JP3516892B2 - Polymer electrolyte fuel cell stack - Google Patents

Polymer electrolyte fuel cell stack

Info

Publication number
JP3516892B2
JP3516892B2 JP31779399A JP31779399A JP3516892B2 JP 3516892 B2 JP3516892 B2 JP 3516892B2 JP 31779399 A JP31779399 A JP 31779399A JP 31779399 A JP31779399 A JP 31779399A JP 3516892 B2 JP3516892 B2 JP 3516892B2
Authority
JP
Japan
Prior art keywords
auxiliary plate
polymer electrolyte
side auxiliary
plate
fuel cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP31779399A
Other languages
Japanese (ja)
Other versions
JP2001135344A (en
Inventor
修 酒井
順二 新倉
一仁 羽藤
英夫 小原
靖 菅原
敏宏 松本
達人 山崎
伸介 竹口
輝壽 神原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP31779399A priority Critical patent/JP3516892B2/en
Publication of JP2001135344A publication Critical patent/JP2001135344A/en
Application granted granted Critical
Publication of JP3516892B2 publication Critical patent/JP3516892B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Description

【発明の詳細な説明】 【0001】 【発明の属する技術分野】本発明は、ポータブル電源、
電気自動車用電源、家庭内コージェネシステム等に使用
される常温作動型の高分子電解質型燃料電池に関する。 【0002】 【従来の技術】高分子電解質型燃料電池は、水素などの
燃料ガスと空気などの酸化ガスを白金などの触媒層を有
するガス拡散電極によって電気化学的に反応させるもの
で、電気と熱とを同時に発生させるものである。このよ
うな高分子電解質燃料電池の一般的な構成を図1に示し
た。 【0003】図1において水素イオンを選択的に輸送す
る高分子電解質膜11の両面には白金系の金属触媒を担
持したカーボン粉末を主成分とする触媒反応層12を密
着して配置する。さらに触媒層12の外面には、ガス透
過性と導電性を兼ね備えた一対の拡散層13をこれに密
着して配置する。この拡散層13と触媒反応層12によ
り電極14を構成する。電極14の外側には、電極14
と高分子電解質膜11とで形成した電極電解質膜接合体
(以下、MEA)15を機械的に固定するとともに、隣
接するMEA同士を互いに電気的に直列に接続し、さら
に電極に反応ガスを供給しかつ反応により発生した水や
余剰のガスを運び去るためのガス流路16を一方の面に
形成した導電性セパレータ板17を配置する。ガス流路
はセパレータ板と別に設けることもできるが、セパレー
タ板の表面に溝を設けてガス流路とする方式が一般的で
ある。 【0004】多くの燃料電池は、上記のような構造の単
電池を数多く重ねた積層構造をとっている。燃料電池運
転時には、電力発生と共に発熱が起こる。積層電池で
は、単電池1〜2セル毎に冷却水路18等の冷却機構を
設けることにより、電池温度を一定に保つと同時に発生
した熱エネルギーを温水などの形で利用することができ
る。 【0005】また、このような積層電池ではガス供給孔
やガス排出口、さらに冷却溶媒の供給、排出孔を積層電
池内部に設けるいわゆる内部マニホールド型が一般的で
ある。しかしながら、各単電池へのガスの供給排出部の
間口をできるだけ広くとれる構造として、外部マニホー
ルド型も検討されている。 【0006】さらに上記のような高分子電解質型燃料電
池スタックでは、セパレータ板等の構成部品の電気的接
触抵抗を低減するため、また燃料ガスや酸化剤ガスのシ
ール性を維持するため、電池全体を恒常的に締め付ける
ことが必要である。このためには、多数の単電池を一方
向に積み重ねたその両端にそれぞれエンドプレートを配
置し、その両エンドプレートの間を締結用部材を用いて
固定し、締め付け圧を加えることが効果的である。 【0007】締め付ける際、単電池の面内で均一に締め
付けることが望ましく、機械的強度の観点から、エンド
プレートや締結部材等はステンレス鋼などの金属材料が
通常用いられている。 【0008】 【発明が解決しようとする課題】これまで、固体高分子
型燃料電池スタックにおける積層電池の固定及び積層方
向の締め付け機構としては、複数本のボルト形状の締結
ロッド23を両端のエンドプレート22を貫通するよう
に挿入し、スクリューばね24を介することで、締結、
加圧する形態が最も一般的である。この形態の電池スタ
ックの斜視図を図2に示す。 【0009】しかしながら、電気的接触抵抗の低減、及
びガスシール性の維持のためには相当な面圧が必要であ
り、締め付けロッドなどの締め付け部材が長大になりが
ちで、燃料電池スタックのコンパクト化、軽量化に向け
ての課題となっていた。さらに、このような積層体21
の外側に締結ロッドを配置する形態ではエンドプレート
22が変形しやすく、エンドプレートの薄肉化を困難に
していた。 【0010】また、発明者らは先に特願平10−234
371において、図3に示すような一対の辺に溝状の凹
部39を有する補助プレート33,34と前記凹部に係
合する爪状凸部38を設けた金属製締結バンド37から
なる締結部材により連結され、ボルト36を補助プレー
ト33に螺入させることにより、補助プレート34に配
された皿バネ35を圧縮し、これにより両端のエンドプ
レート32を介して積層体31を締め付ける手法を提案
したが、耐衝撃性や電気自動車用に応用する際の耐振動
性に課題があった。 【0011】 【課題を解決するための手段】以上の課題を解決するた
め本発明の高分子電解質型燃料電池スタックは、水素イ
オン伝導性高分子電解質膜と、前記水素イオン伝導性高
分子電解質膜の両面に配置した一対の電極と、前記電極
の一方に燃料ガスを供給排出し、他方に酸化剤ガスを供
給排出するガス流路を有する一対の導電性セパレータと
を具備した単電池を複数個積層し、前記積層部の両端に
一対のエンドプレートを配置した高分子電解質型燃料電
池スタックであって、下側の前記エンドプレートに対向
するように配置された下面側補助プレートと、前記下面
側補助プレートに配設され前記下側のエンドプレートを
前記積層方向に付勢するばねと、上側の前記エンドプレ
ートに対向するように配置された上面側補助プレート
と、前記上面側補助プレートを厚み方向に貫通し下端が
前記上側のエンドプレートに当接するよう該上面側補助
プレートに螺合されたボルトと、前記上面側補助プレー
トの対向する端部と前記下面側補助プレートの対向する
端部とをそれぞれ連結する少なくとも一対の金属製締結
バンドとを具備し、前記金属製締結バンドが円筒状の連
結部によって前記上面側補助プレート及び下面側補助プ
レートに対しそれぞれ回転自在に係合しており、前記ボ
ルトを締めることにより、前記ばね及び前記ボルトによ
り前記電池スタックの積層方向に締結力が付与されて前
記上面側補助プレートと前記下面側補助プレートとで前
記電池スタックが挟持され、前記金属製締結バンドで前
記電池スタックの積層方向への加圧が維持されることで
前記電池スタックが締結されている、ことを特徴とす
る。 【0012】 【発明の実施の形態】本発明の締結形態による高分子型
燃料電池スタックの斜視図を図4に、断面図を図5に示
すに示す。 【0013】補助プレートと金属製バンドとの連結の信
頼性を高めるため、金属製締結バンド47の端部に円筒
状の連結部48を設け、前記連結部と一直線上に円筒の
穴が並ぶように補助プレート43,44にも円筒状の連
結部48を設ける。電池スタック締結時、一直線上に並
ぶ円筒状連結部に高強度の円棒状金属ピン49を挿入し
前記金属ピン49の両端をEリング50を用いて固定す
る。一本の金属ピンが貫く円筒状連結部48は、破断に
耐えうるサイズを保ちつつ、力が分散されるように複数
箇所設けることがより望ましい。 【0014】締結圧の付与ついては、複数のボルト46
をスタック上部に設置した補助プレート43に螺入させ
て、対となる下部補助プレート44に配された皿ばね4
5を圧縮し、これによって両エンドプレート42を介し
て積層体41に必要となる締結圧がかけられる。 【0015】本発明の締結手法は、屈曲部に可動性を有
しつつ、締結部材は強固に連結されるという形態が実現
され、衝撃や振動に対する信頼性が高い。 【0016】また、Eリングによる固定であるので締結
部材の脱着も非常に簡便で、組立性にも優れる。 【0017】 【実施例】まず電極の作成方法について説明する。粒径
が数ミクロン以下のカーボン粉末を塩化白金酸水溶液に
浸漬し、還元処理によってカーボン粉末に白金触媒を担
持させた。この白金担持カーボン粉末を高分子電解質の
アルコール溶液中に分散させ、スラリー化した。 【0018】一方、電極部ベースとなる厚さ400μm
のカーボンペーパーを、フッ素樹脂の水性ディスパージ
ョン(ダイキン工業(株)製のネオフロンND-1)に含浸
した後、これを乾燥し、400℃で30分加熱処理する
ことでカーボンペーパに撥水性を付与した。次に撥水処
理を施したカーボンペーパの片面に上記のスラリーを均
一に塗布して触媒反応層形成し、電極とした。 【0019】つぎに2枚の電極を、電極より一回り外寸
の大きい高分子電解質膜の両面に、触媒反応層を備えた
面がそれぞれ高分子電解質膜と向き合うようにし、高分
子電解質の中央に位置するように重ね合わせ、さらに周
縁部にシリコンゴム製のガスケットを位置合わせした
後、100℃、5分間ホットプレスし、電極電解質接合
体(MEA)を得た。さらに前記MEAを長さ20c
m、幅10cmに切断した。 【0020】得られたMEAをセパレータを介して50
セル積層させ、積層体とした。セパレータは厚さ4mmの
カーボン製で気密性を有する。またMEAと接する表面
には幅2mmで深さ1mmのガス流路を切削加工により形成
した。また、2セル毎に冷却水路を配置した。 【0021】この積層体の上下に絶縁板を介してSUS
304製のエンドプレートを配し、実施の形態で説明し
た手法で締結構造を形成した。すなわち、円筒状連結部
を溶接により接合した厚み1mm、幅65mmの金属バンド
(SUS304−CSP製)4枚と円筒状連結部を具備し
た補助プレート(SCM435製)二組を、前記のエン
ドプレートを配した積層体を二帯で囲うように配し、S
KD11製連結ピンとEリングで各々を連結する。さら
に下部補助プレート内側に配した皿バネ及び上部補助プ
レートに螺入するボルトで締結力を与える構造とした。
皿バネのバネ係数は500kgf/mmで複数個の皿バネを用
いて組立時の締結圧力を13kgf/cm2とした。感熱紙に
よりセパレータ板の圧力分布を調べたところ、全面にわ
たって均一な圧力分布となっていることが確認された。 【0022】締結後、電池スタック両側面にはガスケッ
トを介して樹脂製のマニホールドを設置した。前記マニ
ホールドを通じて水素、空気、及び冷却水を供給、排出
する。 【0023】電池スタック組立後、マニホールドを通じ
て水素、空気、及び冷却水を供給、排出し電池運転を行
ったが、ガスリーク、冷却水漏れは確認されず、また電
池性能も良好であった。 【0024】その後、落下試験を行った。電池スタック
を高さ1mからプラスチックタイル床へ5度、自由落下
させたが、スタック外観や締結部材の連結部等に損傷は
確認されなかった。落下試験後にマニホールドを通じて
水素、空気、及び冷却水を供給、排出し電池運転を行っ
たが、ガスリーク、冷却水漏れは確認されず、電池性能
も変化しなかった。 【0025】つぎに、上記の電池スタックに対して振動
試験を行った。2G、12Hz、連続48時間の条件で
振動試験を行った。試験後、同様にしてマニホールドを
通じて水素、空気、及び冷却水を供給、排出し電池運転
を行ったが、ガスリーク、冷却水漏れは確認されず、電
池性能も変化しなかった。 【0026】 【発明の効果】本発明により、屈曲部に可動性を有しつ
つ、締結部材は強固に連結され、衝撃や振動に対する信
頼性の高い高分子電解質型燃料電池スタックの締結形態
が実現された。また、Eリングによる固定であるので締
結部材の脱着も非常に容易で、組立性にも優れる。さら
に、積層体両端に配するエンドプレートに対して、より
均一に締め付け圧を加えることが可能であり、エンドプ
レートの薄肉化も実現された。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a portable power supply,
The present invention relates to a normal temperature operation type polymer electrolyte fuel cell used for a power supply for an electric vehicle, a home cogeneration system, and the like. [0002] A polymer electrolyte fuel cell is an electrochemical reaction between a fuel gas such as hydrogen and an oxidizing gas such as air by a gas diffusion electrode having a catalyst layer such as platinum. It generates heat at the same time. FIG. 1 shows a general configuration of such a polymer electrolyte fuel cell. In FIG. 1, a catalyst reaction layer 12 mainly composed of carbon powder carrying a platinum-based metal catalyst is disposed in close contact on both sides of a polymer electrolyte membrane 11 for selectively transporting hydrogen ions. Further, on the outer surface of the catalyst layer 12, a pair of diffusion layers 13 having both gas permeability and conductivity are disposed in close contact with the diffusion layer. The diffusion layer 13 and the catalyst reaction layer 12 form an electrode 14. Outside the electrode 14, the electrode 14
Electrolyte Membrane Assembly (hereinafter, MEA) 15 formed of the polymer electrolyte membrane 11 and the polymer electrolyte membrane 11, mechanically fix the MEA, electrically connect adjacent MEAs to each other in series, and supply a reaction gas to the electrodes. Then, a conductive separator plate 17 having a gas passage 16 formed on one surface for carrying away water and excess gas generated by the reaction is disposed. Although the gas flow path can be provided separately from the separator plate, a method in which a groove is provided on the surface of the separator plate to form a gas flow path is generally used. [0004] Many fuel cells have a stacked structure in which a number of unit cells having the above structure are stacked. During fuel cell operation, heat is generated along with power generation. In the stacked battery, by providing a cooling mechanism such as the cooling water channel 18 for each of the single cells or the two cells, it is possible to keep the battery temperature constant and to use the generated thermal energy in the form of hot water. Further, in such a laminated battery, a so-called internal manifold type in which a gas supply hole and a gas discharge port, and a supply and discharge hole of a cooling solvent are further provided inside the laminated battery is generally used. However, an external manifold type is also being studied as a structure that allows the frontage of the gas supply / discharge unit to each cell to be as wide as possible. Further, in the polymer electrolyte fuel cell stack as described above, in order to reduce the electrical contact resistance of components such as a separator plate and to maintain the sealing property of fuel gas and oxidizing gas, the entire cell Must be constantly tightened. For this purpose, it is effective to arrange a large number of cells in one direction, arrange end plates at both ends thereof, fix the both end plates with a fastening member, and apply a tightening pressure. is there. [0007] When tightening, it is desirable to uniformly tighten within the plane of the cell, and from the viewpoint of mechanical strength, end plates, fastening members and the like are usually made of a metal material such as stainless steel. Heretofore, as a fixing mechanism of a stacked battery in a polymer electrolyte fuel cell stack and a fastening mechanism in a stacking direction, a plurality of bolt-shaped fastening rods 23 have end plates at both ends. 22 to penetrate through it, and through a screw spring 24,
The form of pressurization is the most common. FIG. 2 shows a perspective view of the battery stack of this embodiment. However, a considerable surface pressure is required in order to reduce the electric contact resistance and maintain the gas sealing property, so that fastening members such as fastening rods tend to be long, and the fuel cell stack is made compact. , Has been an issue for weight reduction. Furthermore, such a laminate 21
In the configuration in which the fastening rods are arranged outside the end plate, the end plate 22 is easily deformed, and it is difficult to make the end plate thinner. [0010] The inventors have previously disclosed in Japanese Patent Application No. 10-234.
At 371, a fastening member composed of auxiliary plates 33 and 34 having a pair of sides having groove-shaped concave portions 39 and a metal fastening band 37 provided with claw-shaped convex portions 38 engaging with the concave portions as shown in FIG. A method has been proposed in which the bolts 36 are connected and screwed into the auxiliary plate 33 to compress the disc springs 35 disposed on the auxiliary plate 34, thereby tightening the laminate 31 via the end plates 32 at both ends. In addition, there are problems in shock resistance and vibration resistance when applied to electric vehicles. In order to solve the above problems, a polymer electrolyte fuel cell stack according to the present invention comprises a hydrogen ion conductive polymer electrolyte membrane and the hydrogen ion conductive polymer electrolyte membrane. A plurality of cells each comprising a pair of electrodes arranged on both sides of the cell and a pair of conductive separators having a gas flow path for supplying and discharging fuel gas to one of the electrodes and supplying and discharging an oxidizing gas to the other electrode A polymer electrolyte fuel cell stack in which a pair of end plates are arranged at both ends of the stacked portion, the stack being opposed to the lower end plate.
Lower surface side auxiliary plate arranged so as to
The lower end plate is located on the side auxiliary plate.
A spring biasing in the laminating direction, and an upper end press
Upper side auxiliary plate arranged to face the plate
Penetrates through the upper surface side auxiliary plate in the thickness direction,
The upper surface side auxiliary so as to contact the upper end plate
Bolts screwed to the plate and the upper side auxiliary play
And the lower surface side auxiliary plate faces the opposite end of the
At least one pair of metal fastenings to connect the ends respectively
And a metal band, wherein the metal fastening band has a cylindrical shape.
The upper side auxiliary plate and the lower side auxiliary plate
Are rotatably engaged with the rates, respectively.
By tightening the bolt, the spring and the bolt
Before the fastening force is applied in the stacking direction of the battery stack.
The upper surface side auxiliary plate and the lower surface side auxiliary plate
The battery stack is clamped and fronted by the metal fastening band.
By maintaining the pressure in the stacking direction of the battery stack
The battery stack is fastened . FIG. 4 is a perspective view of a polymer fuel cell stack according to a fastening mode of the present invention, and FIG. 5 is a cross-sectional view thereof. In order to increase the reliability of the connection between the auxiliary plate and the metal band, a cylindrical connecting portion 48 is provided at the end of the metal fastening band 47 so that the cylindrical holes are aligned with the connecting portion. The auxiliary plates 43 and 44 are also provided with cylindrical connecting portions 48. When the battery stack is fastened, a high-strength rod-shaped metal pin 49 is inserted into a cylindrical connecting portion aligned in a straight line, and both ends of the metal pin 49 are fixed using E-rings 50. More preferably, the cylindrical connecting portion 48 through which one metal pin penetrates is provided at a plurality of positions so that the force is dispersed while maintaining a size that can withstand a break. Regarding the application of the fastening pressure, a plurality of bolts 46
Is screwed into the auxiliary plate 43 installed on the upper portion of the stack, and the disc spring 4
5 is compressed, whereby the required fastening pressure is applied to the laminate 41 via both end plates 42. According to the fastening method of the present invention, a form in which the bending member is movable and the fastening member is firmly connected is realized, and the reliability against impact and vibration is high. Further, since the fixing member is fixed by the E-ring, the attaching and detaching of the fastening member is very simple and the assembling property is excellent. DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS First, a method for forming an electrode will be described. A carbon powder having a particle size of several microns or less was immersed in an aqueous chloroplatinic acid solution, and a platinum catalyst was supported on the carbon powder by a reduction treatment. This platinum-supported carbon powder was dispersed in an alcohol solution of a polymer electrolyte to form a slurry. On the other hand, a thickness of 400 μm serving as an electrode base
Is impregnated with an aqueous dispersion of fluororesin (NEOFLON ND-1 manufactured by Daikin Industries, Ltd.), which is then dried and heat-treated at 400 ° C. for 30 minutes to impart water repellency to the carbon paper. Granted. Next, the above slurry was uniformly applied to one surface of the carbon paper subjected to the water-repellent treatment to form a catalytic reaction layer, thereby forming an electrode. Next, the two electrodes are placed on both sides of the polymer electrolyte membrane, which is slightly larger than the electrodes, so that the surfaces provided with the catalytic reaction layers face the polymer electrolyte membrane, respectively. , And a silicon rubber gasket was positioned on the periphery, and hot pressed at 100 ° C. for 5 minutes to obtain an electrode electrolyte assembly (MEA). Further, the MEA has a length of 20c.
m and a width of 10 cm. The obtained MEA is passed through a separator for 50 minutes.
The cells were laminated to form a laminate. The separator is made of carbon having a thickness of 4 mm and has airtightness. Further, a gas flow path having a width of 2 mm and a depth of 1 mm was formed on the surface in contact with the MEA by cutting. In addition, a cooling water channel was arranged for every two cells. SUS is placed above and below this laminate through insulating plates.
A 304 end plate was provided, and a fastening structure was formed by the method described in the embodiment. That is, four sets of metal bands (made of SUS304-CSP) having a thickness of 1 mm and a width of 65 mm, which are formed by welding the cylindrical connecting portions, and two sets of auxiliary plates (made of SCM435) having the cylindrical connecting portions, The stacked body is arranged so as to be surrounded by two zones, and S
Each is connected with a KD11 connecting pin and an E-ring. Further, a structure is adopted in which fastening force is provided by a disc spring disposed inside the lower auxiliary plate and a bolt screwed into the upper auxiliary plate.
The spring coefficient of the disc spring was 500 kgf / mm, and the fastening pressure during assembly was 13 kgf / cm 2 using a plurality of disc springs. When the pressure distribution of the separator plate was examined using thermal paper, it was confirmed that the pressure distribution was uniform over the entire surface. After the fastening, resin manifolds were installed on both sides of the battery stack via gaskets. Hydrogen, air, and cooling water are supplied and discharged through the manifold. After assembling the battery stack, hydrogen, air, and cooling water were supplied and discharged through the manifold, and the battery was operated. However, no gas leak or cooling water leak was confirmed, and the battery performance was good. Thereafter, a drop test was performed. The battery stack was allowed to fall five times from the height of 1 m onto the plastic tile floor, but no damage was found on the appearance of the stack or on the joints of the fastening members. After the drop test, hydrogen, air, and cooling water were supplied and discharged through the manifold, and the battery was operated. However, no gas leak or cooling water leak was confirmed, and the battery performance did not change. Next, a vibration test was performed on the above-described battery stack. A vibration test was performed under the conditions of 2 G, 12 Hz, and continuous 48 hours. After the test, hydrogen, air, and cooling water were supplied and discharged through the manifold in the same manner, and the battery was operated. However, no gas leak or cooling water leak was confirmed, and the battery performance did not change. According to the present invention, the fastening member is firmly connected to the bent portion while being movable, and a fastening mode of the polymer electrolyte fuel cell stack having high reliability against impact and vibration is realized. Was done. In addition, since the fastening member is fixed by the E-ring, the attachment and detachment of the fastening member is very easy and the assembling property is excellent. Furthermore, it is possible to apply a tightening pressure more evenly to the end plates disposed at both ends of the laminate, and the thickness of the end plates is also reduced.

【図面の簡単な説明】 【図1】一般的な高分子電解質型燃料電池の一部を切り
欠いた構成を示した断面図 【図2】従来の高分子電解質型燃料電池スタックの斜視
図 【図3】比較例である高分子電解質型燃料電池スタック
の構成を示した断面図 【図4】本発明の高分子電解質型燃料電池スタックの斜
視図 【図5】本発明の高分子電解質型燃料電池スタックの構
成を示した断面図 【符号の説明】 11 高分子電解質膜 12 触媒反応層 13 拡散層 14 電極 15 電極電解質接合体(MEA) 16,26 ガス流路 17 導電性セパレータ 18,28 冷却水路 19 ガスケット 20 シール材 21,31,41 燃料電池積層体 22,32,42 エンドプレート 23 締結ロッド 24 スクリューばね 33,43 上部補助プレート 34,44 下部補助プレート 35,45 皿ばね 36,46 ボルト 37,47 締結バンド 38 爪状凸部 39 溝状凹部 48 円筒状連結部 49 円棒状金属ピン 50 Eリング
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a cross-sectional view showing a configuration in which a part of a general polymer electrolyte fuel cell is cut away. FIG. 2 is a perspective view of a conventional polymer electrolyte fuel cell stack. FIG. 3 is a cross-sectional view showing the configuration of a polymer electrolyte fuel cell stack as a comparative example. FIG. 4 is a perspective view of the polymer electrolyte fuel cell stack of the present invention. FIG. 5 is a polymer electrolyte fuel of the present invention. Cross-sectional view showing configuration of battery stack [Description of reference numerals] 11 Polymer electrolyte membrane 12 Catalytic reaction layer 13 Diffusion layer 14 Electrode 15 Electrode electrolyte assembly (MEA) 16, 26 Gas flow path 17 Conductive separator 18, 28 Cooling Channel 19 Gasket 20 Sealing material 21, 31, 41 Fuel cell stack 22, 32, 42 End plate 23 Fastening rod 24 Screw spring 33, 43 Upper auxiliary plate 34, 44 Lower auxiliary play G, 35, 45 Belleville springs 36, 46 Bolts 37, 47 Fastening band 38 Claw-shaped convex portion 39 Groove-shaped concave portion 48 Cylindrical connecting portion 49 Circular metal pin 50 E-ring

───────────────────────────────────────────────────── フロントページの続き (72)発明者 小原 英夫 大阪府門真市大字門真1006番地 松下電 器産業株式会社内 (72)発明者 菅原 靖 大阪府門真市大字門真1006番地 松下電 器産業株式会社内 (72)発明者 松本 敏宏 大阪府門真市大字門真1006番地 松下電 器産業株式会社内 (72)発明者 山崎 達人 大阪府門真市大字門真1006番地 松下電 器産業株式会社内 (72)発明者 竹口 伸介 大阪府門真市大字門真1006番地 松下電 器産業株式会社内 (72)発明者 神原 輝壽 大阪府門真市大字門真1006番地 松下電 器産業株式会社内 (56)参考文献 特開 平11−97054(JP,A) 特開 平2−49360(JP,A) (58)調査した分野(Int.Cl.7,DB名) H01M 8/10 H01M 8/24 ──────────────────────────────────────────────────の Continued on the front page (72) Inventor Hideo Ohara 1006 Kadoma Kadoma, Kadoma City, Osaka Prefecture Matsushita Electric Industrial Co., Ltd. (72) Inventor Toshihiro Matsumoto 1006 Kadoma, Kadoma, Osaka Prefecture Inside Matsushita Electric Industrial Co., Ltd. (72) Inventor Tatsuto Yamazaki 1006 Odaka, Kazuma, Kadoma, Osaka Pref. Shinsuke Takeguchi 1006 Kadoma Kadoma, Kadoma City, Osaka Prefecture, Japan Matsushita Electric Industrial Co., Ltd. (72) Inventor Teruhisa Kanbara 1006 Odaka Kadoma, Kadoma City, Osaka Pref. 97054 (JP, A) JP-A-2-49360 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) H01M 8/10 H01M 8/24

Claims (1)

(57)【特許請求の範囲】 【請求項1】 水素イオン伝導性高分子電解質膜と、前
記水素イオン伝導性高分子電解質膜の両面に配置した一
対の電極と、前記電極の一方に燃料ガスを供給排出し、
他方に酸化剤ガスを供給排出するガス流路を有する一対
の導電性セパレータとを具備した単電池を複数個積層
し、前記積層部の両端に一対のエンドプレートを配置し
た高分子電解質型燃料電池スタックであって、下側の前記エンドプレートに対向するように配置された
下面側補助プレートと、前記下面側補助プレートに配設
され前記下側のエンドプレートを前記積層方向に付勢す
るばねと、上側の前記エンドプレートに対向するように
配置された上面側補助プレートと、前記上面側補助プレ
ートを厚み方向に貫通し下端が前記上側のエンドプレー
トに当接するよう該上面側補助プレートに螺合されたボ
ルトと、前記上面側補助プレートの対向する端部と前記
下面側補助プレートの対向する端部とをそれぞれ連結す
る少なくとも一対の金属製締結バンドとを具備し、前記
金属製締結バンドが円筒状の連結部によって前記上面側
補助プレート及び下面側補助プレートに対しそれぞれ回
転自在に係合しており、前記ボルトを締めることによ
り、前記ばね及び前記ボルトにより前記電池スタックの
積層方向に締結力が付与されて前記上面側補助プレート
と前記下面側補助プレートとで前記電池スタックが挟持
され、前記金属製締結バンドで前記電池スタックの積層
方向への加圧が維持されることで前記電池スタックが締
結されている、 ことを特徴とする高分子電解質型燃料電
池スタック。
(57) Claims 1. A hydrogen ion conductive polymer electrolyte membrane, a pair of electrodes disposed on both sides of the hydrogen ion conductive polymer electrolyte membrane, and a fuel gas Supply and discharge
A polymer electrolyte fuel cell in which a plurality of unit cells each including a pair of conductive separators having a gas flow path for supplying and discharging an oxidizing gas are stacked, and a pair of end plates are disposed at both ends of the stacked unit A stack, arranged to face the lower end plate
Disposed on the lower auxiliary plate and the lower auxiliary plate
And urges the lower end plate in the laminating direction.
Spring and the upper end plate.
The upper surface side auxiliary plate and the upper surface side auxiliary plate
Through the sheet in the thickness direction and the lower end
Screwed to the upper surface side auxiliary plate so as to contact
And the opposite end of the upper side auxiliary plate and the
Connect the opposite end of the lower auxiliary plate
At least one pair of metal fastening bands,
A metal fastening band is connected to the upper surface by a cylindrical connecting portion.
Turn each time for the auxiliary plate and the lower side auxiliary plate.
Rollably engaged, and by tightening the bolt
The battery stack by the spring and the bolt.
The upper surface side auxiliary plate is provided with a fastening force in a laminating direction.
And the lower side auxiliary plate sandwiches the battery stack
And stacking the battery stack with the metal fastening band.
The battery stack is tightened by maintaining the pressure in the
It is binding, the polymer electrolyte fuel cell stack, characterized in that.
JP31779399A 1999-11-09 1999-11-09 Polymer electrolyte fuel cell stack Expired - Fee Related JP3516892B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31779399A JP3516892B2 (en) 1999-11-09 1999-11-09 Polymer electrolyte fuel cell stack

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31779399A JP3516892B2 (en) 1999-11-09 1999-11-09 Polymer electrolyte fuel cell stack

Publications (2)

Publication Number Publication Date
JP2001135344A JP2001135344A (en) 2001-05-18
JP3516892B2 true JP3516892B2 (en) 2004-04-05

Family

ID=18092115

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31779399A Expired - Fee Related JP3516892B2 (en) 1999-11-09 1999-11-09 Polymer electrolyte fuel cell stack

Country Status (1)

Country Link
JP (1) JP3516892B2 (en)

Families Citing this family (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002027834A2 (en) * 2000-09-27 2002-04-04 Siemens Aktiengesellschaft Fuel cell module
JP4672892B2 (en) * 2001-03-30 2011-04-20 本田技研工業株式会社 Fuel cell stack
JP4809548B2 (en) * 2001-06-11 2011-11-09 本田技研工業株式会社 Fuel cell stack
JP2005044688A (en) 2003-07-24 2005-02-17 Honda Motor Co Ltd Fuel cell stack
CN100444452C (en) * 2003-07-25 2008-12-17 上海神力科技有限公司 A large-scale integrated fuel battery capable of being modularized assembled
JP4174022B2 (en) * 2003-10-20 2008-10-29 本田技研工業株式会社 Fuel cell stack
KR100982327B1 (en) * 2004-05-25 2010-09-15 삼성에스디아이 주식회사 Stack for fuel cell and fuel cell system
US7641999B2 (en) 2004-08-27 2010-01-05 Honda Motor Co., Ltd. Fuel cell stack
JP4789448B2 (en) * 2004-10-08 2011-10-12 本田技研工業株式会社 Fuel cell stack
KR100696638B1 (en) 2005-09-05 2007-03-19 삼성에스디아이 주식회사 Secondary battery module
JP5109268B2 (en) * 2006-03-06 2012-12-26 トヨタ自動車株式会社 Fuel cell and its elastic module
JP2008004307A (en) * 2006-06-20 2008-01-10 Toyota Motor Corp Fuel cell
JP2008004306A (en) * 2006-06-20 2008-01-10 Toyota Motor Corp Fuel cell
JP5082430B2 (en) * 2006-12-25 2012-11-28 トヨタ自動車株式会社 Fuel cell
JP5134272B2 (en) * 2007-03-23 2013-01-30 本田技研工業株式会社 Fuel cell stack
DE102007021018A1 (en) * 2007-05-04 2008-11-06 Bayerische Motoren Werke Aktiengesellschaft Connector for tapping electrical power to high temperature fuel cell i.e. solid oxide fuel cell, has cable socket provided on section of conductor for connection of electric cable, where section of conductor is provided outside housing
US8007951B2 (en) * 2007-06-08 2011-08-30 GM Global Technology Operations LLC Fuel cell compression retention system using compliant strapping
US20090162726A1 (en) * 2007-12-20 2009-06-25 Kemal Ozgur Compression apparatus for fuel cell stack
JP5200533B2 (en) * 2007-12-28 2013-06-05 トヨタ自動車株式会社 Fuel cell unit and fuel cell
EP2280442A4 (en) * 2008-05-19 2014-12-03 Panasonic Corp Fuel cell and method for diassembling the same
JP2009295437A (en) * 2008-06-05 2009-12-17 Nippon Telegr & Teleph Corp <Ntt> Crimp type cell of fuel cell
CN102171881B (en) * 2008-12-16 2014-06-18 松下电器产业株式会社 Cell stack of fuel cells and method for fastening cell stack of fuel cells
US8697312B2 (en) * 2008-12-16 2014-04-15 Panasonic Corporation Cell stack of fuel cell and method of fastening cell stack of fuel cell
US8871405B2 (en) 2009-02-05 2014-10-28 Panasonic Corporation Polymer electrolyte fuel cell stack
JP6018463B2 (en) * 2012-09-18 2016-11-02 株式会社東芝 Fuel cell
KR101422761B1 (en) * 2013-03-15 2014-07-24 삼성중공업 주식회사 Structure for integrating fuel cell stack
JP2014183015A (en) * 2013-03-21 2014-09-29 Toyota Motor Corp Fuel cell
FR3116387B1 (en) * 2020-11-16 2023-05-12 Commissariat Energie Atomique CLAMPING DEVICE FOR AN ELECTROCHEMICAL STACK, AND ASSEMBLY FORMED BY THE CLAMPING DEVICE AND THE ELECTROCHEMICAL STACK

Also Published As

Publication number Publication date
JP2001135344A (en) 2001-05-18

Similar Documents

Publication Publication Date Title
JP3516892B2 (en) Polymer electrolyte fuel cell stack
EP0981174B1 (en) Polymer electrolyte fuel cell
EP0981175B1 (en) Polymer electrolyte fuel cell stack
KR100372926B1 (en) Polymer electrolyte fuel cell and method of manufacture thereof
US7892695B2 (en) Fuel cell stack
US8007949B2 (en) Edge-protected catalyst-coated diffusion media and membrane electrode assemblies
US20050186462A1 (en) PEM fuel cell stack with floating current collector plates
WO2006077762A1 (en) Flat laminate type fuel cell and fuel cell stack
US20050255362A1 (en) Fuel cell and related manufacturing method
CA2700901C (en) Fuel cell stack with thermally insulating non-power-generating cells
JP4071032B2 (en) Solid polymer fuel cell and power generation system using the same
JP4680338B2 (en) POLYMER ELECTROLYTE FUEL CELL AND METHOD OF CONNECTING THE SAME
KR100413397B1 (en) Polymer electrolyte fuel cell and its usage
JP3420508B2 (en) Polymer electrolyte fuel cell
JP3454722B2 (en) Polymer electrolyte fuel cell
JPH0878044A (en) Fuel cell stack
JP2000067903A (en) Solid polymer type fuel cell
JP4859281B2 (en) Membrane electrode assembly for polymer electrolyte fuel cell
JP3425086B2 (en) Polymer electrolyte fuel cell, system using the same, and method of installing the same
JPS5975576A (en) Fuel cell
JP3580525B2 (en) Polymer electrolyte fuel cell
JP2001167789A (en) High molecule electrolyte fuel cell
JP2001135343A (en) High molecular electrolyte fuel cell stack
JPH11312530A (en) Solid polymer electrolyte type fuel cell
JP7036607B2 (en) Fuel cell

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040120

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040121

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080130

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090130

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090130

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100130

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110130

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110130

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120130

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130130

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees