JP2005285399A - Fuel cell - Google Patents

Fuel cell Download PDF

Info

Publication number
JP2005285399A
JP2005285399A JP2004094290A JP2004094290A JP2005285399A JP 2005285399 A JP2005285399 A JP 2005285399A JP 2004094290 A JP2004094290 A JP 2004094290A JP 2004094290 A JP2004094290 A JP 2004094290A JP 2005285399 A JP2005285399 A JP 2005285399A
Authority
JP
Japan
Prior art keywords
fuel cell
flow path
cell
terminal
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004094290A
Other languages
Japanese (ja)
Inventor
Shigetaka Hamada
成孝 濱田
Masaaki Kondo
政彰 近藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2004094290A priority Critical patent/JP2005285399A/en
Publication of JP2005285399A publication Critical patent/JP2005285399A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a fuel cell which improves a power generation efficiency by making the potential inside a cell surface uniform and prevent local degradation inside the cell surface from occurring. <P>SOLUTION: A fuel cell 1 comprises: a cell laminated body 10 which a plurality of unit cells 11 are laminated to form; gas supply inlets which communicate with the cell laminated body 10 and supply reactant gases to gas passages of the respective unit cells 11; and terminals 12A, 12B which are mounted on the cell laminated body 10; where current output parts 42A, 42B of the terminals 12A, 12B corresponding to the respective gas supply inlets are mounted in the neighborhood of the respective gas supply inlets. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、燃料電池にかかり、特に発電効率が向上された燃料電池に関する。   The present invention relates to a fuel cell, and more particularly to a fuel cell with improved power generation efficiency.

従来、一般的な固体高分子型燃料電池として、イオン交換膜からなる電解質膜とこの電解質膜の一方の面に配置された触媒層及び拡散層からなる燃料極(アノード電極)及び前記電解質膜の他方の面に配置された触媒層及び拡散層からなる酸化剤極(カソード電極)と、からなる膜−電極アッセンブリ(MEA:Membrane Electrode Assembly)と、前記燃料極に燃料ガス(水素)を、酸化剤極に酸化剤ガス(酸素、通常は空気)を供給するための流体通路を形成するセパレータと、を備えたセルを構成し、このセルを複数積層してモジュールとしているものがある。   Conventionally, as a general polymer electrolyte fuel cell, an electrolyte membrane composed of an ion exchange membrane, a fuel electrode (anode electrode) composed of a catalyst layer and a diffusion layer disposed on one surface of the electrolyte membrane, and the electrolyte membrane An oxidant electrode (cathode electrode) composed of a catalyst layer and a diffusion layer disposed on the other surface, a membrane electrode assembly (MEA) composed of the catalyst layer and a diffusion layer, and a fuel gas (hydrogen) on the fuel electrode are oxidized. There is a cell that includes a separator having a fluid passage for supplying an oxidant gas (oxygen, usually air) to the agent electrode, and a plurality of such cells are stacked to form a module.

このような燃料電池として、例えば、セル積層方向の両端に位置する単セルの更に外側に配設される一対のターミナルプレートの端面から、前記セル積層方向に沿って電力取出用のターミナル端子を延出させ、このターミナル端子を酸化剤ガス流路内の水蒸気分圧が飽和水蒸気圧以下となる範囲内に配置することで、電気抵抗の増大を抑制しつつ、セル積層方向端部に位置する単セルの温度低下を抑制し、該単セルの発電性能低下を有効に防止するものが提案されている。(例えば、特許文献1参照)。
特開2002−252022号公報
As such a fuel cell, for example, terminal terminals for power extraction are extended along the cell stacking direction from the end surfaces of a pair of terminal plates disposed further outside the single cells located at both ends in the cell stacking direction. By disposing the terminal terminal within a range where the water vapor partial pressure in the oxidant gas flow path is equal to or lower than the saturated water vapor pressure, an increase in electric resistance is suppressed, and a single terminal located at the end of the cell stacking direction is suppressed. There has been proposed one that suppresses a decrease in cell temperature and effectively prevents a decrease in power generation performance of the single cell. (For example, refer to Patent Document 1).
JP 2002-252022 A

ここで、燃料電池は、ターミナルの電流取り出し部付近に電子が集中するため、この部分の電流密度が大きくなることが知られている。このため、ターミナルの電流取り出し部付近では、発電時の電位が他の部分よりも低くなり、発電効率が低くなると共に、セル面内において局所的な劣化を招く虞もある。   Here, in the fuel cell, since electrons are concentrated near the current extraction portion of the terminal, it is known that the current density in this portion increases. For this reason, in the vicinity of the current extraction portion of the terminal, the potential during power generation is lower than in other portions, the power generation efficiency is lowered, and there is a possibility that local degradation is caused in the cell plane.

しかしながら、前述した特許文献1に記載された燃料電池では、前記電子の集中に起因して生じる発電効率の低下を防止することや、セル面内において局所的な劣化が生じることを防止することについての提案はなされていない。   However, in the fuel cell described in Patent Document 1 described above, it is possible to prevent a decrease in power generation efficiency caused by the concentration of electrons and to prevent local deterioration in the cell plane. No proposal has been made.

本発明は、このような従来の燃料電池を改良することを課題とするものであり、セル面内において、発電時の電位を均一化させることで、発電効率を向上させると共に、セル面内において局所的な劣化が生じることを防止することが可能な燃料電池を提供することを目的とする。   An object of the present invention is to improve such a conventional fuel cell. In the cell plane, the electric potential during power generation is made uniform to improve the power generation efficiency, and in the cell plane. An object of the present invention is to provide a fuel cell capable of preventing local deterioration from occurring.

この目的を達成するため、本発明は、複数の単セルが積層されてなるセル積層体と、前記セル積層体に連通して設けられ、各々の単セルのガス流路に反応ガスを供給するガス供給口と、前記セル積層体に設けられたターミナルと、を備え、前記ガス供給口の近傍に、当該ガス供給口に対応するターミナルの電流取り出し部を設けてなる燃料電池を提供するものである。   In order to achieve this object, the present invention provides a cell stack in which a plurality of single cells are stacked, and is provided in communication with the cell stack and supplies a reaction gas to the gas flow path of each single cell. A fuel cell comprising a gas supply port and a terminal provided in the cell stack, and provided with a current extraction portion of a terminal corresponding to the gas supply port in the vicinity of the gas supply port. is there.

この構成を備えた燃料電池は、セル面内でガス分圧が大きく、発電効率が高いガス供給口の近傍に、電流密度が大きく、発電時の電位が低くなる前記ターミナルの電流取り出し部を設けることで、セル面内の電位を均一化することができる。   The fuel cell having this configuration is provided with a current extraction portion of the terminal that has a large current density and a low potential during power generation in the vicinity of a gas supply port having a large gas partial pressure in the cell surface and high power generation efficiency. As a result, the potential in the cell plane can be made uniform.

本発明にかかる燃料電池では、前記ガス供給口は、発電時に電流密度が高くなる部位に設けることができる。また、前記ターミナルの電流取り出し部は、前記反応ガスのガス分圧が高い部位に設けることができる。   In the fuel cell according to the present invention, the gas supply port can be provided at a portion where the current density is increased during power generation. Moreover, the current extraction part of the terminal can be provided at a site where the gas partial pressure of the reaction gas is high.

そしてまた、本発明にかかる燃料電池は、前記ガス流路がサーペンタイン流路である場合、前記ターミナルの電流取り出し部を、前記ガス流路の第1ターン部付近に設けることがより好適である。   Further, in the fuel cell according to the present invention, when the gas flow path is a serpentine flow path, it is more preferable that the current extraction part of the terminal is provided near the first turn part of the gas flow path.

さらにまた、本発明にかかる燃料電池は、前記ガス流路がストレート流路である場合、前記ターミナルの電流取り出し部は、セル面内の中心を通り且つ互いに直角に交わる2本の線で当該セル面内を4分割した領域のうち、ガス供給口が配設されている領域内に設けることができる。   Furthermore, in the fuel cell according to the present invention, when the gas flow path is a straight flow path, the current extraction portion of the terminal passes through the center in the cell plane and intersects with the two lines at right angles to each other. It can be provided in a region where a gas supply port is provided in a region obtained by dividing the plane into four.

本発明にかかる燃料電池は、ガス供給口と、ターミナルの電流取り出し部とを近接させて設けた構成を備えているため、セル面内の電位を均一化することができ、優れた発電効率を保つことができる。   Since the fuel cell according to the present invention has a configuration in which the gas supply port and the current extraction portion of the terminal are provided close to each other, the potential in the cell plane can be made uniform, and excellent power generation efficiency can be obtained. Can keep.

次に、本発明の好適な実施の形態にかかる燃料電池について図面を参照して説明する。なお、以下に記載される実施の形態は、本発明を説明するための例示であり、本発明をこれらの実施の形態にのみ限定するものではない。したがって、本発明は、その要旨を逸脱しない限り、様々な形態で実施することができる。   Next, a fuel cell according to a preferred embodiment of the present invention will be described with reference to the drawings. In addition, embodiment described below is the illustration for demonstrating this invention, and this invention is not limited only to these embodiment. Therefore, the present invention can be implemented in various forms without departing from the gist thereof.

図1は、本実施の形態にかかる燃料電池を模式的に示す側面図、図2は、図1に示す燃料電池のセパレータの水素ガス流路側から見た平面図、図3は、図1に示す燃料電池のセパレータの酸素ガス流路側から見た平面図である。   1 is a side view schematically showing the fuel cell according to the present embodiment, FIG. 2 is a plan view of the fuel cell separator shown in FIG. 1 as viewed from the hydrogen gas flow path side, and FIG. 3 is shown in FIG. It is the top view seen from the oxygen gas channel side of the separator of the shown fuel cell.

図1〜図3に示すように、本実施の形態にかかる燃料電池1の構成要素であるセル11は、例えば、イオン交換膜からなる電解質膜と、この電解質膜の一面に配置された触媒層及び拡散層からなる電極(アノード、燃料極)及び電解質膜の他面に配置された触媒層及び拡散層からなる電極(カソード、空気極)とからなる膜−電極アッセンブリ(MEA:Membrane Electrode Assembly)と、前記一対の電極に燃料ガス(水素)及び酸化ガス(酸素、通常は空気)を供給するためのガス流路を形成するセパレータ30と、を重ねることにより形成されている。   As shown in FIGS. 1 to 3, a cell 11 that is a constituent element of the fuel cell 1 according to the present embodiment includes, for example, an electrolyte membrane made of an ion exchange membrane, and a catalyst layer disposed on one surface of the electrolyte membrane. And a membrane-electrode assembly (MEA) comprising an electrode (anode, fuel electrode) comprising a diffusion layer and a catalyst layer (cathode, air electrode) comprising a catalyst layer and a diffusion layer disposed on the other surface of the electrolyte membrane. And a separator 30 that forms a gas flow path for supplying a fuel gas (hydrogen) and an oxidizing gas (oxygen, usually air) to the pair of electrodes.

セパレータ30の燃料極と対向する側の面には、燃料極に水素を供給するためのサーペンタイン流路からなる水素ガス流路31が形成されている。この水素ガス流路31は、一端が水素入口32に接続され、他端が水素出口34に接続されている。この水素入口32の近傍には、特に図2及び図3に示すように、後に後述するターミナル12Aの電流取り出し部42Aが設けられている。   A hydrogen gas passage 31 including a serpentine passage for supplying hydrogen to the fuel electrode is formed on the surface of the separator 30 facing the fuel electrode. The hydrogen gas flow path 31 has one end connected to the hydrogen inlet 32 and the other end connected to the hydrogen outlet 34. In the vicinity of the hydrogen inlet 32, as shown in FIGS. 2 and 3 in particular, a current extraction portion 42A of a terminal 12A described later is provided.

一方、セパレータ30の空気極と対向する側の面には、空気極に酸素を供給するためのサーペンタイン流路からなる酸素ガス流路35が形成されている。この酸素ガス流路35は、一端が酸素入口36に接続され、他端が酸素出口37に接続されている。この酸素入口36の近傍には、特に図2及び図3に示すように、後に後述するターミナル12Bの電流取り出し部42Bが設けられている。   On the other hand, an oxygen gas flow path 35 including a serpentine flow path for supplying oxygen to the air electrode is formed on the surface of the separator 30 facing the air electrode. The oxygen gas flow path 35 has one end connected to the oxygen inlet 36 and the other end connected to the oxygen outlet 37. Near the oxygen inlet 36, as shown in FIGS. 2 and 3, in particular, a current extraction portion 42B of a terminal 12B described later is provided.

なお、符号38は、冷却水入口であり、符号39は、冷却水出口である。   Reference numeral 38 denotes a cooling water inlet, and reference numeral 39 denotes a cooling water outlet.

この構成を備えたセル11は、複数枚(例えば、200セル)が積層されてセル積層体10を構成している。このセル積層体10のセル積層方向一端側(図1でいう左側)には、順に、ターミナル12A、インシュレータ13A、及びエンドプレート14Aが配設されている。また、セル積層体10のセル積層方向他端側(図1でいう右側)には、順に、ターミナル12B、インシュレータ13B、及びエンドプレート14Bが配設されている。   The cell 11 having this configuration forms a cell stack 10 by stacking a plurality of (for example, 200 cells). A terminal 12A, an insulator 13A, and an end plate 14A are arranged in this order on one end side (left side in FIG. 1) of the cell stack 10 in the cell stacking direction. Further, a terminal 12B, an insulator 13B, and an end plate 14B are disposed in this order on the other end side (the right side in FIG. 1) of the cell stack 10 in the cell stacking direction.

ターミナル12Aには、電流取り出し部42Aが設けられており、この電流取り出し部42Aは、水素入口32の近傍に位置している。また、ターミナル12Bには、電流取り出し部42Bが設けられており、この電流取り出し部42Bは、酸素入口36の近傍に位置している。   The terminal 12 </ b> A is provided with a current extraction portion 42 </ b> A, and this current extraction portion 42 </ b> A is located in the vicinity of the hydrogen inlet 32. The terminal 12B is provided with a current extraction part 42B, and this current extraction part 42B is located in the vicinity of the oxygen inlet 36.

そして、これらの部品によってスタック20を構成し、このスタック20を、締結部材24(例えば、テンションプレート、スルーボルト等)とボルト25またはナット等で固定し、セル積層方向に締め付けることで燃料電池1を構成している。   Then, the stack 20 is constituted by these parts, and the stack 20 is fixed with a fastening member 24 (for example, a tension plate, a through bolt, etc.) and a bolt 25 or a nut, and is fastened in the cell stacking direction, thereby fuel cell 1. Is configured.

この構成を備えた燃料電池1は、セル面内でガス分圧が大きく、発電効率が高い水素入口32の近傍に、電流密度が大きく、発電時の電位が低くなるターミナル12Aの電流取り出し部42Aを設け、さらに、発電効率が高い酸素入口36の近傍に、電流密度が大きく、発電時の電位が低くなるターミナル12Bの電流取り出し部42Bを設けたため、セル面内の電位を均一化することができる。この結果、セル面内の局所的な劣化を防ぎ、寿命が長く、高効率な発電を行うことができる。   In the fuel cell 1 having this configuration, the current extraction portion 42A of the terminal 12A has a large current density and a low potential during power generation in the vicinity of the hydrogen inlet 32 having a large gas partial pressure in the cell plane and high power generation efficiency. In addition, since the current extraction portion 42B of the terminal 12B where the current density is large and the potential during power generation is low is provided in the vicinity of the oxygen inlet 36 where the power generation efficiency is high, the potential in the cell plane can be made uniform. it can. As a result, local degradation in the cell plane can be prevented, and the power generation can be performed with a long lifetime and high efficiency.

なお、本実施の形態では、水素入口32の近傍に電流取り出し部42Aを設け、酸素入口36の近傍に電流取り出し部42Bを設けた場合について説明したが、これに限らず、所望により、酸素入口36の近傍に電流取り出し部42Bを設けずに、水素入口32の近傍に電流取り出し部42Aを設けた構成であってもよく、あるいは、水素入口32の近傍に電流取り出し部42Aを設けずに、酸素入口36の近傍に電流取り出し部42Bを設けた構成であってもよい。   In the present embodiment, the case where the current extraction portion 42A is provided in the vicinity of the hydrogen inlet 32 and the current extraction portion 42B is provided in the vicinity of the oxygen inlet 36 has been described. However, the present invention is not limited to this. The current extraction part 42B may be provided in the vicinity of the hydrogen inlet 32 without providing the current extraction part 42B in the vicinity of 36, or the current extraction part 42A may not be provided in the vicinity of the hydrogen inlet 32. A configuration in which a current extraction portion 42B is provided in the vicinity of the oxygen inlet 36 may be employed.

また、本実施の形態では、図2及び図3に示す位置に、水素入口32、酸素入口36、電流取り出し部42A及び42Bを配設した場合について説明したが、これに限らず、電流取り出し部42Aは、図4に示すように、水素ガス流路31の第1ターン部31U付近までの領域(図4に一点鎖線で示す領域)内に配設されることが好ましい。なお、図4は、他の実施の形態にかかる燃料電池のセパレータの水素ガス流路側から見た平面図である。   In the present embodiment, the case where the hydrogen inlet 32, the oxygen inlet 36, and the current extraction parts 42A and 42B are disposed at the positions shown in FIGS. 2 and 3 is described. As shown in FIG. 4, 42 </ b> A is preferably disposed in a region up to the vicinity of the first turn portion 31 </ b> U of the hydrogen gas flow path 31 (a region indicated by a one-dot chain line in FIG. 4). FIG. 4 is a plan view seen from the hydrogen gas flow path side of the separator of the fuel cell according to another embodiment.

また、電流取り出し部42Bは、図5に示すように、酸素ガス流路35の第1ターン部35U付近までの領域(図5に一点鎖線で示す領域)内に配設されることが好ましい。なお、図5は、他の実施の形態にかかる燃料電池のセパレータの酸素ガス流路側から見た平面図である。   Further, as shown in FIG. 5, the current extraction portion 42 </ b> B is preferably arranged in a region (region indicated by a one-dot chain line in FIG. 5) up to the vicinity of the first turn portion 35 </ b> U of the oxygen gas flow path 35. FIG. 5 is a plan view seen from the oxygen gas flow path side of the separator of the fuel cell according to another embodiment.

そしてまた、本実施の形態では、水素ガス流路31及び酸素ガス流路35が、サーペンタイン流路である場合について説明したが、これに限らず、水素ガス流路31及び酸素ガス流路35の形状は、例えば、ストレート流路等、所望の形状をとることができる。   In the present embodiment, the case where the hydrogen gas flow path 31 and the oxygen gas flow path 35 are serpentine flow paths has been described, but not limited thereto, the hydrogen gas flow path 31 and the oxygen gas flow path 35 The shape can take a desired shape, such as a straight channel.

そして、例えば、図6に示すように、水素ガス流路31がストレート流路である場合、電流取り出し部42Aは、セル面内の中心Oを通り且つ互いに直角に交わる2本の線L1及びL2で当該セル面内を4分割した領域のうち、水素入口32が配設されている領域(図6に点線で示す領域)内に配設されることが好ましい。なお、図6は、他の実施の形態にかかる燃料電池のセパレータの水素ガス流路側から見た平面図である。 For example, as shown in FIG. 6, when the hydrogen gas flow path 31 is a straight flow path, the current extraction portion 42A passes through the center O in the cell plane and intersects the two lines L 1 that intersect at right angles with each other. Of the regions divided into four in the cell plane by L 2 , it is preferable to be disposed in the region where the hydrogen inlet 32 is disposed (the region indicated by the dotted line in FIG. 6). FIG. 6 is a plan view seen from the hydrogen gas flow path side of the separator of the fuel cell according to another embodiment.

また、例えば、図7に示すように、酸素ガス流路35がストレート流路である場合、電流取り出し部42Bは、セル面内の中心Oを通り且つ互いに直角に交わる2本の線L1及びL2で当該セル面内を4分割した領域のうち、酸素入口36が配設されている領域(図7に点線で示す領域)内に配設されることが好ましい。なお、図7は、他の実施の形態にかかる燃料電池のセパレータの酸素ガス流路側から見た平面図である。 Also, for example, as shown in FIG. 7, when the oxygen gas flow path 35 is a straight flow path, the current extraction portion 42B passes through the center O in the cell plane and intersects the two lines L 1 that intersect at right angles with each other. Of the regions divided into four in the cell plane by L 2 , the region is preferably disposed in the region where the oxygen inlet 36 is disposed (the region indicated by the dotted line in FIG. 7). FIG. 7 is a plan view seen from the oxygen gas flow path side of the separator of the fuel cell according to another embodiment.

そしてまた、水素ガス流路31及び酸素ガス流路35がストレート流路である場合も、所望により、酸素入口36の近傍に電流取り出し部42Bを設けずに、水素入口32の近傍に電流取り出し部42Aを設けた構成であってもよく、あるいは、水素入口32の近傍に電流取り出し部42Aを設けずに、酸素入口36の近傍に電流取り出し部42Bを設けた構成であってもよい。   In addition, when the hydrogen gas flow path 31 and the oxygen gas flow path 35 are straight flow paths, if desired, the current extraction section 42B is not provided in the vicinity of the oxygen inlet 36 but the current extraction section in the vicinity of the hydrogen inlet 32. 42A may be provided, or a current extraction part 42B may be provided in the vicinity of the oxygen inlet 36 without providing the current extraction part 42A in the vicinity of the hydrogen inlet 32.

また、ターミナル12A及び12Bの全域から電流を取り出すことで、電流密度分布の偏りを無くすことも可能である。   Further, it is possible to eliminate the bias of the current density distribution by taking out the current from the entire area of the terminals 12A and 12B.

なお、セル積層体には、複数のガス供給口が設けられ、さらにセル積層体に設けられた複数の電力取り出し用ターミナル端子を有し、少なくとも一方のガス供給口の近傍にターミナルの電流取り出し部を設けてもよい。好ましくは、セル積層体(スタック)の両端に存在する二つのターミナル端子において、各端子を燃料ガス供給口の近傍と酸化ガス供給口の近傍の少なくとも一方に設けることが好ましい。   The cell stack is provided with a plurality of gas supply ports, and further has a plurality of power extraction terminal terminals provided in the cell stack, and a current extraction portion of the terminal in the vicinity of at least one of the gas supply ports. May be provided. Preferably, in the two terminal terminals existing at both ends of the cell stack (stack), each terminal is preferably provided in at least one of the vicinity of the fuel gas supply port and the vicinity of the oxidizing gas supply port.

本実施の形態にかかる燃料電池を模式的に示す側面図である。It is a side view which shows typically the fuel cell concerning this Embodiment. 図1に示す燃料電池のセパレータの水素ガス流路側から見た平面図である。It is the top view seen from the hydrogen gas flow path side of the separator of the fuel cell shown in FIG. 図1に示す燃料電池のセパレータの酸素ガス流路側から見た平面図である。It is the top view seen from the oxygen gas flow path side of the separator of the fuel cell shown in FIG. 本発明の他の実施の形態にかかる燃料電池のセパレータの水素ガス流路側から見た平面図である。It is the top view seen from the hydrogen gas channel side of the separator of the fuel cell concerning other embodiments of the present invention. 本発明の他の実施の形態にかかる燃料電池のセパレータの酸素ガス流路側から見た平面図である。It is the top view seen from the oxygen gas channel side of the separator of the fuel cell concerning other embodiments of the present invention. 本発明の他の実施の形態にかかる燃料電池のセパレータの水素ガス流路側から見た平面図である。It is the top view seen from the hydrogen gas channel side of the separator of the fuel cell concerning other embodiments of the present invention. 本発明の他の実施の形態にかかる燃料電池のセパレータの酸素ガス流路側から見た平面図である。It is the top view seen from the oxygen gas channel side of the separator of the fuel cell concerning other embodiments of the present invention.

符号の説明Explanation of symbols

1 燃料電池
30 セパレータ
31 水素ガス流路
32 水素入口
35 酸素ガス流路
36 酸素入口
42A、42B 電流取り出し部
DESCRIPTION OF SYMBOLS 1 Fuel cell 30 Separator 31 Hydrogen gas flow path 32 Hydrogen inlet 35 Oxygen gas flow path 36 Oxygen inlet 42A, 42B Current extraction part

Claims (5)

複数の単セルが積層されてなるセル積層体と、
前記セル積層体に連通して設けられ、各々の単セルのガス流路に反応ガスを供給するガス供給口と、
前記セル積層体に設けられたターミナルと、
を備え、
前記ガス供給口の近傍に、当該ガス供給口に対応するターミナルの電流取り出し部を設けてなる燃料電池。
A cell stack in which a plurality of single cells are stacked;
A gas supply port provided in communication with the cell stack and supplying a reaction gas to the gas flow path of each single cell;
A terminal provided in the cell stack;
With
A fuel cell in which a current extraction portion of a terminal corresponding to the gas supply port is provided in the vicinity of the gas supply port.
前記ガス供給口は、発電時に電流密度が高くなる部位に設けられてなる請求項1記載の燃料電池。   The fuel cell according to claim 1, wherein the gas supply port is provided at a portion where the current density is increased during power generation. 前記ターミナルの電流取り出し部は、前記反応ガスのガス分圧が高い部位に設けられてなる請求項1記載の燃料電池。   The fuel cell according to claim 1, wherein the current extraction portion of the terminal is provided at a portion where a gas partial pressure of the reaction gas is high. 前記ガス流路がサーペンタイン流路であり、前記ターミナルの電流取り出し部は、前記ガス流路の第1ターン部付近までの領域内に設けられてなる請求項1ないし請求項3のいずれか一項に記載の燃料電池。   The said gas flow path is a serpentine flow path, The electric current extraction part of the said terminal is provided in the area | region to the 1st turn part vicinity of the said gas flow path. A fuel cell according to claim 1. 前記ガス流路がストレート流路であり、前記ターミナルの電流取り出し部は、セル面内の中心を通り且つ互いに直角に交わる2本の線で当該セル面内を4分割した領域のうち、前記ガス供給口が配設されている領域内に設けられてなる請求項1ないし請求項3のいずれか一項に記載の燃料電池。

The gas flow path is a straight flow path, and the current extraction portion of the terminal is the gas in a region divided into four in the cell plane by two lines passing through the center in the cell plane and intersecting at right angles to each other. The fuel cell according to any one of claims 1 to 3, wherein the fuel cell is provided in a region where a supply port is provided.

JP2004094290A 2004-03-29 2004-03-29 Fuel cell Pending JP2005285399A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004094290A JP2005285399A (en) 2004-03-29 2004-03-29 Fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004094290A JP2005285399A (en) 2004-03-29 2004-03-29 Fuel cell

Publications (1)

Publication Number Publication Date
JP2005285399A true JP2005285399A (en) 2005-10-13

Family

ID=35183571

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004094290A Pending JP2005285399A (en) 2004-03-29 2004-03-29 Fuel cell

Country Status (1)

Country Link
JP (1) JP2005285399A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005327558A (en) * 2004-05-13 2005-11-24 Fuji Electric Holdings Co Ltd Solid polymer fuel cell
JP2013037903A (en) * 2011-08-08 2013-02-21 Nippon Soken Inc Fuel cell

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH076772A (en) * 1993-06-18 1995-01-10 Mitsubishi Electric Corp Fuel cell
WO2003088395A1 (en) * 2002-04-17 2003-10-23 Matsushita Electric Industrial Co., Ltd. Polymeric electrolyte type fuel cell
JP2003346869A (en) * 2002-05-24 2003-12-05 Honda Motor Co Ltd Fuel cell stack

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH076772A (en) * 1993-06-18 1995-01-10 Mitsubishi Electric Corp Fuel cell
WO2003088395A1 (en) * 2002-04-17 2003-10-23 Matsushita Electric Industrial Co., Ltd. Polymeric electrolyte type fuel cell
JP2003346869A (en) * 2002-05-24 2003-12-05 Honda Motor Co Ltd Fuel cell stack

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005327558A (en) * 2004-05-13 2005-11-24 Fuji Electric Holdings Co Ltd Solid polymer fuel cell
JP2013037903A (en) * 2011-08-08 2013-02-21 Nippon Soken Inc Fuel cell

Similar Documents

Publication Publication Date Title
KR100549683B1 (en) Solid polymer electrolyte fuel cell assembly, fuel cell stack, and method of supplying reaction gas in fuel cell
JP4344484B2 (en) Solid polymer cell assembly
JP4245091B2 (en) Fuel cell
US7867666B2 (en) Fuel cell with triangular buffers for reactant gas and coolant
JP4753599B2 (en) Fuel cell
RU2262160C2 (en) Fuel cell bank using solid polymeric electrolyte, fuel cell battery, and fuel cell bank operating process
KR20190002548A (en) A bipolar plate having a reactant gas channel with variable cross-sectional area, a fuel cell stack, and a vehicle with such a fuel cell stack
JP3801096B2 (en) Fuel cell having a stack structure
JP2008192368A (en) Fuel cell stack
JP2007287509A (en) Fuel cell stack
JP4820068B2 (en) Fuel cell stack
JP2006236612A (en) Fuel cell
JP4672989B2 (en) Fuel cell stack
JP5098212B2 (en) Fuel cell
JP5042507B2 (en) Fuel cell
JP4872252B2 (en) Fuel cell
JP2005056671A (en) Fuel cell
US7413825B2 (en) Fuel cell
JP4507453B2 (en) Fuel cell manifold
JP2003338299A (en) Fuel battery
JP2006147467A (en) Fuel cell and separator for fuel cell
JP2004134130A (en) Fuel cell stack
JP2004087190A (en) Solid polymer cell assembly
JP2005285399A (en) Fuel cell
JP6403099B2 (en) Fuel cell module

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070206

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091117

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091125

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100121

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110121