JPH09120833A - Solid high polymer electrolyte fuel cell - Google Patents

Solid high polymer electrolyte fuel cell

Info

Publication number
JPH09120833A
JPH09120833A JP7277280A JP27728095A JPH09120833A JP H09120833 A JPH09120833 A JP H09120833A JP 7277280 A JP7277280 A JP 7277280A JP 27728095 A JP27728095 A JP 27728095A JP H09120833 A JPH09120833 A JP H09120833A
Authority
JP
Japan
Prior art keywords
gas
fuel
fuel cell
polymer electrolyte
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7277280A
Other languages
Japanese (ja)
Inventor
Yasuhito Tanaka
泰仁 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP7277280A priority Critical patent/JPH09120833A/en
Publication of JPH09120833A publication Critical patent/JPH09120833A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

PROBLEM TO BE SOLVED: To provide a fuel cell in which reaction gas can be introduced at a gas introducing part of a fuel cell lamination body without generating water drops to achieve stable operation for a long period. SOLUTION: A fuel cell lamination body comprises plural cells 6 laminated with each other, collector plates 7A, 7B and insulation plates 8A, 8B disposed on both ends of them, and tightening plates 9A, 9B disposed on both end surfaces of them, and tightening devices 12 to pressurize and support them at specified pressure. In this case, gas introducing tubes 10A, 10B, and gas discharge tubes 17A, 17B are respectively installed on upper end surfaces and lower end surfaces of the insulation plates 8A, 8B, so fuel gas and oxidier gas are distributed to the respective cells 6, thereby generation of water drops by cooling at an introducing part can be avoided.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】この発明は、固体高分子電解
質型燃料電池の燃料電池本体の構成に関する。
TECHNICAL FIELD The present invention relates to a structure of a fuel cell body of a solid polymer electrolyte fuel cell.

【0002】[0002]

【従来の技術】図3は、従来より用いられている固体高
分子電解質型燃料電池の単電池の構成例を模式的に示し
た断面図である。図3に示した単電池6において、燃料
電池セル1は、薄い矩形状の固体高分子電解質膜からな
る電解質層1Aの両主面に燃料電極1Bと酸化剤電極1
Cを密接して積層して構成されている。燃料電極1Bと
酸化剤電極1Cは、ともに触媒活性物質を含む触媒層
と、この触媒層を支持するとともに燃料ガスあるいは酸
化剤ガスの供給、排出を行い、さらには集電部材として
の役割を果たす電極基材とからなり、触媒層を電解質層
1Aの両主面にホットプレスにより密着させて配設され
ている。燃料電池セル1の燃料電極1B側に面して配さ
れたセパレータ2Aは、ガス不透過性の材料よりなり、
燃料電極1Bの面に相対して燃料ガスを通流させるため
の凹状に形成された複数の燃料ガス通流溝3Aを備えて
おり、各燃料ガス通流溝3Aの間の凸状の突出部の先端
面は燃料電極1Bの面に密接されている。同様に、酸化
剤電極1Cに面して配されたセパレータ2Bも、ガス不
透過性の材料よりなり、酸化剤電極1Cの面に相対して
酸化剤ガスを通流させる複数の酸化剤ガス通流溝3Bを
備えており、各酸化剤ガス通流溝3Bの間の凸状の突出
部の先端面は酸化剤電極1Cの面に密接されている。ま
た、ガスシール体5は、燃料ガス通流溝3Aを流れる燃
料ガス、および酸化剤ガス通流溝3Bを流れる酸化剤ガ
スが、それぞれの通流路の外へ漏洩するのを防止する役
割を果たすものであり、セパレータ2A、2Bの周縁部
と燃料電池セル1の周縁部の空所に配置されている。
2. Description of the Related Art FIG. 3 is a cross-sectional view schematically showing a structural example of a single cell of a solid polymer electrolyte fuel cell which has been conventionally used. In the unit cell 6 shown in FIG. 3, the fuel cell 1 has a fuel electrode 1B and an oxidizer electrode 1 on both main surfaces of an electrolyte layer 1A made of a thin rectangular solid polymer electrolyte membrane.
It is configured by closely stacking C. The fuel electrode 1B and the oxidant electrode 1C both support a catalyst layer containing a catalytically active substance, supply and discharge a fuel gas or an oxidant gas, and further serve as a current collecting member. It is composed of an electrode base material, and the catalyst layer is disposed in close contact with both main surfaces of the electrolyte layer 1A by hot pressing. The separator 2A disposed facing the fuel electrode 1B side of the fuel cell 1 is made of a gas impermeable material,
It is provided with a plurality of recessed fuel gas passage grooves 3A for allowing the fuel gas to flow therethrough facing the surface of the fuel electrode 1B, and a convex protrusion between the fuel gas passage grooves 3A. The tip surface of the is closely contacted with the surface of the fuel electrode 1B. Similarly, the separator 2B arranged facing the oxidant electrode 1C is also made of a gas impermeable material, and has a plurality of oxidant gas passages that allow the oxidant gas to flow therethrough facing the surface of the oxidant electrode 1C. The flow grooves 3B are provided, and the tip surfaces of the convex projections between the oxidant gas flow grooves 3B are in close contact with the surface of the oxidant electrode 1C. Further, the gas seal body 5 has a role of preventing the fuel gas flowing through the fuel gas flow groove 3A and the oxidant gas flowing through the oxidant gas flow groove 3B from leaking out of the respective flow paths. This is achieved, and the separators 2A, 2B and the fuel cell 1 are arranged in the voids in the peripheral edge portions.

