおよび冷却水をそれぞれ分配供
給する供給用マニホルドと、他方の端部の単電池からそ
の積層順に燃料ガス、酸化剤ガスおよび冷却水がそれぞ
れ排出される排出用マニホルドを具備する。 【0011】本発明の他の固体高分子型燃料電池は、固
体高分子電解質膜と、固体高分子電解質膜を挟んで配さ
れた触媒反応層を有する一対の電極と、電極の一方に水
素を含有する燃料ガスを供給しかつ他方に酸素を含む酸
化剤ガスを供給する手段とを具備した単電池が、導電性
のセパレータを介して複数個積層され、単電池に燃料ガ
ス、酸化剤ガスおよび冷却水をそれぞれ供給する供給用
マニホルドと、単電池のそれぞれから燃料ガス、酸化剤
ガスおよび冷却水が排出される排出用マニホルドとを備
えた高分子電解質型燃料電池であって、供給用マニホル
ドの断面積が下流になるにつれて小さくなり、排出用マ
ニホルドの断面積が下流になるにつれて大きくなる 【0012】本発明では、流体の動圧により発生する圧
力勾配を低減するためマニホルド断面積を増大させる従
来の流体均一分配法に代わり、各流体の流れ方向を積層
電池の積層方向端部より流入させ各単電池を通過後、流
入方向と逆に排出する構成とした流体均一分配法を用い
る。これにより、本発明の固体高分子型燃料電池は、電
解質膜、触媒反応層を有する電極、セパレータなどの電
池構成部材からなる単電池を、複数個重ねた積層電池の
運転に必要な燃料ガス、酸化剤ガスおよび冷却水の各流
体の流れ方向を、積層電池の積層方向端部より流入さ
せ、各単電池を通過後、積層電池に流入した方向とは逆
の方向に流出させる構成とする。これにより、各単電池
に各流体が通過する流路長を変化させることが可能にな
る。そのため、各流体に生じる動圧による圧力勾配と流
路長が変化することで生じる圧力損失をバランスさせる
ことで、各単電池に各流体を均一にさせることが可能に
なる。動圧による圧力勾配の調節はマニホルド断面積を
減少させることで行うため、軽量、コンパクトな構成の
燃料電池が得られる。 【0013】また、本発明では、集電板から積層電池積
層方向に集電部材を延長し、その集電部材が上記絶縁手
段を介し端板を貫通する構成を用いる。本発明の固体高
分子型燃料電池は、電解質膜、触媒反応層を有する電
極、セパレータなどの電池構成部材からなる単電池を、
複数個重ねた積層電池に電気的に接触し積層電池から発
生する電気を集電する集電板から、積層電池と集電板と
に締め付け力を付加する端板を電気的絶縁手段を介して
貫通する集電部材を延長することで集電を行う構成とし
た。このことにより、外部機器との電気的接続が積層電
池外形からはみ出すことなく行うことが可能になり、小
型化と機器搭載性の自由度の向上が実現される。 【0014】 【実施例】本発明の実施例を、図面を参照しながら説明
する。 【0015】《実施例1》粒径が数ミクロン以下のカー
ボン粉末を、塩化白金酸水溶液に浸漬し、還元処理によ
りカーボン粉末の表面に白金触媒を担持させた。このと
きのカーボンと担持した白金の重量比は1:1とした。
ついで、この白金を担持したカーボン粉末を高分子電解
質のアルコール溶液中に分散させ、スラリー化した。一
方、電極となる厚さ400μmのカーボンペーパーを、
フッ素樹脂の水性ディスパージョン(ダイキン工業
(株)製のネオフロンND−1)に含浸した後、これを
乾燥し、400℃で30分加熱処理することで、カーボ
ンペーパーに撥水性を付与した。つぎに撥水処理を施し
たカーボンペーパーの片面にカーボン粉末を含むスラリ
ーを均一に塗布して触媒層2を形成し、電極9を得た。
得られた電極9の一対を、高分子電解質膜3の両面に、
その触媒層2を備えた面がそれぞれ高分子電解質膜3と
向き合うようにして重ね合わせたのち、これを乾燥して
電極電解質膜接合体(以下、MEAとする)10を得
た。ここで、シリコンゴムは、電池に供給するガスがリ
ークしたり、互いに混合するのを防ぐためのガスケット
として機能する。 【0016】得られたMEA10を、その両面から気密
性を有するカーボン製のセパレータ板4で挟み込んで単
電池を組み立てた。セパレータ板4は、厚さが4mm
で、その表面には切削加工により幅2mm、深さ1mm
のガス流路5が刻まれていて、さらにその周辺部にはガ
スのマニホルド孔6と冷却水のマニホルド孔7が配され
ている。また、MEA10をセパレータ板で挟み込む
際、電極9の周りにはカーボン製のセパレータ板4と同
じ外寸のポリエチレンテレフタラート(PET)製シー
トの両面にEPDMシートを張り付けたガスケット8を
配した。 【0017】このような単電池を2セル積層した後、冷
却水が流れる冷却流路を備えたセパレータ板4を積層し
た。このようにして、電池構成単位を得た。なお、冷却
流路のシール用にOリングは用いなかった。得られた電
池構成単位の複数を積層して図2に示すような燃料電池
を組み立てた。まず、上記と同様の電池構成単位を25
個(すなわち50セル)積層し、さらにその両端面には
金属製の集電板100、電気絶縁材料製の絶縁板10
1、および端板102を配した。ついで、締結ロッド1
03で、両端板102間を接続し、その間に挟まれた積
層電池(図示せず)を固定した。燃料ガス、酸化剤ガス
および冷却水の各流体は、燃料電池に向けて、それぞれ
上方の端板102に設けられた燃料ガス供給管103、
酸化剤ガス供給管104および冷却水供給管105よ
り、図中矢印方向に供給される。これらの供給管10
3、104および105は、積層電池の各マニホルド孔
(図示せず)に接続されている。各流体のマニホルド孔
は、下方に向けてその断面積徐々に小さくなるようにな
っている。 【0018】積層電池内を通過した各流体は、燃料ガス
排出管106、酸化剤ガス排出管107および冷却水排
出管108より、電池外に図中矢印方向に排出される。
ここで、各排出管106、107および108に接続さ
れた各流体のマニホルド孔(図示せず)は、上方に向け
てその断面積徐々に小さくなるようになっている。この
ように、流入側マニホルドを通り各単電池、各冷却板を
通過した各流体は、流出側マニホルドを通過し、各流体
が流入した端板側より電池外に排出される。このような
構成をとることで、各単電池を通過する各流体の流路長
を変化させることが可能になる。これにより、各流体に
生じる動圧による圧力勾配と、流路長が変化して生じる
圧力損失をバランスさせることができ、各単電池に各流
体を均一に供給することが可能になる。さらに、マニホ
ルド断面積を減少させることで動圧による圧力勾配を調
節するため、外形寸法を小さくすることが可能になり、
軽量、コンパクトな燃料電池構成とすることができる。 【0019】《実施例2》実施例1で用いたものと同様
の電池構成単位を25セル積層した積層電池を用い、図
6に示す燃料電池を組み立てた。積層電池605の両積
層面に、金属製の集電板601および絶縁板602を重
ね合わせ、さらにその表面に端板603を重ね合わせ
た。一対の端板603は、それぞれその側部に凹部60
3aを有する。この凹部603aに締結ロッド604を
係止して積層電池605を固定した。絶縁板602およ
び端板603は、それぞれ貫通した孔602aおよび6
03aを有する。この孔602aおよび603aを貫通
して、一対の集電部材600を装着した。集電部材60
0の先端は、集電板601と導通していて、出力端子と
して機能する。なお、集電部材600と端板603とは
電気絶縁材料により絶縁されている。この端板603と
集電部材600を絶縁する電気絶縁材料は、絶縁板60
2と一体であっても同様の効果を有する。このような構
成とすることで、積層電池からの電気の取り出しに際
し、積層電池と機器等を接続する接続部材が積層電池外
形よりはみ出すことなくコンパクトに収まり、機器搭載
性の自由度が向上する。 【0020】 【発明の効果】本発明によると、各流体に生じる動圧に
よる圧力勾配による各流体の分配性の悪化をマニホルド
断面積の調整でなくすことが可能になり、マニホルド断
面積を小さくできるのでコンパクト化に寄与する
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a portable power supply,
The present invention relates to a room temperature operation type polymer electrolyte fuel cell used for an electric vehicle power supply, a home cogeneration system, and the like. 2. Description of the Related Art In a polymer electrolyte fuel cell, a fuel gas such as hydrogen and an oxidizing gas such as air are electrochemically reacted in a gas diffusion electrode to generate electricity and heat simultaneously. . An example of a polymer electrolyte fuel cell will be described with reference to FIG. On both surfaces of a polymer electrolyte membrane 3 for selectively transporting hydrogen ions, a catalytic reaction layer 2 mainly composed of a carbon powder carrying a platinum-based metal catalyst is arranged in close contact. On the outer surface of the catalytic reaction layer 2, a diffusion layer 1 having both gas permeability and electronic conductivity is disposed in close contact. An electrode 9 is constituted by the catalytic reaction layer 2 and the diffusion layer 1. The electrode 9 and the polymer electrolyte membrane 3 are integrated in advance and constitute an electrode electrolyte membrane assembly (hereinafter referred to as MEA) 10. Further, a gas seal material or a gasket is disposed around the electrode 9 with the polymer electrolyte membrane 3 interposed therebetween so that the supplied fuel gas and the oxidizing gas do not leak outside or mix with each other. These are ME
It may be integrated with A24. In the above-described fuel cell, as shown in FIG. 2, a sealing material is interposed between the electrodes 9 with the polymer electrolyte membrane 3 interposed therebetween so that hydrogen and air do not leak out or mix with each other. 17 and an O-ring 18. As another sealing method, as shown in FIG.
A gasket 19 made of resin or a metal plate and having the same thickness as the electrode 9 is provided.
There is also a structure in which the gap 9 is sealed with grease or an adhesive.
In recent years, as shown in FIG. 4, as the MEA 10, a resin 21 having a sealing effect is previously impregnated into a portion requiring gas sealing properties, and the resin 21 is solidified. There is also a proposal for a method for securing the same. Outside the MEA 10, a conductive separator plate 4 for mechanically fixing the MEA 10 and electrically connecting adjacent MEAs 10 to each other in series is provided.
Is arranged. A gas passage 5 for supplying a fuel gas and an oxidizing gas to the surface of the electrode 9 and carrying away a gas generated by the reaction and an excess gas is formed in a portion of the separator plate 4 which comes into contact with the MEA 10. . Gas flow path 5
Can be provided separately from the separator plate 4, but FIG.
As shown in (1), a method is generally used in which a groove is formed on the surface of the separator plate 4 to form a gas flow path 5. [0004] Many fuel cells have a stacked structure in which a number of cells are stacked. In the case of a fuel cell, a cooling plate is provided for every one or two cells of a unit cell in order to discharge heat generated together with electric power to the outside of the cell. The cooling plate generally has a structure in which a heat medium such as cooling water flows through a thin metal plate. This keeps the battery temperature constant and uses the generated thermal energy in the form of hot water. There is also a method in which a flow path is formed on the back surface of the separator plate 4 constituting the unit cell, that is, on the surface where cooling water is to flow, and the separator plate 4 itself functions as a cooling plate. At this time, an O-ring or gasket is also required to seal the heat medium such as cooling water, but this seal must completely crush the O-ring to ensure sufficient conductivity between the top and bottom of the cooling plate. There is. [0005] In such a stacked battery, a supply and discharge hole for fuel gas and cooling water to each unit cell called a manifold is required. These manifolds are classified into an internal manifold type and an external manifold type according to the arrangement form. The so-called internal manifold type, in which supply and discharge holes for fuel gas and cooling water are secured inside the stacked battery, is generally used. However,
In the case of operating a battery using actual gas obtained by reforming city gas and hydrogenating, the electrode is poisoned by CO as a result of an increase in the CO concentration in the downstream region of the fuel gas flow path. And the decrease in the temperature may further promote electrode poisoning. In order to mitigate such a phenomenon that lowers the performance of the battery, as a structure that takes the frontage of the gas supply / discharge unit from the manifold to each cell as wide as possible
The external manifold type has been reviewed. In both the internal manifold type and the external manifold type, a plurality of cells including a cooling unit are stacked in one direction, a pair of end plates are arranged at both ends, and the both end plates are fixed with fastening rods. It is necessary to. As for the tightening method, it is desirable that the unit cells be tightened as uniformly as possible within the plane. From the viewpoint of mechanical strength, a metal material such as stainless steel is usually used for the end plate and the fastening rod. These end plates and fastening rods and the stacked battery are electrically insulated by an insulating plate so that current does not leak out through the end plates. As for the fastening rod, a method of passing through a through hole inside the separator and a method of fastening the entire lamination pond with a metal belt over an end plate have been proposed. Further, in any of the sealing methods shown in FIGS. 2, 3 and 4, a constant tightening pressure is required in order to maintain the sealing property and keep the contact resistance between the electrode and the separator plate or between the separator plates small. It is. Therefore, a configuration is adopted in which a screw spring or a disc spring is inserted between the fastening rod and the end plate. By this tightening pressure, electrical contact between components of the battery such as the separator plate, the electrode, and the electrolyte membrane is secured. [0007] In order for the stacked battery to exhibit stable performance, it is necessary that the fuel gas, the oxidizing gas, and the cooling water supplied to the cells be uniformly distributed to each of the cells. In general, it is devised to increase the cross-sectional area of the manifold through which each fluid to be supplied flows, reduce the flow velocity in the manifold of each fluid, and reduce the influence of the pressure gradient generated due to the dynamic pressure of the fluid. However, in order to reduce the size and weight of the fuel cell, the cross-sectional area of the manifold must be as small as possible. Conventionally, electricity generated in a stacked battery has been collected by a current collector and output to an external device connected to an end thereof. Further, in a laminated battery using a current collecting plate in which a part of the current collecting plate protrudes from the outer shape of the laminated battery, the protruding portion is connected to an external device. For this reason, the electrical connection portion has a shape that protrudes larger than the outer shape of the laminated battery, so that the entire battery is increased in size and the degree of freedom in mounting the device is reduced. SUMMARY OF THE INVENTION The present invention has been made to solve the above problems, and has as its object to provide a polymer electrolyte fuel cell which is small and lightweight, and has a high degree of freedom in equipment mounting. And The present invention provides a solid polymer electrolyte.
A dissolving membrane, and a touch panel disposed with the solid polymer electrolyte membrane interposed therebetween.
A pair of electrodes having a medium reaction layer, and hydrogen on one of the electrodes.
Of fuel gas containing oxygen and the other containing oxygen
Cell with means for supplying the agent gas
A plurality of fuel cells are stacked with a separator
Distribute and supply gas, oxidizer gas and cooling water
Supply manifold and the fuel cell from each of the cells.
Exhaust gas from which feed gas, oxidant gas and cooling water are discharged.
Collects electricity generated from the stack and the stacked cells.
Polymer electrolyte fuel cell having a current collector
As the cross-sectional area of the supply manifold becomes downstream,
And the cross-sectional area of the exhaust manifold is downstream
Polymer electrolyte fuel cells
You. In a polymer electrolyte fuel cell, fuel, oxidizing gas, and cooling water flow in from the ends of the unit cells in the stacking direction, and after flowing through each unit cell, flow out in a direction opposite to the flowing direction. Let it. Further, the current collector plate for collecting current of the unit cells, the end plates to provide a clamping pressure to the polymer electrolyte fuel cell, via an insulation means, even if the through-configuration
No. DETAILED DESCRIPTION OF THE INVENTION A polymer electrolyte fuel cell according to the present invention comprises: a solid polymer electrolyte membrane; a pair of electrodes having a catalytic reaction layer interposed between the solid polymer electrolyte membrane; Means for supplying a fuel gas containing hydrogen to one of them and a means for supplying an oxidizing gas containing oxygen to the other,
A polymer electrolyte fuel cell in which a plurality of fuel cells are stacked with a conductive separator interposed therebetween, wherein a fuel gas is supplied from a unit cell at one end of the unit cells to a unit cell at the other end in the stacking order. A supply manifold for distributing and supplying the oxidizing gas and the cooling water, respectively, and a discharge manifold for discharging the fuel gas, the oxidizing gas and the cooling water from the unit cells at the other end in the stacking order. Another polymer electrolyte fuel cell according to the present invention comprises a solid polymer electrolyte membrane, a pair of electrodes having a catalytic reaction layer disposed with the solid polymer electrolyte membrane interposed therebetween, and hydrogen being applied to one of the electrodes. A plurality of cells, each of which is provided with a means for supplying a contained fuel gas and supplying an oxidizing gas containing oxygen to the other, are stacked with a conductive separator interposed therebetween, and the fuel cells, the oxidizing gas and A polymer electrolyte fuel cell including a supply manifold for supplying cooling water, and a discharge manifold for discharging fuel gas, oxidizing gas and cooling water from each of the cells, wherein the supply manifold is The cross-sectional area decreases as it goes downstream, and the cross-sectional area of the exhaust manifold increases as it goes downstream . According to the present invention, instead of the conventional fluid uniform distribution method in which the manifold cross-sectional area is increased to reduce the pressure gradient generated by the dynamic pressure of the fluid, the flow direction of each fluid flows from the end of the laminated battery in the laminating direction. Then, after passing through each unit cell, a fluid uniform distribution method in which the fluid is discharged in the opposite direction to the inflow direction is used. Thereby, the polymer electrolyte fuel cell of the present invention is an electrolyte membrane, an electrode having a catalytic reaction layer, a unit cell composed of battery components such as a separator, a fuel gas required for operation of a stacked battery in which a plurality of stacked cells, The flow direction of each fluid of the oxidizing gas and the cooling water is caused to flow from the end of the stacked battery in the stacking direction, and after flowing through each unit cell, is caused to flow out in a direction opposite to the flow direction of the stacked battery. This makes it possible to change the length of the flow path through which each fluid passes through each cell. Therefore, by balancing the pressure gradient caused by the dynamic pressure generated in each fluid and the pressure loss caused by a change in the flow path length, each fluid can be made uniform in each cell. The adjustment of the pressure gradient by the dynamic pressure is performed by reducing the cross-sectional area of the manifold, so that a fuel cell having a lightweight and compact configuration can be obtained. Further, in the present invention, a structure is used in which the current collecting member is extended from the current collecting plate in the stacking direction of the stacked batteries, and the current collecting member penetrates the end plate via the insulating means. The polymer electrolyte fuel cell of the present invention is an electrolyte membrane, an electrode having a catalytic reaction layer, a unit cell composed of battery components such as a separator,
From a current collecting plate that electrically contacts the plurality of stacked batteries and collects electricity generated from the stacked batteries, an end plate that applies a tightening force to the stacked batteries and the current collecting plate via an electrical insulating means. The power collection is performed by extending the penetrating current collection member. As a result, electrical connection with external devices can be made without protruding from the outer shape of the stacked battery, and miniaturization and improvement in the degree of freedom of device mounting can be realized. Embodiments of the present invention will be described with reference to the drawings. Example 1 A carbon powder having a particle size of several microns or less was immersed in an aqueous chloroplatinic acid solution, and a platinum catalyst was supported on the surface of the carbon powder by a reduction treatment. At this time, the weight ratio of carbon to the supported platinum was 1: 1.
Next, the carbon powder carrying platinum was dispersed in an alcohol solution of a polymer electrolyte to form a slurry. On the other hand, a 400 μm thick carbon paper serving as an electrode is
After impregnating in an aqueous dispersion of a fluororesin (NEOFLON ND-1 manufactured by Daikin Industries, Ltd.), this was dried and subjected to heat treatment at 400 ° C. for 30 minutes to impart water repellency to the carbon paper. Next, a slurry containing carbon powder was uniformly applied to one surface of the water-repellent carbon paper to form a catalyst layer 2, thereby obtaining an electrode 9.
A pair of the obtained electrodes 9 is placed on both sides of the polymer electrolyte membrane 3,
After the surfaces provided with the catalyst layers 2 were superposed so as to face the polymer electrolyte membranes 3 respectively, they were dried to obtain an electrode electrolyte membrane assembly (hereinafter referred to as MEA) 10. Here, the silicon rubber functions as a gasket for preventing gas supplied to the battery from leaking or mixing with each other. The obtained MEA 10 was sandwiched between both sides of the separator plate 4 made of airtight carbon to assemble a unit cell. The separator plate 4 has a thickness of 4 mm.
The surface is cut by 2mm in width and 1mm in depth
The gas passage 5 is cut, and a manifold hole 6 for gas and a manifold hole 7 for cooling water are arranged around the gas passage 5. When the MEA 10 was sandwiched between separator plates, a gasket 8 having an EPDM sheet attached to both surfaces of a polyethylene terephthalate (PET) sheet having the same outer dimensions as the carbon separator plate 4 was disposed around the electrode 9. After stacking two such cells, a separator plate 4 having a cooling channel through which cooling water flows was stacked. Thus, a battery constituent unit was obtained. Note that no O-ring was used for sealing the cooling channel. A fuel cell as shown in FIG. 2 was assembled by laminating a plurality of the obtained cell constituent units. First, the same battery constituent unit as 25
(Ie, 50 cells), and a metal current collector 100 and an insulating plate 10 made of an electrically insulating material are provided on both end surfaces.
1, and the end plate 102 were arranged. Then, fastening rod 1
At 03, the end plates 102 were connected to each other, and a laminated battery (not shown) sandwiched therebetween was fixed. Each fluid of the fuel gas, the oxidizing gas, and the cooling water flows toward the fuel cell, and a fuel gas supply pipe 103 provided on the upper end plate 102.
The gas is supplied from the oxidizing gas supply pipe 104 and the cooling water supply pipe 105 in the direction of the arrow in the figure. These supply pipes 10
3, 104 and 105 are connected to respective manifold holes (not shown) of the stacked battery. The manifold hole of each fluid has its cross-sectional area gradually decreasing downward. Each fluid that has passed through the stacked battery is discharged from the fuel gas discharge pipe 106, the oxidizing gas discharge pipe 107 and the cooling water discharge pipe 108 to the outside of the battery in the direction of the arrow in the figure.
Here, the manifold holes (not shown) of the respective fluids connected to the respective discharge pipes 106, 107 and 108 are configured such that the cross-sectional area thereof gradually decreases upward. In this way, each fluid that has passed through each unit cell and each cooling plate through the inflow-side manifold passes through the outflow-side manifold, and is discharged out of the battery from the end plate side where each fluid has flowed. With this configuration, it is possible to change the flow path length of each fluid passing through each unit cell. This makes it possible to balance the pressure gradient caused by the dynamic pressure generated in each fluid and the pressure loss caused by a change in the flow path length, thereby enabling each fluid to be uniformly supplied to each cell. Furthermore, since the pressure gradient due to dynamic pressure is adjusted by reducing the manifold cross-sectional area, it becomes possible to reduce the external dimensions,
A lightweight and compact fuel cell configuration can be obtained. Example 2 A fuel cell shown in FIG. 6 was assembled by using a stacked battery in which 25 cells similar to those used in Example 1 were stacked. A metal current collecting plate 601 and an insulating plate 602 were overlapped on both stacked surfaces of the stacked battery 605, and an end plate 603 was further stacked on the surface thereof. The pair of end plates 603 each have a recess 60 on its side.
3a. The stacked battery 605 was fixed by fastening the fastening rod 604 to the concave portion 603a. The insulating plate 602 and the end plate 603 are provided with through holes 602a and 602, respectively.
03a. A pair of current collecting members 600 were mounted through the holes 602a and 603a. Current collecting member 60
The leading end of 0 is electrically connected to the current collecting plate 601 and functions as an output terminal. Note that the current collecting member 600 and the end plate 603 are insulated by an electrically insulating material. The electrical insulating material that insulates the end plate 603 and the current collecting member 600 is the insulating plate 60
The same effect can be obtained even if the unit 2 is integrated. With this configuration, when electricity is taken out of the stacked battery, the connecting member for connecting the stacked battery and the device or the like can be compactly fitted without protruding from the outer shape of the stacked battery, and the degree of freedom in mounting the device can be improved. According to the present invention, it is possible to eliminate the deterioration of the distribution of each fluid due to the pressure gradient due to the dynamic pressure generated in each fluid, instead of adjusting the manifold cross-sectional area, and to reduce the manifold cross-sectional area. This contributes to downsizing .

【図面の簡単な説明】 【図1】固体高分子型燃料電池の電池部材の構成を示す
一部を切り欠いた斜視図である。 【図2】固体高分子型燃料電池における流体のシール方
式の一例を示す要部の縦断面図である。 【図3】同他の例を示す要部の縦断面図である。 【図4】同さらに他の例を示す要部の縦断面図である。 【図5】本発明の一実施例の固体高分子型燃料電池の構
成を示す概略した斜視図である。 【図6】本発明の他の実施例の固体高分子型燃料電池の
構成を示す縦断面図である。 【符号の説明】 1 拡散層 2 触媒反応層 3 高分子電解質膜 4 セパレータ板 5 ガス流路 6 ガスのマニホルド孔 7 冷却水のマニホルド孔 8、19 ガスケット 9 電極 10 電極電解質接合体 17 シール材 18 Oリング 21 樹脂 100、601 集電板 101、602 絶縁板 102、603 端板 104 燃料ガス供給管 105 酸化剤ガス供給管 106 冷却水供給管 107 燃料ガス排出管 108 酸化剤ガス排出管 109 冷却水排出管 110、605 積層電池 600 集電部材 602a、603a 孔 604 締結ロッド
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a partially cutaway perspective view showing a configuration of a cell member of a polymer electrolyte fuel cell. FIG. 2 is a longitudinal sectional view of an essential part showing an example of a fluid sealing method in a polymer electrolyte fuel cell. FIG. 3 is a longitudinal sectional view of a main part showing another example. FIG. 4 is a longitudinal sectional view of a main part showing still another example. FIG. 5 is a schematic perspective view showing the configuration of a polymer electrolyte fuel cell according to one embodiment of the present invention. FIG. 6 is a longitudinal sectional view showing a configuration of a polymer electrolyte fuel cell according to another embodiment of the present invention. DESCRIPTION OF SYMBOLS 1 Diffusion layer 2 Catalytic reaction layer 3 Polymer electrolyte membrane 4 Separator plate 5 Gas flow path 6 Gas manifold hole 7 Cooling water manifold hole 8, 19 Gasket 9 Electrode 10 Electrode electrolyte assembly 17 Sealing material 18 O-ring 21 Resin 100, 601 Current collector plate 101, 602 Insulating plate 102, 603 End plate 104 Fuel gas supply tube 105 Oxidant gas supply tube 106 Cooling water supply tube 107 Fuel gas discharge tube 108 Oxidant gas discharge tube 109 Cooling water Discharge pipe 110, 605 Stacked battery 600 Current collector 602a, 603a Hole 604 Fastening rod

───────────────────────────────────────────────────── フロントページの続き (72)発明者 西田 和史 大阪府門真市大字門真1006番地 松下電 器産業株式会社内 (72)発明者 内田 誠 大阪府門真市大字門真1006番地 松下電 器産業株式会社内 (72)発明者 安本 栄一 大阪府門真市大字門真1006番地 松下電 器産業株式会社内 (72)発明者 菅原 靖 大阪府門真市大字門真1006番地 松下電 器産業株式会社内 (72)発明者 神原 輝壽 大阪府門真市大字門真1006番地 松下電 器産業株式会社内 (72)発明者 松本 敏宏 大阪府門真市大字門真1006番地 松下電 器産業株式会社内 (56)参考文献 特開 平4−355061(JP,A) (58)調査した分野(Int.Cl.7,DB名) H01M 8/10 H01M 8/24 ──────────────────────────────────────────────────の Continuing on the front page (72) Inventor Kazufumi Nishida 1006 Kadoma Kadoma, Kadoma City, Osaka Prefecture Inside Matsushita Electric Industrial Co., Ltd. In-house (72) Inventor Eiichi Yasumoto 1006 Kadoma, Kadoma, Osaka Prefecture Inside Matsushita Electric Industrial Co., Ltd. (72) Inventor Yasushi Yasushi 1006 Odaka, Kazuma, Kadoma, Osaka Pref. Inventor Teruhisa Kamihara 1006 Kadoma Kadoma, Kadoma City, Osaka Prefecture (72) Inside Matsushita Electric Industrial Co., Ltd. (72) Inventor Toshihiro Matsumoto 1006 Kadoma Kadoma, Kadoma City, Osaka Prefecture Matsushita Electric Industrial Co., Ltd. 4-3555061 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) H01M 8/10 H01M 8/24

Claims (1)

(57)【特許請求の範囲】 【請求項1】 固体高分子電解質膜と、前記固体高分子
電解質膜を挟んで配された触媒反応層を有する一対の電
極と、前記電極の一方に水素を含有する燃料ガスを供給
しかつ他方に酸素を含む酸化剤ガスを供給する手段とを
具備した単電池、導電性のセパレータを介して複数個
積層され、前記単電池に燃料ガス、酸化剤ガスおよび冷
却水をそれぞれ分配供給する供給用マニホルドと、前記
単電池のそれぞれから前記燃料ガス、酸化剤ガスおよび
冷却水が排出される排出用マニホルドと、前記積層した
単電池から発生する電気を集電する集電板を有する固
体高分子型燃料電池であって、前記供給用マニホルドの
断面積が下流になるにつれて小さくなり、前記排出用マ
ニホルドの断面積が下流になるにつれて大きくなる固体
高分子型燃料電池
(57) [Claim 1] A solid polymer electrolyte membrane, a pair of electrodes having a catalytic reaction layer disposed with the solid polymer electrolyte membrane interposed therebetween, and hydrogen applied to one of the electrodes. single cell and means for supplying an oxidant gas containing oxygen a fuel gas containing the feed to and the other is a plurality stacked via conductive separators, fuel gas, oxidant gas to the single cell And cold
A supply manifold for distributing and supplying recirculated water,
The fuel gas, oxidant gas and
A discharge manifold cooling water is discharged, the electricity generated from the laminated unit cells comprising a polymer electrolyte fuel cell having a current collector plate to the current collector, the supply manifold
As the cross-sectional area decreases as it goes downstream,
Solid polymer fuel cells ing large as the cross-sectional area of the Nihorudo is downstream.
JP23452298A 1998-08-20 1998-08-20 Polymer electrolyte fuel cell Expired - Fee Related JP3454722B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP23452298A JP3454722B2 (en) 1998-08-20 1998-08-20 Polymer electrolyte fuel cell
EP99116105A EP0981175B1 (en) 1998-08-20 1999-08-17 Polymer electrolyte fuel cell stack
CNB991180577A CN100490240C (en) 1998-08-20 1999-08-18 Macromolecular electrolyte type fuel cell
US09/377,651 US6329093B1 (en) 1998-08-20 1999-08-19 Polymer electrolyte fuel cell stack

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23452298A JP3454722B2 (en) 1998-08-20 1998-08-20 Polymer electrolyte fuel cell

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2003015907A Division JP2003234112A (en) 2003-01-24 2003-01-24 Solid-state macromolecular type fuel cell

Publications (2)

Publication Number Publication Date
JP2000067901A JP2000067901A (en) 2000-03-03
JP3454722B2 true JP3454722B2 (en) 2003-10-06

Family

ID=16972354

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23452298A Expired - Fee Related JP3454722B2 (en) 1998-08-20 1998-08-20 Polymer electrolyte fuel cell

Country Status (1)

Country Link
JP (1) JP3454722B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4630429B2 (en) * 2000-07-14 2011-02-09 ミサワホーム株式会社 Building with fuel cell
JP2005522857A (en) * 2002-04-30 2005-07-28 ゼネラル・モーターズ・コーポレーション End plate for fuel cell stack structure
US6764786B2 (en) * 2002-05-08 2004-07-20 Utc Fuel Cells, Llc Fuel cell stack having an improved pressure plate and current collector
JP4489036B2 (en) 2006-02-28 2010-06-23 三洋電機株式会社 Fuel cell stack
KR100911988B1 (en) * 2007-11-14 2009-08-13 삼성에스디아이 주식회사 Fuel cell stack
KR101138760B1 (en) 2010-09-07 2012-04-24 삼성중공업 주식회사 Fuel cell stack and its cooling method
KR101470173B1 (en) * 2013-06-21 2014-12-05 현대자동차주식회사 Fuelcell
CN117727991A (en) * 2024-02-08 2024-03-19 浙江海盐力源环保科技股份有限公司 Novel galvanic pile structure

Also Published As

Publication number Publication date
JP2000067901A (en) 2000-03-03

Similar Documents

Publication Publication Date Title
US6210823B1 (en) Polymer electrolyte fuel cell
US6689504B1 (en) Fuel cell stack with separator of a laminate structure
US6329093B1 (en) Polymer electrolyte fuel cell stack
JP3516892B2 (en) Polymer electrolyte fuel cell stack
US7829236B2 (en) Hydration sensor apparatus for measuring membrane hydration in a fuel cell stack
JP2002025584A (en) Solid high polymer molecule electrolyte fuel cell and its humidifying method
US9023546B2 (en) Fuel cell
JP3448550B2 (en) Polymer electrolyte fuel cell stack
JP3454722B2 (en) Polymer electrolyte fuel cell
JP4680338B2 (en) POLYMER ELECTROLYTE FUEL CELL AND METHOD OF CONNECTING THE SAME
JP5230174B2 (en) Fuel cell
JP2007335255A (en) Fuel cell stack and fuel cell system
JP2004253269A (en) Polymer electrolyte fuel cell and its operating method
JP3420508B2 (en) Polymer electrolyte fuel cell
JP4083304B2 (en) Polymer electrolyte fuel cell
JP2003123801A (en) Polymer electrolyte stacked fuel cell
JP3580525B2 (en) Polymer electrolyte fuel cell
JP4859281B2 (en) Membrane electrode assembly for polymer electrolyte fuel cell
JP2001126743A (en) Polymer electrolytic fuel cell
JP2001167789A (en) High molecule electrolyte fuel cell
JP3425086B2 (en) Polymer electrolyte fuel cell, system using the same, and method of installing the same
JP2003234112A (en) Solid-state macromolecular type fuel cell
JP3496819B2 (en) Polymer electrolyte fuel cell
JP2001143739A (en) Polymer electrolyte fuel cell
JP2006012462A (en) Sealing structure for fuel cell

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070725

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080725

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090725

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090725

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100725

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110725

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110725

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120725

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120725

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130725

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees