JP2005327558A - Solid polymer fuel cell - Google Patents

Solid polymer fuel cell Download PDF

Info

Publication number
JP2005327558A
JP2005327558A JP2004143728A JP2004143728A JP2005327558A JP 2005327558 A JP2005327558 A JP 2005327558A JP 2004143728 A JP2004143728 A JP 2004143728A JP 2004143728 A JP2004143728 A JP 2004143728A JP 2005327558 A JP2005327558 A JP 2005327558A
Authority
JP
Japan
Prior art keywords
fuel cell
current collector
current
cell
current collecting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004143728A
Other languages
Japanese (ja)
Inventor
Yoshiaki Enami
義晶 榎並
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Holdings Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Holdings Ltd filed Critical Fuji Electric Holdings Ltd
Priority to JP2004143728A priority Critical patent/JP2005327558A/en
Publication of JP2005327558A publication Critical patent/JP2005327558A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To reduce heat loss generated at current collector terminal through wires. <P>SOLUTION: The solid polymer fuel cell comprises a cell part formed by laminating a plurality of unit cells 10 of the fuel cell, current collecting plates 20 for guiding the current generated at the fuel cell outward, arranged on both end part of the cell parts, and current collector terminals 20b for connecting wires 40 to a part of current collecting plates 20. A heat insulation member 30a is arranged between neighboring area of the current collector terminal 20a near to the current collector terminal 20b, and the unit cell 10. Alternatively, the gap between the neighboring area of the current collector terminal 20a near to the current collector terminal 20b and the unit cell 10 may be left as it is. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、燃料電池の単電池を多数積層したセル部分と、燃料電池が発電した電流を外部へ導くためにセル部分の両端に配置された集電板と、集電板の一部分に電線を接続するための集電端子とを具備する固体高分子形燃料電池に関し、特には、集電端子から電線を経由して生じる熱損失を低減することができる固体高分子形燃料電池に関する。   The present invention includes a cell portion in which a large number of unit cells of a fuel cell are stacked, a current collector plate disposed at both ends of the cell portion to guide the current generated by the fuel cell to the outside, and a wire on a part of the current collector plate. The present invention relates to a polymer electrolyte fuel cell including a current collecting terminal for connection, and more particularly to a polymer electrolyte fuel cell capable of reducing heat loss generated from a current collecting terminal via an electric wire.

固体高分子形燃料電池の主要な用途であるコジェネレーション用の小規模定置用発電装置では、燃料電池スタックからの放熱を抑えることが重要である。放熱量が大きいと、燃料電池冷却水の温度が低下して外部への熱出力が減少するので、燃料電池発電システムとしての総合エネルギー効率は低下する。特に燃料電池スタックの発熱量が少なくなる部分負荷運転では、放熱の影響は相対的に大きくなる。   In a small-scale stationary power generator for cogeneration, which is the main use of polymer electrolyte fuel cells, it is important to suppress heat dissipation from the fuel cell stack. When the amount of heat radiation is large, the temperature of the fuel cell cooling water is lowered and the heat output to the outside is reduced, so that the total energy efficiency as the fuel cell power generation system is lowered. In particular, in the partial load operation in which the heat generation amount of the fuel cell stack is reduced, the influence of heat radiation becomes relatively large.

燃料電池スタックの熱損失は、燃料電池スタック出口ガスが持ち出す熱エネルギーと、燃料電池スタック外表面からの放熱と、集電端子から電線を経由する熱損失との3通りに大別することができる。燃料電池スタック出口ガスによる熱損失は外部で熱交換により回収できるが、燃料電池スタック外表面からの放熱と電線を経由する熱損失は回収できないため、可能なかぎり小さくすることが望ましい。燃料電池スタック外表面からの放熱は断熱を強化することで小さくすることが容易にできるが、結果として、電線を経由する熱損失の比率が無視できなくなる。特に低コスト化を狙って電極面積を大きくすると、大電流を流すために電線導体の断面積が増加し、それにより、電線を経由する熱損失も大きくなる。   The heat loss of the fuel cell stack can be broadly divided into three types: thermal energy brought out by the fuel cell stack outlet gas, heat radiation from the outer surface of the fuel cell stack, and heat loss from the current collector terminal via the electric wire. . Although the heat loss due to the fuel cell stack outlet gas can be recovered by heat exchange outside, the heat loss from the outer surface of the fuel cell stack and the heat loss via the electric wire cannot be recovered, so it is desirable to make it as small as possible. Although the heat radiation from the outer surface of the fuel cell stack can be easily reduced by strengthening the heat insulation, as a result, the ratio of the heat loss via the electric wires cannot be ignored. In particular, when the electrode area is increased in order to reduce the cost, the cross-sectional area of the electric wire conductor increases in order to pass a large current, thereby increasing the heat loss via the electric wire.

電線を経由する熱損失を防ぐには、電線全体を完全に断熱して導体温度が電池温度に近くなるようにする方法がある。しかし、一定以上の長さがある電線は体積に比べて表面積が大きいため、断熱により導体温度を維持することは難しい。電線を細くすることで電線自体の抵抗発熱により温度を維持することもできるが、発熱量に相当する電気エネルギーが消費され発電効率が低下することになる。   To prevent heat loss via the electric wire, there is a method in which the entire electric wire is completely insulated so that the conductor temperature is close to the battery temperature. However, since an electric wire having a certain length or more has a larger surface area than its volume, it is difficult to maintain the conductor temperature by heat insulation. Although the temperature can be maintained by the resistance heat generation of the wire itself by making the wire thinner, the electric energy corresponding to the heat generation amount is consumed and the power generation efficiency is lowered.

集電端子からの熱損失を低減するための従来技術としては、例えば特開2003−109650号公報に記載されたような集電端子に熱交換コイルを巻きつけて反応ガスを予熱する方法がある。この方法は固体電解質形燃料電池のように電池温度が数百度にもなる場合には効率的な熱交換が可能であるが、固体高分子形燃料電池では運転温度が100℃以下と低いためにコイル方式では効率的な熱交換は難しく、また構造が複雑になるという欠点がある。   As a conventional technique for reducing the heat loss from the current collecting terminal, for example, there is a method for preheating the reaction gas by winding a heat exchange coil around the current collecting terminal as described in Japanese Patent Application Laid-Open No. 2003-109650. . This method allows efficient heat exchange when the cell temperature is several hundred degrees as in the case of a solid oxide fuel cell. However, the solid polymer fuel cell has a low operating temperature of 100 ° C. or less. In the coil system, efficient heat exchange is difficult, and the structure is complicated.

別の方法としては、例えば特開2003−45462号公報に開示されているように集電板の外側に発熱体を設け、温度低下時には発熱体から電流を取り出す方法がある。この方法は熱損失に伴うセル温度の低下を防ぐことが目的であるので、熱損失そのものを低減することはできない。従って、熱損失による総合エネルギー利用効率低下を防ぐことができないだけではなく、電力エネルギーの一部を熱に変えてセル温度低下を防ぐ方法であるために発電効率まで低下してしまうという欠点がある。   As another method, for example, as disclosed in Japanese Patent Application Laid-Open No. 2003-45462, there is a method in which a heating element is provided outside the current collector plate and current is taken out from the heating element when the temperature decreases. Since this method is intended to prevent the cell temperature from being lowered due to heat loss, the heat loss itself cannot be reduced. Therefore, it is not only possible to prevent a decrease in the total energy utilization efficiency due to heat loss, but also has a drawback that it reduces the power generation efficiency because it is a method for preventing a decrease in cell temperature by changing a part of the power energy to heat. .

通常の構成として固体高分子形燃料電池のスタックでは、図2に示すように、単電池10を多数積層したセル部分の両端に集電板20が配置される。集電板20の端に設けられた集電端子20bから電線40を通して他の機器と電気的に接続される。スタックを一定の圧力で締め付けるための締付板22は、絶縁板21によって集電板20と隔てられる。スタックの外表面は放熱を抑えるために断熱材30で覆われ、さらに断熱カバー31で外気から遮断される。集電端子20bの周辺も断熱材30bと断熱カバー31bで覆って断熱される。   In a stack of polymer electrolyte fuel cells as a normal configuration, current collecting plates 20 are disposed at both ends of a cell portion in which a large number of single cells 10 are stacked, as shown in FIG. A current collecting terminal 20b provided at the end of the current collecting plate 20 is electrically connected to another device through the electric wire 40. A clamping plate 22 for clamping the stack with a constant pressure is separated from the current collector plate 20 by an insulating plate 21. The outer surface of the stack is covered with a heat insulating material 30 in order to suppress heat dissipation, and is further shielded from outside air by a heat insulating cover 31. The periphery of the current collecting terminal 20b is also insulated by being covered with the heat insulating material 30b and the heat insulating cover 31b.

単電池10はカソードセパレータ60aとアノードセパレータ60bにより構成される。セパレータ60a,60bには、図3に示すように、空気、燃料、冷却水を単電池に分配・回収するためのマニホールド50a,50b,51a,51b,52a,52bが設けられていて、マニホールド接続部62により電極部61と接続される。外部から空気を供給するためのマニホールドを空気入口マニホールド50a、反応後の空気を排出するためのマニホールドを空気出口マニホールド50bと称し、外部から燃料を供給するためのマニホールドを燃料入口マニホールド51a、反応後の燃料を排出するためのマニホールドを燃料出口マニホールド51bと称し、外部から冷却水を供給するためのマニホールドを冷却水入口マニホールド52a、反応後の冷却水を排出するためのマニホールドを冷却水出口マニホールド52bと称する。マニホールド接続部62と電極部61には任意形状のガス流路が存在するが本発明では関連が少ないため説明を省略する。各マニホールドはパッキン63によりシールされる。またマニホールドは集電板20にも存在する。絶縁板21と締付板22にもマニホールドが連通して外部配管と接続される場合が多いが、厚い絶縁板の側面に外部配管との接続口を設ける場合もある。絶縁板21と締付板22の詳細な説明も本発明との関連が少ないため省略する。   The unit cell 10 includes a cathode separator 60a and an anode separator 60b. As shown in FIG. 3, the separators 60a, 60b are provided with manifolds 50a, 50b, 51a, 51b, 52a, 52b for distributing and collecting air, fuel, and cooling water to the single cells. The part 62 is connected to the electrode part 61. A manifold for supplying air from the outside is referred to as an air inlet manifold 50a, a manifold for discharging the air after reaction is referred to as an air outlet manifold 50b, and a manifold for supplying fuel from the outside is referred to as a fuel inlet manifold 51a. The manifold for discharging the fuel is called a fuel outlet manifold 51b, the manifold for supplying cooling water from the outside is the cooling water inlet manifold 52a, and the manifold for discharging the cooling water after reaction is the cooling water outlet manifold 52b. Called. The manifold connection portion 62 and the electrode portion 61 have arbitrary-shaped gas flow paths, but the description thereof is omitted because they are not related in the present invention. Each manifold is sealed with a packing 63. The manifold is also present on the current collector plate 20. In many cases, the manifold communicates with the insulating plate 21 and the fastening plate 22 and is connected to the external pipe. However, a connection port with the external pipe may be provided on the side surface of the thick insulating plate. Detailed descriptions of the insulating plate 21 and the clamping plate 22 are also omitted because they are not related to the present invention.

特開2003−109650号公報JP 2003-109650 A

特開2003−45462号公報JP 2003-45462 A

前記問題点に鑑み、本発明は、集電端子から電線を経由して生じる熱損失を低減することができる固体高分子形燃料電池を提供することを目的とする。   In view of the above problems, an object of the present invention is to provide a polymer electrolyte fuel cell capable of reducing heat loss generated from a current collecting terminal via an electric wire.

請求項1に記載の発明によれば、燃料電池の単電池を多数積層したセル部分と、前記燃料電池が発電した電流を外部へ導くために前記セル部分の両端に配置された集電板と、前記集電板の一部分に電線を接続するための集電端子とを具備する固体高分子形燃料電池において、前記集電端子の近傍における前記集電板と前記燃料電池の単電池との間に断熱材を配置したことを特徴とする固体高分子形燃料電池が提供される。   According to the first aspect of the present invention, a cell portion in which a large number of unit cells of the fuel cell are stacked, and current collector plates disposed at both ends of the cell portion to guide the current generated by the fuel cell to the outside, A polymer electrolyte fuel cell comprising a current collector terminal for connecting an electric wire to a part of the current collector plate, between the current collector plate and the unit cell of the fuel cell in the vicinity of the current collector terminal A solid polymer fuel cell is provided, characterized in that a heat insulating material is disposed on the solid polymer fuel cell.

請求項2に記載の発明によれば、前記集電端子の近傍における前記断熱材の厚さを、前記集電端子の近傍以外の場所における前記集電板の厚さの半分以下としたことを特徴とする請求項1に記載の固体高分子形燃料電池が提供される。   According to invention of Claim 2, the thickness of the said heat insulating material in the vicinity of the said current collection terminal shall be half or less of the thickness of the said current collection board in places other than the vicinity of the said current collection terminal. A solid polymer fuel cell according to claim 1 is provided.

請求項3に記載の発明によれば、燃料電池の単電池を多数積層したセル部分と、前記燃料電池が発電した電流を外部へ導くために前記セル部分の両端に配置された集電板と、前記集電板の一部分に電線を接続するための集電端子とを具備する固体高分子形燃料電池において、前記集電端子の近傍における前記集電板と前記燃料電池の単電池との間に隙間を設けたことを特徴とする固体高分子形燃料電池が提供される。   According to the invention described in claim 3, a cell portion in which a large number of single cells of the fuel cell are stacked, and current collector plates disposed at both ends of the cell portion in order to guide the current generated by the fuel cell to the outside, A polymer electrolyte fuel cell comprising a current collector terminal for connecting an electric wire to a part of the current collector plate, between the current collector plate and the unit cell of the fuel cell in the vicinity of the current collector terminal There is provided a polymer electrolyte fuel cell characterized in that a gap is provided in the battery.

請求項4に記載の発明によれば、燃料電池の単電池を多数積層したセル部分と、前記燃料電池が発電した電流を外部へ導くために前記セル部分の両端に配置された集電板と、前記集電板の一部分に電線を接続するための集電端子とを具備する固体高分子形燃料電池において、前記集電端子の近傍で前記集電板と前記燃料電池の単電池とを離間させたことを特徴とする固体高分子形燃料電池が提供される。   According to the invention described in claim 4, a cell portion in which a large number of single cells of the fuel cell are stacked, and current collector plates disposed at both ends of the cell portion for guiding the current generated by the fuel cell to the outside, A polymer electrolyte fuel cell comprising a current collector terminal for connecting an electric wire to a part of the current collector plate, wherein the current collector plate and the unit cell of the fuel cell are separated from each other in the vicinity of the current collector terminal A polymer electrolyte fuel cell is provided.

請求項5に記載の発明によれば、燃料電池の単電池を多数積層したセル部分と、前記燃料電池が発電した電流を外部へ導くために前記セル部分の両端に配置された集電板と、前記集電板の一部分に電線を接続するための集電端子と、各単電池に反応ガスを分配するための反応ガス入口マニホールドとを具備する固体高分子形燃料電池において、前記集電端子を前記反応ガス入口マニホールドに近接して配置したことを特徴とする固体高分子形燃料電池が提供される。   According to the invention described in claim 5, a cell portion in which a large number of single cells of the fuel cell are stacked, and current collector plates disposed at both ends of the cell portion for guiding the current generated by the fuel cell to the outside, In the polymer electrolyte fuel cell comprising: a current collecting terminal for connecting an electric wire to a part of the current collecting plate; and a reaction gas inlet manifold for distributing the reaction gas to each unit cell, the current collecting terminal Is disposed in proximity to the reaction gas inlet manifold. A solid polymer fuel cell is provided.

請求項6に記載の発明によれば、断熱材を挿入するための空間を、前記集電端子の近傍における前記集電板と前記反応ガス入口マニホールドとの間に設けたことを特徴とする請求項5に記載の固体高分子形燃料電池が提供される。   According to the invention described in claim 6, a space for inserting a heat insulating material is provided between the current collector plate and the reaction gas inlet manifold in the vicinity of the current collector terminal. Item 6. A polymer electrolyte fuel cell according to Item 5 is provided.

請求項1に記載の固体高分子形燃料電池では、集電端子の近傍における集電板と燃料電池の単電池との間に断熱材が配置されている。そのため、集電端子の近傍で集電板と燃料電池の単電池との間に断熱材が配置されない場合よりも、集電端子の近傍における燃料電池の単電池から集電板への熱伝導を妨げることができ、それにより、集電端子の温度を下げることができ、集電端子から電線を経由して生じる熱損失を低減することができる。   In the polymer electrolyte fuel cell according to claim 1, a heat insulating material is disposed between the current collector plate and the unit cell of the fuel cell in the vicinity of the current collector terminal. Therefore, the heat conduction from the single cell of the fuel cell to the current collector plate in the vicinity of the current collector terminal is greater than that in the case where no heat insulating material is disposed between the current collector plate and the single cell of the fuel cell near the current collector terminal. Therefore, the temperature of the current collecting terminal can be lowered, and heat loss generated from the current collecting terminal via the electric wire can be reduced.

請求項2に記載の固体高分子形燃料電池では、集電端子の近傍における断熱材の厚さが、集電端子の近傍以外の場所における集電板の厚さの半分以下とされている。そのため、集電端子の近傍における集電板の厚さが薄すぎるのに伴って集電端子の近傍における集電板および集電端子の電気抵抗が高くなりすぎてしまうのを回避することができる。   In the polymer electrolyte fuel cell according to claim 2, the thickness of the heat insulating material in the vicinity of the current collecting terminal is set to be equal to or less than half the thickness of the current collecting plate in a place other than the vicinity of the current collecting terminal. Therefore, it can be avoided that the electrical resistance of the current collector plate and the current collector terminal in the vicinity of the current collector terminal becomes too high as the thickness of the current collector plate in the vicinity of the current collector terminal is too thin. .

好ましくは、断熱材としてウレタンフォームが用いられる。そのため、薄い断熱材によって効果的に燃料電池の単電池から集電端子への熱移動量を下げることができる。   Preferably, urethane foam is used as the heat insulating material. Therefore, the amount of heat transfer from the unit cell of the fuel cell to the current collecting terminal can be effectively reduced by the thin heat insulating material.

請求項3に記載の固体高分子形燃料電池では、集電端子の近傍における集電板と燃料電池の単電池との間に隙間が設けられている。そのため、その隙間を占める熱伝導率の低い空気によって、集電端子の近傍における燃料電池の単電池から集電板への熱伝導を妨げることができる。それにより、集電端子の温度を下げることができ、集電端子から電線を経由して生じる熱損失を低減することができる。   In the polymer electrolyte fuel cell according to claim 3, a gap is provided between the current collector plate in the vicinity of the current collector terminal and the unit cell of the fuel cell. Therefore, heat conduction from the unit cell of the fuel cell to the current collector plate in the vicinity of the current collecting terminal can be prevented by the air having low thermal conductivity that occupies the gap. Thereby, the temperature of a current collection terminal can be lowered | hung and the heat loss which arises via an electric wire from a current collection terminal can be reduced.

熱伝導によるエネルギーの移動は導体の温度差に比例するため、集電端子からの熱損失を減少させるには集電端子の温度が低いことが望ましい点に鑑み、請求項4に記載の固体高分子形燃料電池では、集電端子の近傍で集電板と燃料電池の単電池とが直接接触しないように、集電端子の近傍で集電板と燃料電池の単電池とが離間せしめられている。そのため、集電端子の近傍で集電板と燃料電池の単電池とが接触せしめられている場合よりも、集電端子の近傍における燃料電池の単電池から集電板への熱伝導を妨げることができる。それにより、集電端子の近傍で集電板と燃料電池の単電池とが接触せしめられている場合よりも、集電端子の温度を下げることができる。その結果、集電端子の近傍で集電板と燃料電池の単電池とが接触せしめられている場合よりも、集電端子から電線を経由して生じる熱損失を低減することができる。   Since the movement of energy due to heat conduction is proportional to the temperature difference between the conductors, it is desirable that the temperature of the current collecting terminal is low in order to reduce the heat loss from the current collecting terminal. In the molecular fuel cell, the collector plate and the fuel cell unit cell are separated from each other in the vicinity of the collector terminal so that the collector plate and the unit cell of the fuel cell are not in direct contact with each other near the collector terminal. Yes. Therefore, the heat conduction from the single cell of the fuel cell to the current collector plate in the vicinity of the current collector terminal is prevented more than in the case where the current collector plate and the single cell of the fuel cell are in contact near the current collector terminal. Can do. Thereby, the temperature of the current collecting terminal can be lowered as compared with the case where the current collecting plate and the unit cell of the fuel cell are brought into contact in the vicinity of the current collecting terminal. As a result, it is possible to reduce the heat loss that occurs from the current collector terminal via the electric wire, compared to the case where the current collector plate and the unit cell of the fuel cell are in contact with each other near the current collector terminal.

つまり、請求項4に記載の固体高分子形燃料電池では、集電板と燃料電池の単電池とが部分的に離間せしめられており、詳細には、集電端子の近傍で集電板と燃料電池の単電池とが離間せしめられている。   That is, in the polymer electrolyte fuel cell according to claim 4, the current collector plate and the unit cell of the fuel cell are partially separated from each other. Specifically, the current collector plate The unit cell of the fuel cell is spaced apart.

燃料電池の単電池に供給される反応ガス、特に空気の温度は燃料電池の単電池の温度よりも低い場合が多いので、集電板の中でも空気入口マニホールドの周辺の温度が最も低くなる点に鑑み、請求項5に記載の固体高分子形燃料電池では、単電池よりも低温の反応ガスが通過せしめられる反応ガス入口マニホールドに近接して集電端子が配置されている。そのため、集電端子が反応ガス入口マニホールドから離れて配置される場合よりも、集電端子の温度を下げることができる。それにより、集電端子と外気との温度差が小さくなる。その結果、集電端子が反応ガス入口マニホールドから離れて配置される場合よりも、集電端子から電線を経由して生じる熱損失を低減することができる。   Since the temperature of the reaction gas, especially air, supplied to the unit cell of the fuel cell is often lower than the temperature of the unit cell of the fuel cell, the temperature around the air inlet manifold is the lowest among the current collector plates. In view of the above, in the polymer electrolyte fuel cell according to claim 5, the current collecting terminal is disposed in the vicinity of the reaction gas inlet manifold through which the reaction gas having a temperature lower than that of the unit cell is allowed to pass. Therefore, the temperature of the current collecting terminal can be lowered as compared with the case where the current collecting terminal is arranged away from the reaction gas inlet manifold. Thereby, the temperature difference between the current collecting terminal and the outside air is reduced. As a result, it is possible to reduce the heat loss that occurs from the current collector terminal via the electric wire, compared to the case where the current collector terminal is arranged away from the reaction gas inlet manifold.

反応ガス入口マニホールドには、空気入口マニホールドと、燃料入口マニホールドとが含まれるが、空気入口マニホールド内での反応ガス温度が燃料入口マニホールド内での反応ガス温度よりも低い場合には、空気入口マニホールドに近接して集電端子が配置される。一方、空気入口マニホールド内での反応ガス温度が燃料入口マニホールド内での反応ガス温度よりも高い場合には、燃料入口マニホールドに近接して集電端子が配置される。また、空気入口マニホールド内での反応ガス温度と燃料入口マニホールド内での反応ガス温度とが同程度である場合には、反応ガスに含まれる水蒸気濃度が低い側の入口マニホールドに近接して集電端子が配置される。   The reaction gas inlet manifold includes an air inlet manifold and a fuel inlet manifold, but if the reaction gas temperature in the air inlet manifold is lower than the reaction gas temperature in the fuel inlet manifold, the air inlet manifold A current collecting terminal is arranged in the vicinity. On the other hand, when the reaction gas temperature in the air inlet manifold is higher than the reaction gas temperature in the fuel inlet manifold, a current collecting terminal is disposed close to the fuel inlet manifold. In addition, when the reaction gas temperature in the air inlet manifold and the reaction gas temperature in the fuel inlet manifold are approximately the same, current collection is performed close to the inlet manifold on the side where the water vapor concentration contained in the reaction gas is low. Terminals are arranged.

好ましくは、反応ガス入口マニホールドから50mm以内の位置に集電端子が配置される。更に好ましくは、集電端子の近傍における集電板と反応ガス入口マニホールドとの間に断熱材が配置される。そのため、断熱効果を更に高めることができる。   Preferably, the current collecting terminal is arranged at a position within 50 mm from the reaction gas inlet manifold. More preferably, a heat insulating material is disposed between the current collecting plate and the reaction gas inlet manifold in the vicinity of the current collecting terminal. Therefore, the heat insulation effect can be further enhanced.

また、好ましくは、集電端子の近傍においては、10mm以上の長さにわたって集電板と燃料電池の単電池とが、離間せしめられる。更に好ましくは、長穴形状の反応ガス入口マニホールドの頂点ではなく、反応ガス入口マニホールドの長辺に近接して集電端子が配置される。   Preferably, in the vicinity of the current collecting terminal, the current collecting plate and the unit cell of the fuel cell are separated from each other over a length of 10 mm or more. More preferably, the current collecting terminal is disposed not at the apex of the long hole-shaped reaction gas inlet manifold but near the long side of the reaction gas inlet manifold.

請求項6に記載の固体高分子形燃料電池では、断熱材を挿入するための空間が、集電端子の近傍における集電板と反応ガス入口マニホールドとの間に設けられている。そのため、例えばその空間に断熱材を挿入することにより、断熱効果を更に高めることができる。   In the polymer electrolyte fuel cell according to claim 6, a space for inserting a heat insulating material is provided between the current collector plate and the reaction gas inlet manifold in the vicinity of the current collector terminal. Therefore, for example, by inserting a heat insulating material into the space, the heat insulating effect can be further enhanced.

図1は本発明の固体高分子形燃料電池の第1の実施形態の断面図である。図1において、10は単電池、20は集電板、20aは集電端子近傍部、20bは集電端子、30,30a,30bは断熱材、31,31bは断熱カバーである。40は電線、41は締付ボルト、60aはカソードセパレータ、60bはアノードセパレータである。図1に示すように、第1の実施形態の固体高分子形燃料電池では、集電板20は、表面に錫、亜鉛、ニッケルなどによるメッキが施された銅板である。集電板20の厚さは、通常1〜5mmである。燃料電池スタックの出力電流に応じた厚さの集電板が使用される。集電板20のうち、集電端子20bの近傍に位置する部分である集電端子近傍部20aと、単電池10とは、0.5〜2mmの幅をもって離間せしめられている。第1の実施形態の固体高分子形燃料電池では、集電端子近傍部20aと単電池10との間に断熱材30aが配置される。断熱材30aが厚いほど断熱効果は高くなるが、集電端子20bの電気抵抗を低くするために、断熱材30aの厚さは集電板20の厚さの半分以下とすることが望ましい。   FIG. 1 is a sectional view of a polymer electrolyte fuel cell according to a first embodiment of the present invention. In FIG. 1, 10 is a single cell, 20 is a current collecting plate, 20a is a current collecting terminal vicinity, 20b is a current collecting terminal, 30, 30a and 30b are heat insulating materials, and 31 and 31b are heat insulating covers. 40 is an electric wire, 41 is a fastening bolt, 60a is a cathode separator, and 60b is an anode separator. As shown in FIG. 1, in the polymer electrolyte fuel cell of the first embodiment, the current collector plate 20 is a copper plate whose surface is plated with tin, zinc, nickel or the like. The thickness of the current collector plate 20 is usually 1 to 5 mm. A current collector having a thickness corresponding to the output current of the fuel cell stack is used. In the current collector plate 20, the current collector terminal vicinity 20a, which is a portion located in the vicinity of the current collector terminal 20b, and the unit cell 10 are spaced apart with a width of 0.5 to 2 mm. In the polymer electrolyte fuel cell according to the first embodiment, the heat insulating material 30a is disposed between the current collecting terminal vicinity 20a and the unit cell 10. The thicker the heat insulating material 30a, the higher the heat insulating effect. However, in order to reduce the electrical resistance of the current collecting terminal 20b, the thickness of the heat insulating material 30a is preferably less than half the thickness of the current collecting plate 20.

断熱材30aの材質としては、ウレタンフォームが適している。このような断熱材の典型的な熱伝導率は0.03W/mKであり、銅の熱伝導率(400W/mK)に対して非常に小さいため、薄い断熱層でも効果的に単電池10と集電端子20bとの間の熱移動量を下げることができる。また、第2の実施形態の固体高分子形燃料電池では、集電端子近傍部20aと単電池10との間に断熱材30aを配置せず、集電端子近傍部20aと単電池10との間を隙間のままとすることも可能である。その場合でも、隙間の空気の熱伝導率は0.03W/mKと非常に小さく、空気の対流による熱伝達を含めても断熱効果を得ることができる。   As a material of the heat insulating material 30a, urethane foam is suitable. The typical thermal conductivity of such a heat insulating material is 0.03 W / mK, which is very small with respect to the thermal conductivity of copper (400 W / mK). The amount of heat transfer with the current collecting terminal 20b can be reduced. Further, in the polymer electrolyte fuel cell according to the second embodiment, the heat insulating material 30a is not disposed between the current collecting terminal vicinity 20a and the unit cell 10, and the current collecting terminal vicinity 20a and the unit cell 10 are not disposed. It is also possible to leave a gap. Even in that case, the thermal conductivity of the air in the gap is as very small as 0.03 W / mK, and a heat insulation effect can be obtained even if heat transfer by air convection is included.

図3は図1に示した第1の実施形態の固体高分子形燃料電池の主要部品の構成図である。図3において、50aは空気入口マニホールド、50bは空気出口マニホールド、51aは燃料入口マニホールド、51bは燃料出口マニホールド、52aは冷却水入口マニホールド、52bは冷却水出口マニホールド、61は電極部、62はマニホールド接続部、63はパッキンである。第1の実施形態の固体高分子形燃料電池では、図3に示すように、集電端子20bが空気入口マニホールド50aの近くに配置される。ここでいう「近く」とは、空気入口マニホールド50aの外周から50mm以内を目安とし、望ましくは、マニホールドの外形線を集電板の外形線上に垂直に投影した部分から、マニホールドに最も近い集電板の頂点までの部分である。   FIG. 3 is a configuration diagram of main components of the polymer electrolyte fuel cell according to the first embodiment shown in FIG. 3, 50a is an air inlet manifold, 50b is an air outlet manifold, 51a is a fuel inlet manifold, 51b is a fuel outlet manifold, 52a is a cooling water inlet manifold, 52b is a cooling water outlet manifold, 61 is an electrode portion, and 62 is a manifold. The connection part 63 is a packing. In the polymer electrolyte fuel cell of the first embodiment, as shown in FIG. 3, the current collecting terminal 20b is disposed near the air inlet manifold 50a. The term “near” here refers to a distance of 50 mm or less from the outer periphery of the air inlet manifold 50a, and preferably the current collector closest to the manifold from the portion of the manifold outline projected vertically onto the outline of the current collector plate. The part up to the top of the board.

図4は第1の実施形態の固体高分子形燃料電池の集電板の斜視図である。図3および図4に示すように、第1の実施形態の固体高分子形燃料電池では、断熱材30aを挿入するための空間が、集電端子近傍部20aと単電池10との間だけではなく、集電端子近傍部20aと空気入口マニホールド50aとの間にも設けられている。そのため、断熱効果を更に高めることができる。集電端子近傍部20aの長さは任意であるが、適切な断熱効果を得るためには、少なくとも10mm以上の長さがあることが望ましい。   FIG. 4 is a perspective view of a current collector plate of the polymer electrolyte fuel cell according to the first embodiment. As shown in FIGS. 3 and 4, in the polymer electrolyte fuel cell according to the first embodiment, the space for inserting the heat insulating material 30 a is not only between the current collector terminal vicinity 20 a and the unit cell 10. Rather, it is also provided between the current collecting terminal vicinity 20a and the air inlet manifold 50a. Therefore, the heat insulation effect can be further enhanced. The length of the current collecting terminal vicinity 20a is arbitrary, but in order to obtain an appropriate heat insulating effect, it is desirable that the length be at least 10 mm.

燃料電池と電線40との接続方法としては、図1に示したように燃料電池の外部まで集電端子40bが延長されて電線40と接続される場合と、電線40に装着した端子を直に集電板20へ挿入する場合がある。いずれの場合でも、電線40の周囲は断熱材30bと断熱カバー31bで覆われる。断熱材30bとしては、ウレタンフォームといった発泡樹脂や、グラスウール、ロックウールなどが適しており、断熱カバー31bとしては、アルミテープなどが適している。燃料電池スタックの周囲も断熱材30と断熱カバー31で覆われている。この断熱材30としては、熱伝導率が低い真空断熱材が用いられ、断熱カバー31としては、ステンレスやアルミニウムの薄板が用いられる。絶縁板21としては、ポリアミドなどの樹脂材が用いられ、締付板22としては、アルミニウム、鉄などの金属または繊維強化プラスチックなどが用いられる。図示していないが、断熱材30と断熱カバー31には反応ガスや冷却水を接続するための開口部があり、絶縁板21の側面や締付板22の表面を通して各種流体が燃料電池スタックに供給され、そこから排出される。電解質膜が金属イオンによって汚染されないようにするために、流体は金属材料に直接触れないようになっている。   As a method for connecting the fuel cell and the electric wire 40, as shown in FIG. 1, the current collecting terminal 40b is extended to the outside of the fuel cell and connected to the electric wire 40, or the terminal attached to the electric wire 40 is directly connected. It may be inserted into the current collector plate 20. In any case, the periphery of the electric wire 40 is covered with the heat insulating material 30b and the heat insulating cover 31b. As the heat insulating material 30b, foamed resin such as urethane foam, glass wool, rock wool or the like is suitable, and as the heat insulating cover 31b, aluminum tape or the like is suitable. The periphery of the fuel cell stack is also covered with a heat insulating material 30 and a heat insulating cover 31. As the heat insulating material 30, a vacuum heat insulating material having a low thermal conductivity is used, and as the heat insulating cover 31, a thin plate of stainless steel or aluminum is used. As the insulating plate 21, a resin material such as polyamide is used, and as the fastening plate 22, a metal such as aluminum or iron or a fiber reinforced plastic is used. Although not shown, the heat insulating material 30 and the heat insulating cover 31 have an opening for connecting a reaction gas and cooling water, and various fluids enter the fuel cell stack through the side surface of the insulating plate 21 and the surface of the clamping plate 22. Supplied and discharged from there. In order to prevent the electrolyte membrane from being contaminated by metal ions, the fluid is not in direct contact with the metal material.

図5は第3の実施形態の固体高分子形燃料電池の集電端子付近の拡大斜視図である。図5に示すように、空気入口マニホールド50aが長穴形状である場合には、空気入口マニホールド50aの長辺を集電板20の外周上に投影した部分(図5の右手前部分)に集電端子近傍部20aが配置される。それにより、集電板20から集電端子20bへの熱移動量を少なくすることができる。   FIG. 5 is an enlarged perspective view of the vicinity of the current collecting terminal of the polymer electrolyte fuel cell according to the third embodiment. As shown in FIG. 5, when the air inlet manifold 50a has a long hole shape, the long side of the air inlet manifold 50a is collected on the portion projected on the outer periphery of the current collector plate 20 (the right front portion in FIG. 5). The electric terminal vicinity part 20a is arrange | positioned. Thereby, the amount of heat transfer from the current collector plate 20 to the current collector terminal 20b can be reduced.

上述した実施形態では、集電端子20bが集電板20から突出した形状となっているが、集電端子の形状は本発明の本質とは無関係であり、集電端子近傍部20aに切り欠きやネジ穴などを設けることにより電線40との接続が可能な任意の形状を選択することができる。   In the embodiment described above, the current collector terminal 20b has a shape protruding from the current collector plate 20. However, the shape of the current collector terminal is irrelevant to the essence of the present invention, and is notched in the current collector terminal vicinity 20a. An arbitrary shape capable of being connected to the electric wire 40 can be selected by providing a screw hole or the like.

図1に示したように、第1の実施形態の固体高分子形燃料電池では、集電端子20bの近傍における集電板20である集電端子近傍部20aと、燃料電池の単電池10との間に断熱材30Aが配置されている。そのため、集電端子の近傍で集電板と燃料電池の単電池との間に断熱材が配置されない場合よりも、集電端子20bの近傍における燃料電池の単電池10から集電板20への熱伝導を妨げることができ、それにより、集電端子20bの温度を下げることができ、集電端子20bから電線40を経由して生じる熱損失を低減することができる。   As shown in FIG. 1, in the polymer electrolyte fuel cell according to the first embodiment, the current collector terminal vicinity 20a, which is the current collector plate 20 in the vicinity of the current collector terminal 20b, the unit cell 10 of the fuel cell, A heat insulating material 30A is disposed between the two. Therefore, the fuel cell unit cell 10 to the current collector plate 20 in the vicinity of the current collector terminal 20b is closer to the current collector terminal 20b than the case where the heat insulating material is not disposed between the current collector plate and the fuel cell unit cell in the vicinity of the current collector terminal. Heat conduction can be hindered, whereby the temperature of the current collecting terminal 20b can be lowered, and heat loss generated from the current collecting terminal 20b via the electric wire 40 can be reduced.

また、上述したように第2の実施形態の固体高分子形燃料電池では、集電端子20bの近傍における集電板20である集電端子近傍部20aと、燃料電池の単電池10との間に隙間が設けられている。そのため、その隙間を占める熱伝導率の低い空気によって、集電端子20bの近傍における燃料電池の単電池10から集電板20への熱伝導を妨げることができる。それにより、集電端子20bの温度を下げることができ、集電端子20bから電線40を経由して生じる熱損失を低減することができる。   Further, as described above, in the polymer electrolyte fuel cell according to the second embodiment, between the current collector terminal vicinity portion 20a, which is the current collector plate 20 in the vicinity of the current collector terminal 20b, and the unit cell 10 of the fuel cell. A gap is provided in Therefore, heat conduction from the unit cell 10 of the fuel cell to the current collector plate 20 in the vicinity of the current collecting terminal 20b can be prevented by the air having low thermal conductivity that occupies the gap. Thereby, the temperature of the current collection terminal 20b can be lowered | hung and the heat loss which arises via the electric wire 40 from the current collection terminal 20b can be reduced.

更に、図1に示したように、第1および第2の実施形態の固体高分子形燃料電池では、集電端子20bの近傍で集電板20と燃料電池の単電池10とが直接接触しないように、集電端子20bの近傍で集電板20と燃料電池の単電池10とが離間せしめられている。そのため、集電端子の近傍で集電板と燃料電池の単電池とが接触せしめられている場合よりも、集電端子20bの近傍における燃料電池の単電池10から集電板20への熱伝導を妨げることができる。それにより、集電端子の近傍で集電板と燃料電池の単電池とが接触せしめられている場合よりも、集電端子20bの温度を下げることができる。その結果、集電端子の近傍で集電板と燃料電池の単電池とが接触せしめられている場合よりも、集電端子20bから電線40を経由して生じる熱損失を低減することができる。   Furthermore, as shown in FIG. 1, in the polymer electrolyte fuel cells of the first and second embodiments, the current collector plate 20 and the unit cell 10 of the fuel cell are not in direct contact in the vicinity of the current collector terminal 20b. As described above, the current collector plate 20 and the unit cell 10 of the fuel cell are separated from each other in the vicinity of the current collecting terminal 20b. Therefore, the heat conduction from the fuel cell unit cell 10 to the current collector plate 20 in the vicinity of the current collector terminal 20b is greater than in the case where the current collector plate and the fuel cell unit cell are in contact with each other near the current collector terminal. Can be disturbed. Thereby, the temperature of the current collecting terminal 20b can be lowered as compared with the case where the current collecting plate and the unit cell of the fuel cell are in contact with each other near the current collecting terminal. As a result, it is possible to reduce the heat loss that occurs from the current collecting terminal 20b via the electric wire 40, compared to the case where the current collecting plate and the unit cell of the fuel cell are in contact with each other near the current collecting terminal.

また、図4に示したように、第1の実施形態の固体高分子形燃料電池では、単電池10よりも低温の反応ガスが通過せしめられる反応ガス入口マニホールドの一つである空気入口マニホールド50aに近接して集電端子20bが配置されている。そのため、集電端子が反応ガス入口マニホールドから離れて配置される場合よりも、集電端子20bの温度を下げることができる。それにより、集電端子20bと外気との温度差が小さくなる。その結果、集電端子が反応ガス入口マニホールドから離れて配置される場合よりも、集電端子20bから電線40を経由して生じる熱損失を低減することができる。   As shown in FIG. 4, in the polymer electrolyte fuel cell of the first embodiment, an air inlet manifold 50a, which is one of the reaction gas inlet manifolds through which a reaction gas having a temperature lower than that of the unit cell 10 is allowed to pass. A current collecting terminal 20b is arranged in the vicinity. Therefore, the temperature of the current collecting terminal 20b can be lowered as compared with the case where the current collecting terminal is arranged away from the reaction gas inlet manifold. Thereby, the temperature difference between the current collecting terminal 20b and the outside air is reduced. As a result, it is possible to reduce the heat loss that occurs from the current collecting terminal 20b via the electric wire 40, compared to the case where the current collecting terminal is arranged away from the reaction gas inlet manifold.

本発明の固体高分子形燃料電池の第1の実施形態の断面図である。It is sectional drawing of 1st Embodiment of the polymer electrolyte fuel cell of this invention. 従来の固体高分子形燃料電池の断面図である。It is sectional drawing of the conventional polymer electrolyte fuel cell. 図1に示した第1の実施形態の固体高分子形燃料電池の主要部品の構成図である。It is a block diagram of the main components of the polymer electrolyte fuel cell of 1st Embodiment shown in FIG. 第1の実施形態の固体高分子形燃料電池の集電板の斜視図である。1 is a perspective view of a current collector plate of a polymer electrolyte fuel cell according to a first embodiment. 第3の実施形態の固体高分子形燃料電池の集電端子付近の拡大斜視図である。It is an expansion perspective view near the current collection terminal of the polymer electrolyte fuel cell of 3rd Embodiment.

符号の説明Explanation of symbols

10 単電池
20 集電板
20a 集電端子近傍部
20b 集電端子
30 断熱材
30a 集電端子近傍部の断熱材
30b 集電端子の断熱材
31 断熱カバー
31b 集電端子の断熱カバー
40 電線
41 締付ボルト
50a 空気入口マニホールド
50b 空気出口マニホールド
51a 燃料入口マニホールド
51b 燃料出口マニホールド
52a 冷却水入口マニホールド
52b 冷却水出口マニホールド
60a カソードセパレータ
60b アノードセパレータ
61 電極部
62 マニホールド接続部
63 パッキン
DESCRIPTION OF SYMBOLS 10 Single battery 20 Current collecting plate 20a Current collecting terminal vicinity 20b Current collecting terminal 30 Heat insulating material 30a Heat collecting material near current collecting terminal 30b Current collecting terminal heat insulating material 31 Heat insulating cover 31b Current collecting terminal heat insulating cover 40 Electric wire 41 Tightening Attached bolt 50a Air inlet manifold 50b Air outlet manifold 51a Fuel inlet manifold 51b Fuel outlet manifold 52a Cooling water inlet manifold 52b Cooling water outlet manifold 60a Cathode separator 60b Anode separator 61 Electrode portion 62 Manifold connection portion 63 Packing

Claims (6)

燃料電池の単電池を多数積層したセル部分と、前記燃料電池が発電した電流を外部へ導くために前記セル部分の両端に配置された集電板と、前記集電板の一部分に電線を接続するための集電端子とを具備する固体高分子形燃料電池において、前記集電端子の近傍における前記集電板と前記燃料電池の単電池との間に断熱材を配置したことを特徴とする固体高分子形燃料電池。   A cell part in which a large number of single cells of the fuel cell are stacked, a current collector plate disposed at both ends of the cell part to guide the current generated by the fuel cell to the outside, and a wire connected to a part of the current collector plate In the polymer electrolyte fuel cell comprising a current collecting terminal for carrying out, a heat insulating material is disposed between the current collecting plate in the vicinity of the current collecting terminal and the unit cell of the fuel cell. Solid polymer fuel cell. 前記集電端子の近傍における前記断熱材の厚さを、前記集電端子の近傍以外の場所における前記集電板の厚さの半分以下としたことを特徴とする請求項1に記載の固体高分子形燃料電池。   2. The solid height according to claim 1, wherein the thickness of the heat insulating material in the vicinity of the current collecting terminal is set to be equal to or less than half the thickness of the current collecting plate in a place other than the vicinity of the current collecting terminal. Molecular fuel cell. 燃料電池の単電池を多数積層したセル部分と、前記燃料電池が発電した電流を外部へ導くために前記セル部分の両端に配置された集電板と、前記集電板の一部分に電線を接続するための集電端子とを具備する固体高分子形燃料電池において、前記集電端子の近傍における前記集電板と前記燃料電池の単電池との間に隙間を設けたことを特徴とする固体高分子形燃料電池。   A cell part in which a large number of single cells of the fuel cell are stacked, a current collector plate disposed at both ends of the cell part to guide the current generated by the fuel cell to the outside, and a wire connected to a part of the current collector plate In the polymer electrolyte fuel cell comprising a current collecting terminal, a solid gap is provided between the current collecting plate in the vicinity of the current collecting terminal and the unit cell of the fuel cell. Polymer fuel cell. 燃料電池の単電池を多数積層したセル部分と、前記燃料電池が発電した電流を外部へ導くために前記セル部分の両端に配置された集電板と、前記集電板の一部分に電線を接続するための集電端子とを具備する固体高分子形燃料電池において、前記集電端子の近傍で前記集電板と前記燃料電池の単電池とを離間させたことを特徴とする固体高分子形燃料電池。   A cell part in which a large number of single cells of the fuel cell are stacked, a current collector plate disposed at both ends of the cell part to guide the current generated by the fuel cell to the outside, and a wire connected to a part of the current collector plate In the polymer electrolyte fuel cell comprising a current collecting terminal, the current collecting plate and the single cell of the fuel cell are separated from each other in the vicinity of the current collecting terminal. Fuel cell. 燃料電池の単電池を多数積層したセル部分と、前記燃料電池が発電した電流を外部へ導くために前記セル部分の両端に配置された集電板と、前記集電板の一部分に電線を接続するための集電端子と、各単電池に反応ガスを分配するための反応ガス入口マニホールドとを具備する固体高分子形燃料電池において、前記集電端子を前記反応ガス入口マニホールドに近接して配置したことを特徴とする固体高分子形燃料電池。   A cell part in which a large number of single cells of the fuel cell are stacked, a current collector plate disposed at both ends of the cell part to guide the current generated by the fuel cell to the outside, and a wire connected to a part of the current collector plate And a reaction gas inlet manifold for distributing reaction gas to each unit cell, wherein the current collector terminal is disposed close to the reaction gas inlet manifold A polymer electrolyte fuel cell characterized by the above. 断熱材を挿入するための空間を、前記集電端子の近傍における前記集電板と前記反応ガス入口マニホールドとの間に設けたことを特徴とする請求項5に記載の固体高分子形燃料電池。   6. The polymer electrolyte fuel cell according to claim 5, wherein a space for inserting a heat insulating material is provided between the current collector plate and the reaction gas inlet manifold in the vicinity of the current collector terminal. .
JP2004143728A 2004-05-13 2004-05-13 Solid polymer fuel cell Pending JP2005327558A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004143728A JP2005327558A (en) 2004-05-13 2004-05-13 Solid polymer fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004143728A JP2005327558A (en) 2004-05-13 2004-05-13 Solid polymer fuel cell

Publications (1)

Publication Number Publication Date
JP2005327558A true JP2005327558A (en) 2005-11-24

Family

ID=35473741

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004143728A Pending JP2005327558A (en) 2004-05-13 2004-05-13 Solid polymer fuel cell

Country Status (1)

Country Link
JP (1) JP2005327558A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007157369A (en) * 2005-11-30 2007-06-21 Sanyo Electric Co Ltd Fuel cell system
JP2008047506A (en) * 2006-08-16 2008-02-28 Hyundai Motor Co Ltd Fuel cell stack
JP2008123958A (en) * 2006-11-15 2008-05-29 Nissan Motor Co Ltd Fuel cell
WO2008139683A1 (en) 2007-05-08 2008-11-20 Panasonic Corporation Polyelectrolyte-type fuel cell and voltage measurement method of cell in the same
JP2009252401A (en) * 2008-04-02 2009-10-29 Panasonic Corp Fuel cell stack
WO2011045839A1 (en) * 2009-10-15 2011-04-21 トヨタ自動車株式会社 Fuel cell stack
WO2019003989A1 (en) * 2017-06-30 2019-01-03 京セラ株式会社 Cell stack device, fuel cell module, and fuel cell device
JP2019129032A (en) * 2018-01-23 2019-08-01 株式会社東芝 Fuel battery and assembling method of the fuel battery
JP2020129438A (en) * 2019-02-07 2020-08-27 本田技研工業株式会社 Fuel cell system

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09120833A (en) * 1995-10-25 1997-05-06 Fuji Electric Co Ltd Solid high polymer electrolyte fuel cell
JP2002184449A (en) * 2000-12-13 2002-06-28 Honda Motor Co Ltd Solid polymer fuel cell stack
JP2003045462A (en) * 2001-07-30 2003-02-14 Honda Motor Co Ltd Fuel cell stack and its operation method
WO2003088395A1 (en) * 2002-04-17 2003-10-23 Matsushita Electric Industrial Co., Ltd. Polymeric electrolyte type fuel cell
JP2003308863A (en) * 2002-04-12 2003-10-31 Equos Research Co Ltd Fuel cell stack
JP2004152502A (en) * 2002-10-28 2004-05-27 Honda Motor Co Ltd Fuel cell stack
JP2005285399A (en) * 2004-03-29 2005-10-13 Toyota Motor Corp Fuel cell

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09120833A (en) * 1995-10-25 1997-05-06 Fuji Electric Co Ltd Solid high polymer electrolyte fuel cell
JP2002184449A (en) * 2000-12-13 2002-06-28 Honda Motor Co Ltd Solid polymer fuel cell stack
JP2003045462A (en) * 2001-07-30 2003-02-14 Honda Motor Co Ltd Fuel cell stack and its operation method
JP2003308863A (en) * 2002-04-12 2003-10-31 Equos Research Co Ltd Fuel cell stack
WO2003088395A1 (en) * 2002-04-17 2003-10-23 Matsushita Electric Industrial Co., Ltd. Polymeric electrolyte type fuel cell
JP2004152502A (en) * 2002-10-28 2004-05-27 Honda Motor Co Ltd Fuel cell stack
JP2005285399A (en) * 2004-03-29 2005-10-13 Toyota Motor Corp Fuel cell

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007157369A (en) * 2005-11-30 2007-06-21 Sanyo Electric Co Ltd Fuel cell system
JP2008047506A (en) * 2006-08-16 2008-02-28 Hyundai Motor Co Ltd Fuel cell stack
JP2008123958A (en) * 2006-11-15 2008-05-29 Nissan Motor Co Ltd Fuel cell
WO2008139683A1 (en) 2007-05-08 2008-11-20 Panasonic Corporation Polyelectrolyte-type fuel cell and voltage measurement method of cell in the same
US8512903B2 (en) 2007-05-08 2013-08-20 Panasonic Corporation Polymer electrolyte fuel cell and method for measuring voltages of cells in polymer electrolyte fuel cell
JP2009252401A (en) * 2008-04-02 2009-10-29 Panasonic Corp Fuel cell stack
CN102576882A (en) * 2009-10-15 2012-07-11 丰田自动车株式会社 Fuel cell stack
WO2011045839A1 (en) * 2009-10-15 2011-04-21 トヨタ自動車株式会社 Fuel cell stack
JP5354023B2 (en) * 2009-10-15 2013-11-27 トヨタ自動車株式会社 Fuel cell stack
US9190691B2 (en) 2009-10-15 2015-11-17 Toyota Jidosha Kabushiki Kaisha Fuel cell stack
WO2019003989A1 (en) * 2017-06-30 2019-01-03 京セラ株式会社 Cell stack device, fuel cell module, and fuel cell device
JP6498850B1 (en) * 2017-06-30 2019-04-10 京セラ株式会社 Cell stack device, fuel cell module and fuel cell device
JP2019129032A (en) * 2018-01-23 2019-08-01 株式会社東芝 Fuel battery and assembling method of the fuel battery
JP2020129438A (en) * 2019-02-07 2020-08-27 本田技研工業株式会社 Fuel cell system
JP7038069B2 (en) 2019-02-07 2022-03-17 本田技研工業株式会社 Fuel cell system

Similar Documents

Publication Publication Date Title
US7799480B2 (en) Fuel cell stack with dummy cell
JP5354026B2 (en) Fuel cell system
US7309539B2 (en) Fuel cell stack
US6846590B2 (en) Fuel cell stack having grommet which covers each edge of communicating passages formed in terminal plate
US20090042075A1 (en) Fuel Cell Stack
US20040265667A1 (en) Fuel cell stack
JP6313281B2 (en) Current collector components for fuel cells
US7169496B2 (en) Fuel Cell
US20050136307A1 (en) Fuel cell and fuel cell stack
JP2007141553A (en) Fuel cell stack
CN110690455A (en) Proton exchange membrane fuel cell, stack and method for manufacturing the same
JP2005327558A (en) Solid polymer fuel cell
US6656621B2 (en) Fuel cell stack
JP2009099480A (en) Fuel cell
JP4447204B2 (en) Fuel cell with metal separator
JP2009151973A (en) Fuel cell system
CN209607843U (en) A kind of air-cooled cathode closed-type fuel cell system of simplification
KR20180003685U (en) Multi layered fuel cell system
CA2400262C (en) Fuel cell separator
JP2019087424A (en) Fuel cell stack
CN211629219U (en) Proton exchange membrane fuel cell and stack
KR101542970B1 (en) Fuel cell stack
JP2005276670A (en) Fuel cell stack
JP4945963B2 (en) Fuel cell
JPH10208761A (en) Fuel battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070215

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091124

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091127

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100107

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110201

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20110201

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110325

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20111206