【0003】1個の燃料電池セル1が発生する電圧は1
〔V〕程度以下の低い値であるので、上記の図3に示し
たごとき構成の単電池6を複数個互いに直列接続して燃
料電池積層体を構成し、発生電圧を高めて実用に供する
のが一般的である。図4は、固体高分子電解質型燃料電
池の燃料電池積層体の代表的な従来例を模式的に示した
斜視図である。
The voltage generated by one fuel cell 1 is 1
Since it is a low value of about [V] or less, a plurality of unit cells 6 having the structure as shown in FIG. 3 are connected in series to each other to form a fuel cell stack, and the generated voltage is increased for practical use. Is common. FIG. 4 is a perspective view schematically showing a typical conventional example of a fuel cell stack of a solid polymer electrolyte fuel cell.

【0004】図に見られるように、本構成例の燃料電池
積層体は、複数の単電池6を順次積層し、その両端に複
数の単電池6で生じた直流電力を取り出すための集電板
7A、7Bと、構造体から電気的に絶縁するための絶縁
板13A、13Bとを配設し、さらにこれらの両端に締
付板14A、14Bを配し、締付具12によって適度の
加圧力を加えて締め付けて構成されている。両端に配さ
れた締付板14A、14Bの側端面には、上部に燃料ガ
スと酸化剤ガスを導入するガス導入口15A、15B
が、また下部にはこれらのガスを排出するガス排出口1
6A、16Bが備えられている。ガス導入口15A、1
5Bより導入されたガスは、積層された単電池6へと送
られ、単電池6の内部のガス通流溝を下側、すなわち重
力方向へと流れつつ電気化学反応を生じて発電し、ガス
排出口16A、16Bへと送られて外部へ排出される。
As shown in the figure, in the fuel cell stack of this configuration example, a plurality of unit cells 6 are sequentially stacked, and a current collector plate for extracting DC power generated by the plurality of unit cells 6 at both ends thereof. 7A, 7B and insulating plates 13A, 13B for electrically insulating from the structure are arranged, and further, tightening plates 14A, 14B are arranged at both ends thereof, and a proper pressing force is applied by the tightening tool 12. It is configured by adding and tightening. Gas inlets 15A, 15B for introducing the fuel gas and the oxidant gas are provided on the upper side of the side end surfaces of the tightening plates 14A, 14B arranged at both ends
However, there is also a gas outlet 1 for discharging these gases at the bottom.
6A and 16B are provided. Gas inlet 15A, 1
The gas introduced from 5B is sent to the stacked unit cells 6 and flows through the gas flow grooves inside the unit cells 6 toward the lower side, that is, in the direction of gravity to generate an electrochemical reaction to generate power, It is sent to the discharge ports 16A and 16B and discharged to the outside.

【0005】図5は、図4に示した従来例の燃料電池積
層体のガス導入部の構成を模式的に示した要部断面図で
ある。積層された複数の単電池6の端部に配された集電
板7A、絶縁板13A、締付板14Aには、ガス導入口
15Aに連通し水平方向へと導かれた連通孔が形成され
ており、導入されたガスはこの連通孔を通って各単電池
6へと送られる。集電板7A、絶縁板13A、締付板1
4Aの積層面の連通孔の外周部分には、図に見られるよ
うにシール材11が配設されており、連通孔を流れるガ
スの外部への漏洩を防止している。本図では図4のガス
導入口15Aに連通する部分を示したが、ガス導入口1
5Bに連通する部分、ガス排出口16A、16Bに連通
する部分も同様に連通孔が形成されており、すでに述べ
たように、燃料ガスと酸化剤ガスは、水平方向に導入さ
れ、各単電池6の上部より下部へと重力方向へ流れ、水
平方向に導かれて排出される構成である。
FIG. 5 is a cross-sectional view of an essential part schematically showing the structure of the gas introducing portion of the conventional fuel cell stack shown in FIG. The current collector plate 7A, the insulating plate 13A, and the tightening plate 14A arranged at the ends of the plurality of stacked unit cells 6 are formed with communication holes that communicate with the gas introduction port 15A and are guided in the horizontal direction. The introduced gas is sent to each cell 6 through this communication hole. Current collecting plate 7A, insulating plate 13A, tightening plate 1
As shown in the figure, a sealing material 11 is disposed on the outer peripheral portion of the communication hole on the laminated surface of 4A to prevent the gas flowing through the communication hole from leaking to the outside. In this figure, the portion communicating with the gas inlet 15A in FIG. 4 is shown, but the gas inlet 1
5B and the portions communicating with the gas outlets 16A and 16B are also formed with communicating holes. As described above, the fuel gas and the oxidant gas are introduced in the horizontal direction, and each unit cell is connected. It flows in the direction of gravity from the upper part of 6 to the lower part, is guided in the horizontal direction, and is discharged.

【0006】[0006]

【発明が解決しようとする課題】固体高分子電解質型燃
料電池においては、電気化学反応による発電効率を高め
るには温度が高いことが望ましく、各単電池6を高温度
に保持し、所定温度に加熱したガスを供給する方式が一
般的に採られる。上記図4の構成の燃料電池積層体にお
いても、発電に伴う発熱を有効に活用して各単電池6を
高温度に保持し、加熱ガスを供給することによって、所
定の直流電力が得られることとなる。
In the solid polymer electrolyte fuel cell, it is desirable that the temperature is high in order to enhance the power generation efficiency by the electrochemical reaction, and each cell 6 is kept at a high temperature and kept at a predetermined temperature. A method of supplying heated gas is generally adopted. Also in the fuel cell stack having the configuration shown in FIG. 4, a predetermined DC power can be obtained by effectively utilizing the heat generated by power generation to maintain each cell 6 at a high temperature and supplying the heating gas. Becomes

【0007】上記図4の構成の燃料電池積層体において
は、発熱源となる各単電池6と集電板7A、7B、なら
びに熱伝導性の乏しい絶縁板13A、13Bは、いずれ
も端面のみ外部に露出する構成であるので、これらの構
成部品は比較的容易に高温に保持される。これに対し
て、これらを締め付ける両端の締付板14A、14B
は、一方の側面を外部に露出しているので、外気により
効率よく冷却されることとなり、他の構成部品に比べて
大幅に低い温度に保持されることとなる。
In the fuel cell stack having the structure shown in FIG. 4, each of the unit cells 6 serving as a heat source, the current collector plates 7A and 7B, and the insulating plates 13A and 13B having poor thermal conductivity are external only at their end faces. Because of the exposed structure, these components are relatively easily held at high temperatures. On the other hand, tightening plates 14A and 14B at both ends for fastening them
Since one of the side surfaces is exposed to the outside, it is efficiently cooled by the outside air and is maintained at a temperature significantly lower than those of other components.

【0008】しかるに、図4の構成においては、この締
付板14A、14Bの側端面に、燃料ガスと酸化剤ガス
を導入するガス導入口15A、15Bと、これらのガス
を排出するガス排出口16A、16Bが設けられている
ので、加熱してガス導入口15A、15Bへと供給され
たガスは、低温度に保持された締付板14A、14Bに
よって冷却され、含まれる蒸気が凝縮して水滴を生じる
可能性が大きくなる。水滴が生じると、ガスとともに単
電池6へと流れ込み、ガス通流溝を埋めてガスの通流を
遮断し、単電池6の発電効率を大幅に低下させる事態を
引き起こす危険性がある。
However, in the configuration of FIG. 4, gas inlets 15A and 15B for introducing the fuel gas and the oxidant gas and gas outlets for exhausting these gases are formed on the side end faces of the fastening plates 14A and 14B. Since 16A and 16B are provided, the gas heated and supplied to the gas inlets 15A and 15B is cooled by the tightening plates 14A and 14B that are kept at a low temperature, and the contained vapor is condensed. The chances of water droplets increasing. When water droplets are generated, they may flow into the unit cell 6 together with the gas, fill the gas flow groove to block the flow of gas, and cause a situation in which the power generation efficiency of the unit cell 6 is significantly reduced.

【0009】本発明の目的は、燃料電池積層体のガス導
入部において反応ガスが水滴を発生することなく導入さ
れ、発電効率が低下することなく長期にわたり安定して
運転できる固体高分子電解質型燃料電池を提供すること
にある。
An object of the present invention is to provide a solid polymer electrolyte fuel in which the reaction gas is introduced in the gas introduction portion of the fuel cell stack without generating water droplets and can be stably operated for a long period of time without lowering power generation efficiency. To provide batteries.

【0010】[0010]

【課題を解決するための手段】上記の目的を達成するた
めに、本発明においては、固体高分子電解質膜からなる
電解質層の二つの主面にそれぞれ燃料電極と酸化剤電極
とを密着して配してなる燃料電池セルと、燃料電池セル
の燃料電極側の側面に配された複数の燃料ガス通流用溝
を有するセパレータと、燃料電池セルの酸化剤電極側の
側面に配された複数の酸化剤ガス通流用溝を有するセパ
レータとを備えてなる単電池を複数個直列に積層し、そ
の両端に電気絶縁用の絶縁板を介在させて締付板を配設
して加圧保持し、燃料電極に燃料ガスを、また酸化剤電
極に酸化剤ガスを供給して直流電力を得る固体高分子電
解質型燃料電池において、上記の絶縁板を、例えば、ポ
リカーボネイト、フッ素樹脂、繊維強化プラスチック等
の電気絶縁性に優れ熱伝導性の低い良電気絶縁性材料よ
り形成し、かつ、燃料電池積層体の積層方向と直交方向
に位置する絶縁板の端面に、燃料ガスおよび酸化剤ガス
のガス導入口とガス排出口のうち少なくともガス導入口
を備えることとする。
In order to achieve the above object, in the present invention, a fuel electrode and an oxidizer electrode are adhered to two main surfaces of an electrolyte layer made of a solid polymer electrolyte membrane, respectively. A plurality of fuel cells, a separator having a plurality of fuel gas passage grooves arranged on the side surface of the fuel cell on the fuel electrode side, and a plurality of separators arranged on the side surface of the fuel cell on the oxidant electrode side. A plurality of unit cells comprising a separator having a groove for flowing an oxidant gas are stacked in series, and an insulating plate for electrical insulation is interposed at both ends thereof to dispose a tightening plate and hold under pressure. In a solid polymer electrolyte fuel cell in which fuel gas is supplied to the fuel electrode and oxidant gas is supplied to the oxidant electrode to obtain DC power, the insulating plate may be formed of, for example, polycarbonate, fluororesin, fiber reinforced plastic, or the like. Excellent electrical insulation The end face of the insulating plate, which is formed of a good electrically insulating material having low thermal conductivity and is located in the direction orthogonal to the stacking direction of the fuel cell stack, has a gas inlet and a gas outlet for fuel gas and oxidant gas. At least the gas inlet will be provided.

【0011】上記のごとく、電気絶縁性に優れ熱伝導性
の低い良電気絶縁性材料より形成された絶縁板の端面
に、燃料ガスおよび酸化剤ガスのガス導入口とガス排出
口のうち少なくともガス導入口を備えることとすれば、
絶縁板は、締付板と異なり、高温に保持されるので、供
給される燃料ガスおよび酸化剤ガスが冷却されて水滴を
生じる恐れがなく、したがって単電池に水滴が入って特
性が低下する事態は生じない。
As described above, at least one of the gas introduction port and the gas discharge port of the fuel gas and the oxidant gas is provided on the end face of the insulating plate formed of the good electrically insulating material having the excellent electric insulating property and the low thermal conductivity. If you have an inlet,
Unlike the tightening plate, the insulating plate is kept at a high temperature, so that the supplied fuel gas and oxidant gas are not cooled to cause water droplets, and therefore water droplets enter the cell and the characteristics deteriorate. Does not occur.

【0012】[0012]

【発明の実施の形態】図1は、本発明の固体高分子電解
質型燃料電池の実施の形態を示す燃料電池積層体の模式
的な斜視図である。本図の燃料電池積層体の構成と図4
に示した従来例との相違点は、積層された単電池6の両
端に配設された絶縁板8A、8B、ならびに締付板9
A、9Bの構成にある。すなわち、図4に示した従来例
では、締付板14A、14Bの側面に設けられたガス導
入口15A、15Bおよびガス排出口16A、16Bに
より燃料ガスおよび酸化剤ガスが導入、排出されていた
のに対して、図1の燃料電池積層体においては、締付板
9A、9Bにはガスの導入、排出口がなく、電気絶縁性
に優れ、かつ熱伝導性の悪い材料であるポリカーボネイ
トからなる絶縁板8Aと8Bのそれぞれの上端面にガス
導入管10Aと10Bが、またそれぞれの下端面にガス
排出管17Aと17Bが配設されているのが特徴であ
る。
DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 is a schematic perspective view of a fuel cell stack showing an embodiment of a solid polymer electrolyte fuel cell of the present invention. The structure of the fuel cell stack of this figure and FIG.
The difference from the conventional example shown in FIG. 3 is that the insulating plates 8A and 8B arranged at both ends of the stacked unit cells 6 and the tightening plate 9 are provided.
It is in the configuration of A and 9B. That is, in the conventional example shown in FIG. 4, the fuel gas and the oxidant gas were introduced and discharged through the gas inlets 15A and 15B and the gas outlets 16A and 16B provided on the side surfaces of the tightening plates 14A and 14B. On the other hand, in the fuel cell stack of FIG. 1, the tightening plates 9A and 9B are made of polycarbonate, which is a material having no gas introduction / exhaust ports, excellent electrical insulation, and poor thermal conductivity. The insulating plates 8A and 8B are characterized in that gas introducing pipes 10A and 10B are provided on the upper end faces thereof, and gas discharge pipes 17A and 17B are provided on the lower end faces thereof, respectively.

【0013】図2は、図1の燃料電池積層体のガス導入
部分の構成を示す要部断面図である。本図はガス導入管
10Aに連なるガス導入部分の構成を示したものである
が、ガス導入管10Bに連なるガス導入部分、さらにガ
ス排出管17A、17Bに連なるガス排出部分も同様に
構成されている。図2に示したガス導入管10Aに連な
るガス導入部分においては、絶縁板8Aの上端面にガス
導入管10Aが連結されており、ガス導入管10Aより
導入された反応ガスは、絶縁板8Aの内部のガス通流孔
を通して水平方向へと導かれ、集電板7Aに設けられた
通流孔を介して積層されたそれぞれの単電池6へと送ら
れる。ガス導入管10Aの絶縁板8Aとの連結面、絶縁
板8Aと集電板7Aとの連結面、さらに集電板7Aと単
電池6との連結面には、シール材11が配設され、導入
された反応ガスの漏洩を防止している。
FIG. 2 is a cross-sectional view of an essential part showing the structure of the gas introduction portion of the fuel cell stack of FIG. Although this figure shows the configuration of the gas introduction portion connected to the gas introduction pipe 10A, the gas introduction portion connected to the gas introduction pipe 10B and the gas discharge portion connected to the gas discharge pipes 17A and 17B are also similarly configured. There is. In the gas introducing portion connected to the gas introducing pipe 10A shown in FIG. 2, the gas introducing pipe 10A is connected to the upper end surface of the insulating plate 8A, and the reaction gas introduced from the gas introducing pipe 10A is It is guided in the horizontal direction through the gas flow holes inside and is sent to each of the stacked unit cells 6 through the flow holes provided in the current collector 7A. A sealing material 11 is provided on the connection surface of the gas introduction pipe 10A with the insulating plate 8A, the connection surface of the insulating plate 8A with the current collector plate 7A, and the connection surface between the current collector plate 7A and the unit cell 6. The leakage of the introduced reaction gas is prevented.

【0014】本構成では、反応ガスが温度の高い絶縁板
8Aを通して導入され、温度の低い締付板9Aを通過し
ないので、反応ガスが導入部において冷却されて水滴を
生じる恐れはない。したがって、単電池6へ水滴が流れ
込み特性を劣化させる危険性もない。なお、上記の構成
例では絶縁板8Aと8Bをポリカーボネイトからなるも
のとしているが、ポリカーボネイトに限るものではな
く、フッ素樹脂、繊維強化プラスチック等の電気絶縁性
に優れ熱伝導性の低い良電気絶縁性材料よりなるものと
しても同様な効果が得られることとなる。
In this structure, since the reaction gas is introduced through the insulating plate 8A having a high temperature and does not pass through the tightening plate 9A having a low temperature, there is no possibility that the reaction gas is cooled in the introducing portion to generate water droplets. Therefore, there is no risk of water droplets flowing into the unit cell 6 and deteriorating the characteristics. Although the insulating plates 8A and 8B are made of polycarbonate in the above configuration example, the insulating plates 8A and 8B are not limited to polycarbonate, and are excellent in electrical insulation of fluororesin, fiber reinforced plastic, etc. and have low thermal conductivity and good electrical insulation. The same effect can be obtained even if the material is made of a material.

【0015】[0015]

【発明の効果】上述のように、本発明によれば、固体高
分子電解質膜からなる電解質層の二つの主面にそれぞれ
燃料電極と酸化剤電極とを密着して配してなる燃料電池
セルと、燃料電池セルの燃料電極側の側面に配された複
数の燃料ガス通流用溝を有するセパレータと、燃料電池
セルの酸化剤電極側の側面に配された複数の酸化剤ガス
通流用溝を有するセパレータとを備えてなる単電池を複
数個直列に積層し、その両端に電気絶縁用の絶縁板を介
在させて締付板を配設して加圧保持し、燃料電極に燃料
ガスを、また酸化剤電極に酸化剤ガスを供給して直流電
力を得る固体高分子電解質型燃料電池において、絶縁板
を、例えば、ポリカーボネイト、フッ素樹脂、繊維強化
プラスチック等の電気絶縁性に優れ熱伝導性の低い良電
気絶縁性材料より形成し、かつ、燃料電池積層体の積層
方向と直交方向に位置する絶縁板の端面に、燃料ガスお
よび酸化剤ガスのガス導入口とガス排出口のうち少なく
ともガス導入口を備えることとしたので、燃料電池積層
体のガス導入部において反応ガスが水滴を発生すること
なく導入されることとなり、発電効率が低下することな
く長期にわたり安定して運転できる固体高分子電解質型
燃料電池が得られることとなった。
As described above, according to the present invention, a fuel battery cell in which a fuel electrode and an oxidant electrode are closely attached to two main surfaces of an electrolyte layer composed of a solid polymer electrolyte membrane, respectively. A separator having a plurality of fuel gas passage grooves arranged on the fuel electrode side surface of the fuel cell, and a plurality of oxidant gas passage grooves arranged on the oxidant electrode side surface of the fuel cell. A plurality of unit cells each having a separator having are stacked in series, and clamping plates are arranged at both ends thereof with an insulating plate for electrical insulation interposed therebetween to pressurize and hold, and fuel gas to a fuel electrode, Further, in a solid polymer electrolyte fuel cell in which an oxidant gas is supplied to an oxidant electrode to obtain direct current power, an insulating plate is made of, for example, polycarbonate, fluororesin, fiber reinforced plastic, or the like having excellent electrical insulation and thermal conductivity. Lower than electrical insulating material In addition, since the end face of the insulating plate located in the direction orthogonal to the stacking direction of the fuel cell stack is provided with at least the gas inlet port of the fuel gas and the oxidant gas and the gas outlet port, The reaction gas is introduced in the gas introduction part of the fuel cell stack without generating water droplets, and a solid polymer electrolyte fuel cell that can be stably operated for a long period without lowering power generation efficiency can be obtained. Became.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の固体高分子電解質型燃料電池の実施の
形態を示す燃料電池積層体の模式的な斜視図
FIG. 1 is a schematic perspective view of a fuel cell stack showing an embodiment of a solid polymer electrolyte fuel cell of the present invention.

【図2】図1の燃料電池積層体のガス導入部分の構成を
示す要部断面図
FIG. 2 is a cross-sectional view of an essential part showing the configuration of a gas introduction portion of the fuel cell stack of FIG.

【図3】従来より用いられている固体高分子電解質型燃
料電池の単電池の構成例を模式的に示した断面図
FIG. 3 is a cross-sectional view schematically showing a configuration example of a unit cell of a solid polymer electrolyte fuel cell which has been conventionally used.

【図4】固体高分子電解質型燃料電池の燃料電池積層体
の代表的な従来例を模式的に示した斜視図
FIG. 4 is a perspective view schematically showing a typical conventional example of a fuel cell stack of a solid polymer electrolyte fuel cell.

【図5】図4の従来例の燃料電池積層体のガス導入部の
構成を示す要部断面図
5 is a cross-sectional view of an essential part showing the configuration of a gas introduction part of the conventional fuel cell stack of FIG.

【符号の説明】[Explanation of symbols]

1 燃料電池セル 1A 電解質層 1B 燃料電極 1C 酸化剤電極 2A,2B セパレータ 6 単電池 7A,7B 集電板 8A,8B 絶縁板 9A,9B 締付板 10A,10B ガス導入管 11 シール材 12 締付具 13A,13B 絶縁板 14A,14B 締付板 15A,15B ガス導入口 16A,16B ガス排出口 17A,17B ガス排出管 1 Fuel Battery Cell 1A Electrolyte Layer 1B Fuel Electrode 1C Oxidizer Electrode 2A, 2B Separator 6 Single Cell 7A, 7B Current Collector 8A, 8B Insulation 9A, 9B Clamping Plate 10A, 10B Gas Inlet Pipe 11 Sealant 12 Tightening Tool 13A, 13B Insulation plate 14A, 14B Tightening plate 15A, 15B Gas inlet 16A, 16B Gas outlet 17A, 17B Gas outlet pipe

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】固体高分子電解質膜からなる電解質層の二
つの主面にそれぞれ燃料電極と酸化剤電極とを密着して
配してなる燃料電池セルと、燃料電池セルの燃料電極側
の側面に配された複数の燃料ガス通流用溝を有するセパ
レータと、燃料電池セルの酸化剤電極側の側面に配され
た複数の酸化剤ガス通流用溝を有するセパレータとを備
えてなる単電池を複数個直列に積層し、その両端末に電
気絶縁用の絶縁板を介在させて締付板を配設して加圧保
持し、燃料電極に燃料ガスを、また酸化剤電極に酸化剤
ガスを供給して直流電力を得る固体高分子電解質型燃料
電池において、 前記絶縁板が電気絶縁性に優れ熱伝導性の低い良電気絶
縁性材料より形成されてなり、かつ、燃料電池積層体の
積層方向と直交方向に位置する絶縁板の端面に、燃料ガ
スおよび酸化剤ガスのガス導入口とガス排出口のうち少
なくともガス導入口が備えられてなることを特徴とする
固体高分子電解質型燃料電池。
1. A fuel battery cell in which a fuel electrode and an oxidizer electrode are closely attached to two main surfaces of an electrolyte layer made of a solid polymer electrolyte membrane, and a side surface of the fuel battery cell on the fuel electrode side. A plurality of unit cells each having a separator having a plurality of fuel gas flow grooves arranged in the fuel cell and a separator having a plurality of oxidant gas flow grooves arranged on the side surface of the fuel cell on the oxidant electrode side. They are stacked in series and a clamping plate is placed with an insulating plate for electrical insulation interposed at both ends to maintain pressure and supply fuel gas to the fuel electrode and oxidant gas to the oxidizer electrode. In the solid polymer electrolyte fuel cell for obtaining DC power, the insulating plate is formed of a good electrically insulating material having excellent electrical insulation and low thermal conductivity, and the stacking direction of the fuel cell stack is At the end face of the insulating plate located in the orthogonal direction, the fuel gas And a solid polymer electrolyte fuel cell, comprising at least a gas introduction port of a gas introduction port and a gas discharge port of an oxidant gas.
【請求項2】絶縁板を形成する前記良電気絶縁性材料
が、ポリカーボネイト、フッ素樹脂、繊維強化プラスチ
ックのうち、いずれか一つであることを特徴とする請求
項1に記載の固体高分子電解質型燃料電池。
2. The solid polymer electrolyte according to claim 1, wherein the good electrically insulating material forming the insulating plate is any one of polycarbonate, fluororesin and fiber reinforced plastic. Type fuel cell.
JP7277280A 1995-10-25 1995-10-25 Solid high polymer electrolyte fuel cell Pending JPH09120833A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7277280A JPH09120833A (en) 1995-10-25 1995-10-25 Solid high polymer electrolyte fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7277280A JPH09120833A (en) 1995-10-25 1995-10-25 Solid high polymer electrolyte fuel cell

Publications (1)

Publication Number Publication Date
JPH09120833A true JPH09120833A (en) 1997-05-06

Family

ID=17581337

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7277280A Pending JPH09120833A (en) 1995-10-25 1995-10-25 Solid high polymer electrolyte fuel cell

Country Status (1)

Country Link
JP (1) JPH09120833A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10058381A1 (en) * 2000-11-24 2002-06-13 Schalt Und Regeltechnik Gmbh Modular multifunctional fuel cell comprises fiber-reinforced plastic end plate, current removal plate, plastic sealing support, polymer electrolyte membrane, unipolar plate as gas distributor, fine gas distributor, and seals
JP2002343406A (en) * 2001-05-16 2002-11-29 Toyota Motor Corp Manifold for fuel cell
JP2004165077A (en) * 2002-11-15 2004-06-10 Fuji Electric Holdings Co Ltd Solid polymer fuel cell
JP2005524949A (en) * 2002-05-08 2005-08-18 ユーティーシー フューエル セルズ,エルエルシー Fuel cell stack with improved pressure plate and current collector
JP2005327558A (en) * 2004-05-13 2005-11-24 Fuji Electric Holdings Co Ltd Solid polymer fuel cell
US7588851B2 (en) 2002-05-20 2009-09-15 Toyota Jidosha Kabushiki Kaisha Fuel cell stack structure

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10058381A1 (en) * 2000-11-24 2002-06-13 Schalt Und Regeltechnik Gmbh Modular multifunctional fuel cell comprises fiber-reinforced plastic end plate, current removal plate, plastic sealing support, polymer electrolyte membrane, unipolar plate as gas distributor, fine gas distributor, and seals
DE10058381B4 (en) * 2000-11-24 2008-07-03 Inhouse Engineering Gmbh Modular Multifunctional Fuel Cell Stack with Polymer Eectric Membrane (PEM)
JP2002343406A (en) * 2001-05-16 2002-11-29 Toyota Motor Corp Manifold for fuel cell
JP4507451B2 (en) * 2001-05-16 2010-07-21 トヨタ自動車株式会社 Fuel cell manifold
JP2005524949A (en) * 2002-05-08 2005-08-18 ユーティーシー フューエル セルズ,エルエルシー Fuel cell stack with improved pressure plate and current collector
US7588851B2 (en) 2002-05-20 2009-09-15 Toyota Jidosha Kabushiki Kaisha Fuel cell stack structure
JP2004165077A (en) * 2002-11-15 2004-06-10 Fuji Electric Holdings Co Ltd Solid polymer fuel cell
JP2005327558A (en) * 2004-05-13 2005-11-24 Fuji Electric Holdings Co Ltd Solid polymer fuel cell

Similar Documents

Publication Publication Date Title
US5230966A (en) Coolant flow field plate for electrochemical fuel cells
JP3465379B2 (en) Solid polymer electrolyte fuel cell
US6764783B2 (en) Electrochemical fuel cell stack with improved reactant manifolding and sealing
JPH08273696A (en) Fuel cell stack structure
WO2003041204A1 (en) Combination of fuel cell and water electrolyzer with bidirectional heat exchange
JPH08222237A (en) Separator for fuel cell
JPH10510390A (en) PEM fuel cell
JPH10308227A (en) Solid high molecular electrolyte type fuel cell
JPH11283637A (en) Fuel cell
JPH10308229A (en) Solid high polymer electrolyte type fuel cell
US20090169969A1 (en) Bipolar plate of solid oxide fuel cell
JP3477926B2 (en) Solid polymer electrolyte fuel cell
JPH09120833A (en) Solid high polymer electrolyte fuel cell
JPH1012262A (en) Solid high polymer electrolyte fuel cell
US8778550B2 (en) Battery of fuel cells
JP3673252B2 (en) Fuel cell stack
JP2001068141A (en) Fuel cell
KR100633464B1 (en) Manufacturing method and Polymer electrolyte fuel cell and the stack
JPH0935737A (en) Solid polymer electrolyte fuel cell
JP2007207454A (en) Fuel cell stack
JP3995778B2 (en) Solid electrolyte fuel cell and stack structure of solid oxide fuel cell
KR101061395B1 (en) Fuel cell cooled and humidified by evaporation
JP2007234315A (en) Fuel cell
JPH08185884A (en) Solid electrolytic fuel cell
JPH0992309A (en) Solid polymer electrolyte fuel cell