JPH01276566A - Fuel cell - Google Patents

Fuel cell

Info

Publication number
JPH01276566A
JPH01276566A JP63104081A JP10408188A JPH01276566A JP H01276566 A JPH01276566 A JP H01276566A JP 63104081 A JP63104081 A JP 63104081A JP 10408188 A JP10408188 A JP 10408188A JP H01276566 A JPH01276566 A JP H01276566A
Authority
JP
Japan
Prior art keywords
gas
pressure
fuel cell
cell stack
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63104081A
Other languages
Japanese (ja)
Inventor
Shigeki Kadoma
茂樹 門間
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP63104081A priority Critical patent/JPH01276566A/en
Publication of JPH01276566A publication Critical patent/JPH01276566A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04089Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
    • H01M8/04104Regulation of differential pressures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0271Sealing or supporting means around electrodes, matrices or membranes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Abstract

PURPOSE:To prevent the leakage of reaction gas into a vessel by filling a covering gas in the space between a sealed pressure vessel in which a fuel cell stack having manifolds is accommodated and the fuel cell stack, and equalizing or heightening the gas pressure in the vessel to or than the gas pressure in a reaction gas inside the manifold. CONSTITUTION:A molten salt fuel cell stack 4 is formed by stacking unit cells through separators. A covering gas such as carbon dioxide supplied to a pressure vessel 3 is adjusted to a specified pressure through a pressure reducing valve 2 from a gas container 1. When the fuel cell stack 4 enters operation, the pressure in a reaction gas inlet side manifold 8a and the covering gas pressure are detected, and the pressure reducing valve 2 and a pressure control valve 10 are opened or closed with a pressure controller 9 to set the pressure of the covering gas slightly higher than that in the manifold 8a so that pressure difference becomes 0.1-10Kpa. The leakage of reaction gas into the vessel is prevented.

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) この発明は、燃料電池に関する。[Detailed description of the invention] [Purpose of the invention] (Industrial application field) TECHNICAL FIELD This invention relates to fuel cells.

(従来の技術) 近年、次世代の燃料電池として溶融炭酸塩型燃料電池の
開発が進められている。溶融炭酸塩型燃料電池は、炭酸
塩からなる電解質を高温下で溶融状態にし、電極反応を
生起させるもので、リン酸型、固体電解質型等の他の燃
料電池に比べ、電極反応が起り易く、発電熱効率が高い
うえ、高価な貴金属触媒を必要としない等の特長を有し
ている。
(Prior Art) In recent years, molten carbonate fuel cells have been developed as next-generation fuel cells. Molten carbonate fuel cells melt an electrolyte made of carbonate at high temperatures to cause electrode reactions, and electrode reactions occur more easily than other fuel cells such as phosphoric acid and solid electrolyte fuel cells. It has features such as high heat generation efficiency and no need for expensive precious metal catalysts.

ところで、このような溶融炭酸塩型燃料電池では1つの
燃料電池で得られる起電力が1■と低いため、高出力の
発電プラントを構成する1こは、複数の単位電池を直列
に積層して燃料電池本体を構成し、各単位電池の加算出
力を得るようにしなければならない。したがって、この
橋の燃料電池は次のように構成される。
By the way, in such a molten carbonate fuel cell, the electromotive force obtained by one fuel cell is as low as 1, so a high-output power generation plant is constructed by stacking multiple unit cells in series. The fuel cell main body must be configured to obtain the summed output of each unit cell. Therefore, the fuel cell for this bridge is configured as follows.

すなわち、各単位電池は一対の多孔質成極板(アノード
電極とカソード電極)と、これらの間に介在されたアル
カリ炭酸塩からなる電解質層とで構成される。これら単
位電池は、セパレータを介して積層される。セパレータ
は、各単位電池間の電気的な接続機能と、各電極板への
反応ガスの通路を形成する機能とを兼備えたものである
0燃料電池本体の4つの側面には、反応ガスの分配、回
収機能を有するマニホールドが当てがわれている。そし
て、これらマニホールドのうちの一つに酸化剤ガスを供
給するとともに隣接するマニホールドに燃料ガスを供給
し、アノード0III m極において、 迅+C03′−→H20+CO1+2@−なる反応を、
またカソード側電極において1/201+CO2+2e
→CO52−なる反応を生起せしめ、直流出力を得た後
、それぞれの対向するマニホールドからガスを排出させ
るよりにしている。なお、各単位電池の周縁部には、上
記両反応ガスの燃料電池本体内部における交差混合を防
止するため溶融炭酸塩によるウェットシールが形成され
る。また、燃料電池本体とマニホールドとの間にも、上
記両ガスの漏洩を防止するためのウェットシールが形成
される。
That is, each unit cell is composed of a pair of porous polarized plates (an anode electrode and a cathode electrode) and an electrolyte layer made of an alkali carbonate interposed between them. These unit batteries are stacked with separators in between. The separator has both the function of electrical connection between each unit cell and the function of forming a passage for the reaction gas to each electrode plate. A manifold with distribution and collection functions is installed. Then, oxidant gas is supplied to one of these manifolds and fuel gas is supplied to the adjacent manifold, and at the anode 0III m pole, a reaction occurs rapidly: +C03'-→H20+CO1+2@-
Also, at the cathode side electrode, 1/201+CO2+2e
→CO52- reaction occurs, and after obtaining DC output, the gas is discharged from each opposing manifold. A wet seal made of molten carbonate is formed on the peripheral edge of each unit cell to prevent cross-mixing of both of the reaction gases inside the fuel cell main body. Further, a wet seal is also formed between the fuel cell main body and the manifold to prevent leakage of both of the above gases.

ところで、上記の燃料電池本体とマニホールドとの間の
ウェットシール部のシール性は完全でなく反応ガスとし
ての酸素ガスや水素ガス等が容器中に漏出しやすい。
However, the sealing performance of the wet seal between the fuel cell main body and the manifold is not perfect, and oxygen gas, hydrogen gas, etc. as reaction gases tend to leak into the container.

また、電池積層体の温度が600〜700℃と高い為に
容器内に設置した電池積層体を保温材でおおっても容器
と電池積層体の窒素ガスやアルゴンガス等のカバーガス
温度は上昇する。
In addition, since the temperature of the battery stack is as high as 600-700°C, even if the battery stack installed in the container is covered with a heat insulating material, the temperature of the cover gas such as nitrogen gas or argon gas in the container and the battery stack will rise. .

現在では第2図に示すように、窒素ガスやアルゴンガス
等のカバーガスはガス容器1から減圧弁2で減圧されて
容器3に流入する。電池積層体4は容器3に固定され、
かつ外周部を保温材5でおおわれている。電池積層体4
の熱により昇温したカバーガスは容器3上部から触媒装
置6を経てカバーガス中の水素を水fこ変換した後に大
気中に放出されている。
Currently, as shown in FIG. 2, a cover gas such as nitrogen gas or argon gas is depressurized from a gas container 1 by a pressure reducing valve 2 and flows into a container 3. The battery stack 4 is fixed to the container 3,
Moreover, the outer periphery is covered with a heat insulating material 5. Battery laminate 4
The cover gas, whose temperature has been raised by the heat, is discharged into the atmosphere from the upper part of the container 3 through the catalyst device 6, after which the hydrogen in the cover gas is converted into water.

現在、単位電池の大きさは5001角から150cIL
角程度の大きさとなり、上記のように容器3内のカバー
ガスを大気放出すると大量のカバーガスが必要となり、
またカバーガスを容器3内に充填するのみでは漏れた水
素ガス濃度が高くなり、反応ガス中のrlに素ガスも同
時にカバーガス中に漏出すると水素ガスと酸素ガスの爆
発の危険性や水素ガスと酸素ガスの燃焼反応によりカバ
ーガス温度の上昇や一酸化炭素濃度の上昇等の問題があ
る。
Currently, unit battery sizes range from 5001 square to 150 cIL.
The size is about the size of a square, and if the cover gas in the container 3 is released into the atmosphere as described above, a large amount of cover gas will be required.
In addition, if only the cover gas is filled into the container 3, the leaked hydrogen gas concentration will increase, and if the rl gas in the reaction gas also leaks into the cover gas, there is a danger of an explosion between hydrogen gas and oxygen gas, and hydrogen gas There are problems such as an increase in the temperature of the cover gas and an increase in the concentration of carbon monoxide due to the combustion reaction between the gas and the oxygen gas.

(発明が解決しようとする課題) 上述のように加圧容器内のカバーガスを大気放出すると
大量のカバーガスが必要となり、またカバーガスを加圧
容器内に充填のみでは水素ガス濃度が高くなり、反応ガ
スの酸素も同時にカバーガス中に漏出すると水素ガスと
酸素ガスの爆発の危険性や水素ガスと酸素ガスの燃焼反
応Iこよりカバーガス温度の上昇や一酸化炭素濃度の上
昇等の問題がある。
(Problems to be Solved by the Invention) As mentioned above, if the cover gas in the pressurized container is released into the atmosphere, a large amount of cover gas will be required, and if only the cover gas is filled into the pressurized container, the hydrogen gas concentration will increase. If the reactant oxygen also leaks into the cover gas at the same time, there is a danger of explosion between the hydrogen gas and oxygen gas, and problems such as an increase in the cover gas temperature and an increase in the carbon monoxide concentration due to the combustion reaction between the hydrogen gas and oxygen gas occur. be.

本発明は上記事情に鑑みてなされたもので、その目的と
するところは、カバーガスの量を少なくした!ま、容器
内fこ反応ガスが漏洩するのを防止できる溶融炭酸塩燃
料電池を提供することにある。
The present invention was made in view of the above circumstances, and its purpose is to reduce the amount of cover gas! Another object of the present invention is to provide a molten carbonate fuel cell that can prevent reactant gas from leaking inside the container.

〔発明の構成〕[Structure of the invention]

(課題を解決するための手段) 本発明の溶融炭酸塩燃料電池においては、7ノード電極
とカソード電極との間に電解質層を介在させて構成され
た単位電池を導電性セパレータを介して複数積層してな
る燃料電池積層体と、単位電池に設けられた反応ガス流
路に反応ガスを導入する複数のマニホルドを備えた燃料
電池積層体を密閉加圧容器内に設けかつ、密閉加圧容器
と燃料電池積1体間にカバーガスを充填し、加圧容器内
のカバーガス圧力を燃料電池積層体の反応ガス入ロ側マ
Iホルト内圧力と同圧若しくは高くしたことを特徴とし
ている◎ また密閉加圧容器内のカバーガス圧力を燃料電池積層体
の反応ガス入口側ママホルト内圧力より0.1〜10 
kPa高くしたことを特徴としている。
(Means for Solving the Problems) In the molten carbonate fuel cell of the present invention, a plurality of unit cells each having an electrolyte layer interposed between a seven-node electrode and a cathode electrode are laminated via a conductive separator. A fuel cell stack including a plurality of manifolds for introducing reactant gas into reactant gas channels provided in unit cells is provided in a sealed pressurized container, and the fuel cell stack is provided in a sealed pressurized container. A cover gas is filled between each fuel cell stack, and the pressure of the cover gas in the pressurized container is set to be equal to or higher than the pressure inside the reactor gas inlet side of the fuel cell stack. The cover gas pressure in the sealed pressurized container is 0.1 to 10% higher than the Mamaholt internal pressure on the reactant gas inlet side of the fuel cell stack.
It is characterized by a high kPa.

また、密閉容器内カバーガスを炭酸ガスにしたことを特
徴としている。
Another feature is that the cover gas inside the closed container is carbon dioxide gas.

(作用) 燃料電池のアノード側反応ガスは水素ガスと炭酸ガスの
混合ガス、カソード側反応ガスは空気と炭酸ガスの混合
ガスを用いる・ 加圧容器内のカバーガス圧力が燃料電池積層体側面の反
応ガス入ロ側マfホルト内圧力より高い場合に燃料電池
本体とマtホルト間のウェットシール部からカバーガス
が反応ガス中lこ流入する。
(Function) The reaction gas on the anode side of the fuel cell is a mixture of hydrogen gas and carbon dioxide, and the reaction gas on the cathode side is a mixture of air and carbon dioxide.・The pressure of the cover gas in the pressurized container is equal to the pressure on the side of the fuel cell stack. When the reactant gas inlet side mafholt internal pressure is higher than that of the reactant gas, the cover gas flows into the reactant gas from the wet seal portion between the fuel cell main body and the mafholt.

このためにカバーガス中への水素ガスや22ガスの流入
を防ぐことが出来る。しかしながら、カバーガスが大量
に反応ガス中に流入する場合は燃料電池性能を低下させ
る。この為にカバーガスと反応ガスとの圧力差をある値
(例えば、01乃至10KPa程度)以下にして、燃料
電池性能の低下を防ぐことができ、カバーガスfこ炭酸
ガスを用いれば反応ガス内に流入しても性能にほとんど
影響を与えたい◇ (実施例) 第1図を参照して本発明の一実施例を説明する。
For this reason, it is possible to prevent hydrogen gas and 22 gas from flowing into the cover gas. However, if a large amount of cover gas flows into the reaction gas, fuel cell performance will be degraded. For this reason, it is possible to prevent the fuel cell performance from deteriorating by keeping the pressure difference between the cover gas and the reaction gas below a certain value (for example, about 0.1 to 10 KPa). ◇ (Embodiment) An embodiment of the present invention will be described with reference to FIG. 1.

なお、第2図と同一部分lζは同一符号を付してそのN
R,F!Aは省略する。加圧容器3の中に単位電池をセ
パレータを介して複数積層してなる溶融炭酸塩燃料電池
積層体4が設けられている。燃料電池積層体4の運転時
の作動温度が600〜700℃と高いために加圧容器3
と燃料電池積層体4との間には熱的に絶縁する保温材7
が設けられ、これにより燃料電池積層体4は固定され、
かつ燃料電池積層体4とマニホルド8の外周部を保温材
5で覆っている。
In addition, the same parts lζ as in FIG. 2 are given the same symbols and their N
R, F! A is omitted. A molten carbonate fuel cell stack 4 formed by stacking a plurality of unit cells with separators in between is provided in a pressurized container 3 . Since the operating temperature of the fuel cell stack 4 during operation is as high as 600 to 700°C, the pressurized container 3
A heat insulating material 7 for thermal insulation is provided between the fuel cell stack 4 and the fuel cell stack 4.
is provided, thereby fixing the fuel cell stack 4,
In addition, the outer peripheries of the fuel cell stack 4 and the manifold 8 are covered with a heat insulating material 5.

第1図では燃料電池積層体4とマニホルド8の支持固定
方法については図示していない。加圧容器3に供給する
炭酸ガス等のカバーガスはガス容器1から減圧弁2を介
して圧力調整されながら所定の圧力(0,2〜0.8M
Paa度)まで昇圧する0燃料電池績層体4が運転状態
fこなると反応ガス入口側マニホルド8a圧力とカバー
ガス圧力の両者を検出して圧力制御装置91こより減圧
弁2と圧力調整用バルブ10を開閉してカバーガス圧力
を反応ガス入口側マニホルド8aの圧力より高く調節す
るQ本発明ではカバーガスの圧力を高めるために加圧容
器3は密閉されている。
In FIG. 1, a method for supporting and fixing the fuel cell stack 4 and the manifold 8 is not illustrated. Cover gas such as carbon dioxide gas supplied to the pressurized container 3 is pressure-regulated from the gas container 1 through the pressure reducing valve 2 to a predetermined pressure (0.2 to 0.8 M).
When the fuel cell stack 4 reaches the operating state F, both the reaction gas inlet manifold 8a pressure and the cover gas pressure are detected and the pressure control device 91 controls the pressure reducing valve 2 and the pressure regulating valve 10. Q. In the present invention, the pressurized container 3 is sealed in order to increase the pressure of the cover gas.

このときのカバーガス圧力は反応ガス入口側マニホルド
8aの圧力よりもわずかに高くすれば、シール部分から
の反応ガスの漏れが生じなくなる。
If the cover gas pressure at this time is made slightly higher than the pressure of the reactant gas inlet side manifold 8a, leakage of the reactant gas from the sealed portion will not occur.

また、あまり圧力差を大きくするとシール性能に悪影響
を与え反応ガス中に逆流する契合もあるため、圧力差0
.1乃至10KPaa度に設定すればよまた、シール部
分からの漏れを完全に防止させるためlこは、カバーガ
ス圧力と反応ガス入口側マニホルド8aの圧力とを完全
に等しくすればよい。
In addition, if the pressure difference is too large, it will have a negative effect on the sealing performance and may cause a backflow into the reaction gas.
.. It is sufficient to set the pressure to 1 to 10 KPaa degrees.Also, in order to completely prevent leakage from the seal portion, the cover gas pressure and the pressure of the reaction gas inlet side manifold 8a may be made completely equal.

しかし、完全に一致させることは比較的困難であり、ま
た安全性の面からもカバーガス圧力を高くすることが望
ましい。安全性確保の面からは、カバーガス圧力をより
高く設定することが望ましいが、その場合には逆にカバ
ーガスがマニホルド8内に侵入し燃料電池の性能低下を
生じさせるズれがある力;、この実施例に示すようlこ
カバーガスに炭酸ガスを用いれば、炭酸ガスは本来反応
ガス中に成分として含まれているものであり、圧力差を
10KPa程度にとどめれば問題はほとんどない◇この
ように従来は、カバーガスを常時大気放出するためIこ
大量のカバーガスを必要としたが、本発明ではカバーガ
スの圧力を反応ガス入口側マンホルドの反応ガスの圧力
よりもわずかに高く設定しておくだけでよく、大気放出
を行なわず密閉されているため流量を大幅に減少できる
However, it is relatively difficult to achieve complete matching, and from the standpoint of safety, it is desirable to increase the cover gas pressure. From the standpoint of ensuring safety, it is desirable to set the cover gas pressure higher; however, in that case, the cover gas may intrude into the manifold 8, resulting in a misaligned force that causes a decrease in the performance of the fuel cell; If carbon dioxide gas is used as the cover gas as shown in this example, carbon dioxide gas is originally contained as a component in the reaction gas, so there is almost no problem if the pressure difference is kept to about 10 KPa. In this way, in the past, a large amount of cover gas was required to constantly release the cover gas into the atmosphere, but in the present invention, the pressure of the cover gas is set slightly higher than the pressure of the reaction gas in the reaction gas inlet side manfold. The flow rate can be significantly reduced because it is sealed and does not release into the atmosphere.

また、上述したようlこカバーガスに炭酸ガスを用いれ
ばカバーガスの圧力と反応ガスとの圧力差を、窒素ガス
やアルゴンガス等をカバーガスとした場合に比べて大き
くでき安全性が向上する。
Additionally, as mentioned above, if carbon dioxide gas is used as the cover gas, the pressure difference between the pressure of the cover gas and the reaction gas can be increased compared to when nitrogen gas, argon gas, etc. are used as the cover gas, improving safety. .

なお、実施例においては、減圧弁2と圧力調整弁10を
別々に用いたが、これを一つの弁で兼用させることもで
きる。
In the embodiment, the pressure reducing valve 2 and the pressure regulating valve 10 are used separately, but a single valve may also be used.

〔発明の効果〕〔Effect of the invention〕

以上詳述したよつlこ、本発明によればカバーガスの供
給量を従来より大幅fこ減少させ、かつ容器内lこ反応
ガスが漏れ出すのを防止することができる。
As described in detail above, according to the present invention, the amount of cover gas supplied can be significantly reduced compared to the conventional method, and leakage of reaction gas in the container can be prevented.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の溶融炭酸塩燃料電池の一実例を示す
概略構成図、第2図は、従来の溶融炭酸塩燃料電池の概
略構成図である。 1・・・ガス容器(ガス供給手段)、2・・・減圧弁、
3・・・加圧容器(容器]、4・・・燃料電池積層体、
7・・・セパレータ、8 a * 8 b 用マニホル
ド、9・・・圧力制御装ff1(圧力制御手段)、10
川圧カ調整用バルブ(圧力制御手段)。
FIG. 1 is a schematic diagram showing an example of the molten carbonate fuel cell of the present invention, and FIG. 2 is a schematic diagram of a conventional molten carbonate fuel cell. 1... Gas container (gas supply means), 2... Pressure reducing valve,
3... Pressurized container (container), 4... Fuel cell stack,
7... Separator, 8 a * 8 b manifold, 9... Pressure control device ff1 (pressure control means), 10
River pressure adjustment valve (pressure control means).

Claims (1)

【特許請求の範囲】 アノード電極とカソード電極との間に電解質層を介在さ
せてなる単位電池を導電性セパレータを介して複数積層
してなる燃料電池積層体と、この燃料電池積層体に設け
られた反応ガス流路に反応ガスを導入すると共に反応後
のガスを排出するためのマニホルドと、 前記燃料電池積層体及びマニホルドを外気から密閉する
ための容器と、 この容器内に反応に関与しないカバーガスを充填するガ
ス供給手段と、 前記反応ガスの圧力を検知する圧力検知手段と、この圧
力検知手段の情報に基いて前記カバーガスの圧力を前記
反応ガスの圧力と、同圧若しくは反応ガスの圧力よりも
高くするための圧力制御手段とを具備することを特徴と
する燃料電池。
[Claims] A fuel cell stack consisting of a plurality of unit cells stacked with an electrolyte layer interposed between an anode electrode and a cathode electrode with a conductive separator interposed therebetween; a manifold for introducing the reaction gas into the reaction gas flow path and discharging the gas after the reaction; a container for sealing the fuel cell stack and the manifold from the outside air; and a cover that does not participate in the reaction in the container. a gas supply means for filling the gas; a pressure detection means for detecting the pressure of the reaction gas; and a pressure detection means for detecting the pressure of the reaction gas; 1. A fuel cell characterized by comprising a pressure control means for increasing the pressure to a higher level.
JP63104081A 1988-04-28 1988-04-28 Fuel cell Pending JPH01276566A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63104081A JPH01276566A (en) 1988-04-28 1988-04-28 Fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63104081A JPH01276566A (en) 1988-04-28 1988-04-28 Fuel cell

Publications (1)

Publication Number Publication Date
JPH01276566A true JPH01276566A (en) 1989-11-07

Family

ID=14371193

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63104081A Pending JPH01276566A (en) 1988-04-28 1988-04-28 Fuel cell

Country Status (1)

Country Link
JP (1) JPH01276566A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6475651B1 (en) 2000-07-31 2002-11-05 Ballard Power Systems Inc. Method and apparatus for detecting transfer leaks in fuel cells
JP2005285425A (en) * 2004-03-29 2005-10-13 Toshiba Fuel Cell Power Systems Corp Fuel cell device and driving method of the same
JP2007535098A (en) * 2004-04-23 2007-11-29 ニューセルシス ゲーエムベーハー Power generation system based on fuel cell and method of operating the same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6475651B1 (en) 2000-07-31 2002-11-05 Ballard Power Systems Inc. Method and apparatus for detecting transfer leaks in fuel cells
JP2005285425A (en) * 2004-03-29 2005-10-13 Toshiba Fuel Cell Power Systems Corp Fuel cell device and driving method of the same
JP4612320B2 (en) * 2004-03-29 2011-01-12 東芝燃料電池システム株式会社 Fuel cell device
JP2007535098A (en) * 2004-04-23 2007-11-29 ニューセルシス ゲーエムベーハー Power generation system based on fuel cell and method of operating the same

Similar Documents

Publication Publication Date Title
JP4468994B2 (en) Fuel cell system
CA2107941C (en) Component for installation in a process control apparatus
US6322920B1 (en) Fuel cell isolation system
EP2190052B1 (en) Fuel cell system
JPH01276566A (en) Fuel cell
AU2002226284A1 (en) Pem-fuel cell stack with a coolant distributor structure
JPH0218869A (en) Fuel cell and its operation
JPS61148766A (en) Fused carbonate type fuel cell
JP4100169B2 (en) Fuel cell
JPH1140181A (en) Start-stopage of solid electrolyte type fuel cell, and high temperature holding method during operation or stand-by state
JPS63178455A (en) Free electrolyte type fuel cell
JP2006179415A (en) Cell laminate cover, fuel cell stack, and water leakage detecting device
JP3102052B2 (en) Solid oxide fuel cell
CN105375051B (en) A kind of charge-air fuel battery pile backwards
CN220272525U (en) Fuel cell
JPH01189869A (en) Pressurized type fuel cell
JPS626309B2 (en)
JPH0224972A (en) Gas exhaust structure for fuel cell
JPS62202465A (en) Molten carbonate fuel cell
KR20220146147A (en) Fuel cell stack system
JPH05290862A (en) Fused carbonate fuel cell
JPH0613095A (en) Method for raising and lowering temperature of internal reformed molten carbonate fuel cell
JP2001135342A (en) High molecular electrolyte fuel cell
JPS59224075A (en) Fuel cell
JPH07192750A (en) Normal pressure type fuel cell