JPS63178451A - Zinc alkaline battery - Google Patents

Zinc alkaline battery

Info

Publication number
JPS63178451A
JPS63178451A JP62010665A JP1066587A JPS63178451A JP S63178451 A JPS63178451 A JP S63178451A JP 62010665 A JP62010665 A JP 62010665A JP 1066587 A JP1066587 A JP 1066587A JP S63178451 A JPS63178451 A JP S63178451A
Authority
JP
Japan
Prior art keywords
zinc
corrosion resistance
alkaline battery
negative electrode
aluminum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62010665A
Other languages
Japanese (ja)
Inventor
Akira Miura
三浦 晃
Kanji Takada
寛治 高田
Ryoji Okazaki
良二 岡崎
Toyohide Uemura
植村 豊秀
Keiichi Kagawa
賀川 恵市
Nobuyori Kasahara
笠原 暢順
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Mining and Smelting Co Ltd
Panasonic Holdings Corp
Original Assignee
Mitsui Mining and Smelting Co Ltd
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Mining and Smelting Co Ltd, Matsushita Electric Industrial Co Ltd filed Critical Mitsui Mining and Smelting Co Ltd
Priority to JP62010665A priority Critical patent/JPS63178451A/en
Publication of JPS63178451A publication Critical patent/JPS63178451A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/42Alloys based on zinc
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To increase the corrosion resistance of a zinc alloy used in a negative electrode to obtain a zinc alkaline battery having low environmental pollution and high practicality by utilizing a synergetic effect produced by the combination of added elements. CONSTITUTION:A zinc alloy containing 0.01-0.5 wt.% thallium, 0.01-0.2 wt.% aluminum, and 0.01-0.2 wt.% at least one of calcium, magnesium, and strontium is used as a negative active material. Thallium has a high effect on increasing hydrogen overvoltage, is well alloyed with mercury at room temperature, and increases hydrogen overvoltage on the surface of zinc. Addition of aluminium is related to the particle shape of atomized zinc powder. The particle of zinc is made globular and the surface of particle is made smooth. This reduces the surface area conducting corrosion reaction of zinc powder with electrolyte and increases corrosion resistance. By adding calcium, magnesium, or strontium together with aluminum, corrosion resistance is further increased. Therefore, a zinc alkaline battery whose amalgamation rate is low but practicality is high can be obtained.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、負極活物質として亜鉛、電解液としてアルカ
リ電解液、正極活物質として二酸化マンガン、酸化銀、
酸化水銀、酸素、水酸化ニッケル等を用いる亜鉛アルカ
リ電池において、特に負極の改良に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention uses zinc as a negative electrode active material, an alkaline electrolyte as an electrolyte, and manganese dioxide, silver oxide, or silver oxide as a positive electrode active material.
In zinc alkaline batteries using mercury oxide, oxygen, nickel hydroxide, etc., the present invention particularly relates to improvements in negative electrodes.

従来の技術 従来、この種の亜鉛アルカリ電池の共通した問題点とし
て、保存中の負極亜鉛の電解液による腐食が挙げられる
。以前から、亜鉛に5〜10重量−程度の水銀を添加し
た水化亜鉛粉末を用いて水素過電圧を高め、実用的に問
題のない程度に腐食を抑制することが工業的な手法とし
て採用されている。
2. Prior Art Conventionally, a common problem with this type of zinc-alkaline battery is corrosion of the negative electrode zinc by the electrolyte during storage. For some time now, it has been adopted as an industrial method to increase the hydrogen overvoltage by using zinc hydrate powder, which is made by adding about 5 to 10 parts by weight of mercury to zinc, and to suppress corrosion to the extent that there is no practical problem. There is.

しかし、近年、低公害化のため、電池内の含有水銀を低
減させることが社会的なニーズとして高まり、種々の研
究がなされている。例えば、亜鉛。
However, in recent years, there has been an increasing social need to reduce the amount of mercury contained in batteries in order to reduce pollution, and various studies have been conducted. For example, zinc.

カドミウム、インジウム、ガリウムなどを添加しt合金
粉末を用いて耐食性を向上させ、氷化率を低減させる方
法が提案されている。これらの腐食抑制効果は、添加元
素単体による効果以外に複数の添加元素による複合効果
も犬きぐ、インジウムと鉛あるいはこれらにガリウムを
添加した亜鉛合金などが従来、有望な系として提案され
ている。
A method has been proposed in which t-alloy powder is added with cadmium, indium, gallium, etc. to improve corrosion resistance and reduce the rate of icing. These corrosion-inhibiting effects can be achieved not only by the effect of a single additive element but also by the combined effect of multiple additive elements, and indium and lead, or zinc alloys in which gallium is added to these, have been proposed as promising systems.

また、鉛、カドミウムにガリウムと銀を添加した亜鉛合
金(特開昭61−78062号)、ガリウムおよびタリ
ウムにアルミニウムを添加した亜鉛合金(特開昭61−
78061号)、アルミニウムと鉛に銀、ガリウム、タ
リウム、カドミウムの一種または二種以上を添加した亜
鉛合金(特開昭61−78059号)等がある。
In addition, zinc alloys in which gallium and silver are added to lead and cadmium (JP-A No. 61-78062) and zinc alloys in which aluminum is added to gallium and thallium (JP-A-61-78062).
No. 78061), and zinc alloys made of aluminum and lead with one or more of silver, gallium, thallium, and cadmium added (Japanese Unexamined Patent Publication No. 78059/1983).

発明が解決しようとする問題点 このような従来の亜鉛合金はいずれもある程度の耐食性
は期待でき、水化率の低減もある程度できるが、これら
の元素の組み合わせの効果については現状では十分では
なく、有効な組み合せによる合金組成を解明することは
今後の課題である。
Problems to be Solved by the Invention Although all of these conventional zinc alloys can be expected to have some degree of corrosion resistance and can reduce the hydration rate to some extent, the effects of the combination of these elements are not sufficient at present. Elucidating the alloy composition based on effective combinations is a future challenge.

本発明はこのような問題点を解決するもので、負極亜鉛
の耐食性を劣化させることなく、水化率を低減させ、低
公害で放電性能、貯蔵性能、耐漏液性などの総合性能の
すぐれた特性を亜鉛負極に具備せしめるため、添加元素
の選択とその含有量の適正な組み合せを目的とするもの
である。
The present invention solves these problems, and reduces the hydration rate without deteriorating the corrosion resistance of negative electrode zinc, resulting in low pollution and excellent overall performance such as discharge performance, storage performance, and leakage resistance. In order to provide the zinc negative electrode with the desired characteristics, the purpose is to select additive elements and appropriately combine their contents.

問題点を解決するための手段 この問題点を解決するために本発明は、タリウムを0.
01〜0.5重量%、アルミニウムをo、01〜0.2
重量%、カルシウム、マグネシウム、ストロンチウムの
うち一種以上を0.01〜0.2重量多含有する亜鉛合
金を負極活物質に用いた亜鉛アルカリ電池である。
Means for Solving the Problem In order to solve this problem, the present invention provides thallium with 0.
01-0.5 wt%, aluminum o, 01-0.2
This is a zinc-alkaline battery using a zinc alloy containing 0.01 to 0.2 weight percent of at least one of calcium, magnesium, and strontium as a negative electrode active material.

作  用 この構成による各添加元素の作用機構は明確でないが、
防食に関する相乗効果は下記のように推察される。
EffectThe mechanism of action of each additive element in this configuration is not clear, but
The synergistic effect regarding corrosion prevention is inferred as follows.

まず、タリウムは水素過電圧を高める効果が高く、室温
で水銀とよく合金化し、亜鉛表面の水素過電圧を高める
First, thallium is highly effective in increasing the hydrogen overpotential and is well alloyed with mercury at room temperature, increasing the hydrogen overpotential on the zinc surface.

アルカリ電池に用いる亜鉛は、亜鉛溶湯を圧縮空気等で
噴霧固化して作られる亜鉛粉、いわゆるアトマイズ亜鉛
粉の状態である。アルミニウムの添加はそのアトマイズ
亜鉛粉の粒子形状に関わり、粒子を球状化し、かつその
表面の平滑化は、亜鉛粉の電解液との接触により腐食反
応を行なう表面積を減少させ、耐食性を増すことができ
る。
Zinc used in alkaline batteries is in the form of so-called atomized zinc powder, which is made by spraying and solidifying molten zinc with compressed air or the like. The addition of aluminum affects the particle shape of the atomized zinc powder, making the particles spherical and smoothing the surface, which reduces the surface area where corrosion reactions occur when the zinc powder comes into contact with the electrolyte, increasing corrosion resistance. can.

カルシウム、マグネシウム、ストロンチウムをアルミニ
ウムと同時に添加すると、上記のアトマイズ亜鉛粉の形
状をさらに球状化し、その表面を平滑化する効果があり
、耐食性がさらに向上できる。
Adding calcium, magnesium, and strontium at the same time as aluminum has the effect of making the atomized zinc powder more spherical in shape and smoothing its surface, thereby further improving corrosion resistance.

以上、述べた添加元素は単独の添加では、耐食性がとぼ
しいか、むしろ逆効果が基礎的な耐食実験で確認されて
いた。複合添加することは、各々の添加合金が持つ耐食
性により逆効果の性質が軽減され、相乗効果があるもの
と思われる。
It has been confirmed in basic corrosion resistance experiments that the above-mentioned additive elements, when added alone, have poor corrosion resistance, or rather have the opposite effect. It is thought that the combined addition reduces adverse effects due to the corrosion resistance of each additive alloy, and has a synergistic effect.

本発明は、亜鉛合金中の添加元素の組合せとその含有量
を実験的に検討し、低水化率で、充分な耐食性と放電性
能を兼ね備えた低公害で実用性の高い亜鉛アルカリ電池
を実現するに有効な手段を完成したものである。以下実
施例により詳細に説明する。
The present invention experimentally investigated the combination of additive elements and their contents in zinc alloys, and realized a low-pollution, highly practical zinc-alkaline battery that has a low hydration rate, sufficient corrosion resistance, and discharge performance. This is an effective means to accomplish this. This will be explained in detail below using examples.

実施例 純度99 、99γ係以上の亜鉛地金に後に表に示すよ
うに各種の元素を添加した各種の亜鉛合金を作成し、約
soo’cで溶融して圧縮空気により噴射して粉体化し
、50〜150メツシユの粒度範囲にふるい分けした。
Examples Various zinc alloys were prepared by adding various elements as shown in the table below to zinc ingots with a purity of 99. , sieved to a particle size range of 50 to 150 mesh.

次いで、か性カリの10重量%水溶液中に上記粉体を投
入し、攪拌しながら所定量の水銀を滴下して水化した。
Next, the above powder was put into a 10% by weight aqueous solution of caustic potash, and a predetermined amount of mercury was added dropwise while stirring to hydrate it.

その後水洗し、アセトンで置換して乾燥し、水化亜鉛合
金粉を作成した。さらに本発明の実施例以外の水化亜鉛
合金粉についても比較例として同様の方法で作成した。
Thereafter, it was washed with water, replaced with acetone, and dried to produce a zinc hydrate alloy powder. Further, zinc hydrate alloy powders other than the examples of the present invention were also prepared in the same manner as comparative examples.

これらの水化粉末を用い、図に示す円筒形のアルカリマ
ンガン電池を製作した。図において、1は鉄にニッケル
メッキを施した正極ケースで内部には二酸化マンガンに
黒鉛を混合して加圧成形した正極2、ポリプロピレンの
不織布からなるセパレータ3.セルロース製底板4.カ
ルボキシメチルセルロースでゲル化したか性カリ水溶液
の電解液に各種氷化亜鉛合金を分散させたゲル状の負極
6を収容している。6はケース1の開口部を封口したポ
リプロピレン製の封口板で、その中央には真鍮製の負極
集電子7を固定している。8は負極端子板、9は正極端
子板、10.11は絶縁リング、12は熱収縮性樹脂チ
ューブ、13は金属外缶である。
Using these hydrated powders, we fabricated the cylindrical alkaline manganese battery shown in the figure. In the figure, reference numeral 1 denotes a positive electrode case made of nickel-plated iron; inside is a positive electrode 2 made of a mixture of manganese dioxide and graphite that is pressure-molded; and a separator 3 made of polypropylene nonwoven fabric. Cellulose bottom plate 4. It houses a gel-like negative electrode 6 in which various frozen zinc alloys are dispersed in an electrolyte of aqueous caustic potassium solution gelled with carboxymethyl cellulose. 6 is a sealing plate made of polypropylene which seals the opening of the case 1, and a negative electrode current collector 7 made of brass is fixed in the center thereof. 8 is a negative terminal plate, 9 is a positive terminal plate, 10.11 is an insulating ring, 12 is a heat-shrinkable resin tube, and 13 is a metal outer can.

試作し友電池は単3形のアルカリマンガン電池で、負極
に用いた氷化亜鉛合金粉末の重量は2.80yに統一し
、水銀の添加量(水化率)は亜鉛合金に対し、2重量%
とした。試作した電池を60℃で1力月貯蔵後、20′
cにおいて1Ω負荷の連続放電性能と耐漏液性とを評価
した。負極の亜鉛合金の内訳と試験の結果を次表に示す
The prototype friend battery was an AA alkaline manganese battery, and the weight of the frozen zinc alloy powder used for the negative electrode was unified to 2.80y, and the amount of mercury added (hydration rate) was 2wt to the zinc alloy. %
And so. After storing the prototype battery at 60℃ for 1 month,
Continuous discharge performance under a 1Ω load and leakage resistance were evaluated in c. The breakdown of the zinc alloy used in the negative electrode and the test results are shown in the table below.

耐食性が不十分な電池では、電池内圧の上昇によシ耐漏
液性が劣化するとともに、腐食による亜鉛の消耗、亜鉛
表面の酸化膜の形成や水素ガスの内圧による放電反応の
阻害等によシ放電性能が著しく劣化することになシ、放
電持続時間もまた亜鉛負極の耐食性に依存する要素が太
きい。
In batteries with insufficient corrosion resistance, the leakage resistance deteriorates due to an increase in the battery internal pressure, and the zinc is consumed due to corrosion, an oxide film is formed on the zinc surface, and the discharge reaction is inhibited due to the internal pressure of hydrogen gas. The discharge performance does not deteriorate significantly, and the discharge duration also largely depends on the corrosion resistance of the zinc negative electrode.

上記表に卦いて、本発明の比較例として挙げた泥1〜3
のうち単独で添加した場合(&1,2)よシも、二種の
元素を添加した場合(f;、3)、さらに三種の元素を
添加した場合の方が亜鉛負極の耐食性、放電性能ともに
幾分は改善されている。
Muds 1 to 3 listed as comparative examples of the present invention in the table above
The corrosion resistance and discharge performance of the zinc negative electrode are better when added alone (&1, 2), when two types of elements are added (f;, 3), and when three types of elements are added. It has been improved somewhat.

しかしTl、 Al、 Ca、 Mg、 Srを適切な
組合せで適正な含有量だけ併存させた本発明の実施例(
&es。
However, an example of the present invention in which Tl, Al, Ca, Mg, and Sr were coexisting in an appropriate combination and in an appropriate content (
&es.

6.7,8,11 .12,13,16,1 了、18
゜21.22,23,25,26,27,28,29゜
30)の場合には前記比較例に比べ、一段と耐食性、放
電性能がすぐれ、添加元素の複合効果が顕著に示される
。一方三元素を併存させた場合でも含有量に過不足のあ
る場合(4,9,10,14゜16.19,20.24
)では比較例と大差なく、複合効果に乏しい。
6.7,8,11. 12, 13, 16, 1, 18
In the case of 21.22, 23, 25, 26, 27, 28, 29.30), the corrosion resistance and discharge performance are even better than in the comparative example, and the combined effect of the added elements is remarkable. On the other hand, even when three elements coexist, there is an excess or deficiency in their content (4, 9, 10, 14° 16.19, 20.24
), there is no significant difference from the comparative example, and the combined effect is poor.

上述の通シ、本発明はT1. Al、 Ca、 Mg、
 Srを適切に組合せ、実施例で示すような適正な含有
量で併存させた亜鉛合金を負極に用いることによシ低永
化率化に成功したものであシ、各元素の適切な含有量は
Tlが0.01〜0.5重量%、アルミニウムが0.0
1〜0.2重量%、カルシウム、マグネシウム、ストロ
ンチウムの一種以上の和が0.01〜0.2重量%とす
るのが適切である。
In line with the above, the present invention is based on T1. Al, Ca, Mg,
By appropriately combining Sr and using a zinc alloy coexisting at an appropriate content as shown in the example for the negative electrode, we succeeded in achieving a low aging rate. has Tl of 0.01 to 0.5% by weight and aluminum of 0.0% by weight.
It is appropriate that the total amount of calcium, magnesium, and strontium be 1 to 0.2% by weight, and the sum of at least one of calcium, magnesium, and strontium be 0.01 to 0.2% by weight.

以上のように本発明は前述の添加元素の組合せによる相
乗効果によシ負極に用いる亜鉛合金の耐食性が向上する
ことを見出し、適切な含有量を割出して低公害で実用性
のすぐれた亜鉛アルカリ電池を実現したものである。な
お実施例においては水化亜鉛負極を用いた電池について
説明したが、開放式の空気電池や水素吸収機構を備えた
密閉型の亜鉛アルカリ電池などにおいては、水素ガスの
発生許容量は比較的多いので、このような場合に本発明
を適用する場合はさらに低汞化率、場合によっては無水
化のまま実施することもできる。
As described above, the present invention has discovered that the corrosion resistance of zinc alloys used for negative electrodes is improved due to the synergistic effect of the combination of the above-mentioned additive elements, and by determining the appropriate content, zinc alloys with low pollution and excellent practicality have been developed. This is the realization of an alkaline battery. In the example, a battery using a zinc hydrate negative electrode was explained, but in open air batteries and sealed zinc-alkaline batteries equipped with a hydrogen absorption mechanism, the allowable amount of hydrogen gas generated is relatively large. Therefore, when the present invention is applied to such a case, it can be carried out with a lower rate of water retention, and in some cases, with anhydrous state.

発明の効果 以上のように本発明によれば、負極亜鉛の氷化率を低減
でき、低公害の亜鉛アルカリ電池を提供できるという効
果が得られる。
Effects of the Invention As described above, according to the present invention, the freezing rate of negative electrode zinc can be reduced, and a zinc-alkaline battery with low pollution can be provided.

【図面の簡単な説明】[Brief explanation of the drawing]

図は本発明の実施例に用いたアルカリマンガン電池の半
断面図である。 2・・・・・・正極、3・・・・・・セパレータ、5・
・・・・・亜鉛負極。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名2−
−一正楡 3−−−セノ×レータ 5−−−H,給負極
The figure is a half-sectional view of an alkaline manganese battery used in an example of the present invention. 2... Positive electrode, 3... Separator, 5...
...Zinc negative electrode. Name of agent: Patent attorney Toshio Nakao and 1 other person2-
- Kazumasa Yuu 3---Ceno x Lator 5---H, supply and negative electrode

Claims (1)

【特許請求の範囲】[Claims] タリウムを0.01〜0.5重量%、アルミニウムを0
.01〜0.2重量%、カルシウム、マグネシウム、ス
トロンチウムのうち一種以上を0.01〜0.2重量%
含有する亜鉛合金を負極活物質に用いた亜鉛アルカリ電
池。
0.01 to 0.5% by weight of thallium, 0% of aluminum
.. 0.01-0.2% by weight, 0.01-0.2% by weight of one or more of calcium, magnesium, and strontium
A zinc-alkaline battery that uses a zinc alloy as the negative electrode active material.
JP62010665A 1987-01-20 1987-01-20 Zinc alkaline battery Pending JPS63178451A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62010665A JPS63178451A (en) 1987-01-20 1987-01-20 Zinc alkaline battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62010665A JPS63178451A (en) 1987-01-20 1987-01-20 Zinc alkaline battery

Publications (1)

Publication Number Publication Date
JPS63178451A true JPS63178451A (en) 1988-07-22

Family

ID=11756536

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62010665A Pending JPS63178451A (en) 1987-01-20 1987-01-20 Zinc alkaline battery

Country Status (1)

Country Link
JP (1) JPS63178451A (en)

Similar Documents

Publication Publication Date Title
JPS63178451A (en) Zinc alkaline battery
JPS63178452A (en) Zinc alkaline battery
JPS63178453A (en) Zinc alkaline battery
JPH0622119B2 (en) Zinc alkaline battery
JPS636749A (en) Zinc alkaline battery
JPS6273565A (en) Zinc alkaline battery
JPH0622118B2 (en) Zinc alkaline battery
JPS61253764A (en) Zinc alkaline battery
JPS63133450A (en) Zinc alkaline battery
JPS636747A (en) Zince alkaline battery
JPS636748A (en) Zinc alkaline battery
JPS61140068A (en) Zinc alkali battery
JPS6290860A (en) Zinc alkaline cell
JPS61140064A (en) Zinc alkali battery
JPS61140066A (en) Zinc alkali battery
JPS60175369A (en) Zinc-alkaline primary cell
JPS61181067A (en) Zinc alkaline cell
JPH0142576B2 (en)
JPS6290859A (en) Zinc alkaline cell
JPS61140062A (en) Zinc alkali battery
JPH0642369B2 (en) Zinc alkaline battery
JPS61140065A (en) Zinc alloy battery
JPS6290855A (en) Zinc alkaline cell
JPS61181070A (en) Zinc alkaline cell
JPS61203563A (en) Alkaline zinc battery