JPS63175772A - Phase compensating method for insulation resistance measuring instrument - Google Patents

Phase compensating method for insulation resistance measuring instrument

Info

Publication number
JPS63175772A
JPS63175772A JP868987A JP868987A JPS63175772A JP S63175772 A JPS63175772 A JP S63175772A JP 868987 A JP868987 A JP 868987A JP 868987 A JP868987 A JP 868987A JP S63175772 A JPS63175772 A JP S63175772A
Authority
JP
Japan
Prior art keywords
phase
output
measurement
frequency signal
insulation resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP868987A
Other languages
Japanese (ja)
Other versions
JPH083508B2 (en
Inventor
Tatsuji Matsuno
松野 辰治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Communication Equipment Co Ltd
Original Assignee
Toyo Communication Equipment Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Communication Equipment Co Ltd filed Critical Toyo Communication Equipment Co Ltd
Priority to JP868987A priority Critical patent/JPH083508B2/en
Publication of JPS63175772A publication Critical patent/JPS63175772A/en
Publication of JPH083508B2 publication Critical patent/JPH083508B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Measurement Of Resistance Or Impedance (AREA)

Abstract

PURPOSE:To correct the phase shift of a low-frequency signal for measurement at low cost all the times by adjusting the phase of the low-frequency signal for measurement which is applied to a synchronous detector provided on the secondary side of a current transformer coupled with an earth line, and approximating the output of the synchronous detector to zero. CONSTITUTION:The output terminal of a power amplifier PAMP is connected to the secondary side of a transformer OT through a changeover switch SW1 and a phase control circuit PC which generates the low-frequency signal for measurement is connected to the input side of the PAMP. When the switch SW1 is connected to a broken-line side, the primary side of the transformer OT is terminated by a resistance R1, so a current which flows through a conductor penetrating the current transformer ZCT through a capacitor C shifts in phase by 90 deg. through the PAMP. At this time, the value or polarity of the output D1 of the synchronous detector MULT is discriminated and the phase of the low-frequency signal for measurement applied to the MULT through a filter FIL is adjusted to approximate the output D1 to zero, thereby eliminating the phase shift of a measuring circuit.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は活線状態で電路等の絶縁抵抗を測定する装置に
於ける温度変化或は回路定数の経年変化等に対する補償
方法に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a method of compensating for temperature changes, secular changes in circuit constants, etc. in a device that measures the insulation resistance of electrical circuits or the like in a live line state.

(従来技術) 従来、漏電等の電路に於けるトラブルの早期発見の為に
例えば第3図に示す如き電路の絶縁抵抗測定方法を用い
電路状態を監視するのが一般的であった。
(Prior Art) Conventionally, it has been common practice to monitor the condition of an electrical circuit using a method of measuring insulation resistance of the electrical circuit, as shown in FIG.

これはZなる負荷を有する受電変圧器Tの第2種接地線
II K 、商用電源周波数と別違の周波数fxなる測
定用低周波信号発振器O8Cを接続したトランスO↑を
挿入するか、或いは前記接地線Lxに直列に前記発振器
O8Cを挿入接続するか又は前記電路1.2を前記発振
器を接続シたトロイダルコアトランスに貫通する等して
電路1及び電路2に測定用低周波電圧を印加し、前記接
地線Lmを貫通せしめた変流器ZCT Kよって、電路
と大地間に存在する絶縁抵抗Ro及び対地浮遊容量Co
を介して前記接地線に帰還する前記測定用低周波信号の
漏洩電流を検出し、これを増幅器AMPで増幅したのち
This can be done by inserting a transformer O↑ connected to the second type grounding wire II K of the power receiving transformer T with a load Z, a measuring low frequency signal oscillator O8C having a frequency fx different from the commercial power supply frequency, or A low frequency voltage for measurement is applied to the electrical circuits 1 and 2 by inserting and connecting the oscillator O8C in series with the grounding line Lx, or by passing the electrical circuit 1.2 through a toroidal core transformer to which the oscillator is connected. , the current transformer ZCT K penetrates the grounding wire Lm, so that the insulation resistance Ro and the stray capacitance to ground Co existing between the electric path and the ground are reduced.
After detecting the leakage current of the measurement low frequency signal that returns to the grounding line via the amplifier AMP.

フィルタFILによって周波数f1の成分のみを選択し
、これを例えば前記発振器O8Cの出力信号を用いて掛
算器MULTで同期検波して漏洩電流分中の有効分(O
UTり(即ち、印加低周波電圧と同相の成分)を検出す
ることKよシミ路の絶縁抵抗を測定するよう構成したも
のであった。
Only the frequency f1 component is selected by the filter FIL, and this is synchronously detected by the multiplier MULT using, for example, the output signal of the oscillator O8C to calculate the effective component (O
It was constructed to detect the UT error (that is, a component in phase with the applied low frequency voltage) and to measure the insulation resistance of the smear path.

本発明の理解を助けるためにその測定理論を更に説明す
る。
To help understand the present invention, the measurement theory thereof will be further explained.

前記接地線LΣに印加される測定用信号電圧を例えば正
弦波としてV sinωtt(ω1=2π、fl)とす
れば、接地点Eを介して接地線LEに帰還する周波数f
1の漏洩電流Iは と表わされ、印加する交流電圧と同相の成分。
If the measurement signal voltage applied to the grounding line LΣ is, for example, a sine wave and V sinωtt (ω1=2π, fl), then the frequency f that returns to the grounding line LE via the grounding point E is
The leakage current I in 1 is expressed as , and is a component that is in phase with the applied AC voltage.

即ち上記(1)式の右辺第1項の成分に比例した値を同
期検波等の手段で検出すればこの値は絶縁抵抗Roに逆
比例したものとなるから、これによって電路の絶縁抵抗
値を求めることができる。
In other words, if a value proportional to the first term on the right-hand side of equation (1) is detected using a means such as synchronous detection, this value will be inversely proportional to the insulation resistance Ro. You can ask for it.

しかしこのように前記接地線に帰還する漏洩電流を変流
器ZCTで検出し、これに含まれる周波数fxの漏洩電
流成分をフィルタFILで選択出力する従来の方法では
2通常変流器→増幅器→フィルタの系で周波数flの漏
洩電流の位相がずれるから、これらの同期検波出力から
R。
However, in the conventional method of detecting the leakage current that returns to the grounding line with the current transformer ZCT and selectively outputting the leakage current component of the frequency fx included in the detected leakage current component with the filter FIL, two normal current transformers → amplifier → Since the phase of the leakage current of frequency fl is shifted in the filter system, R from these synchronous detection outputs.

に逆比例した値を得るためにはこの位相ずれを補償する
必要がある。このために従来同図に示す如く同期検波器
MtJLTの第1の入力端に又は。
In order to obtain a value that is inversely proportional to , it is necessary to compensate for this phase shift. For this purpose, conventionally, as shown in the figure, the first input terminal of the synchronous detector MtJLT or

第2の入力端に移相器PSを挿入することによって上記
位相ずれを補正し互いの同期をとっていた。即ちとの移
相器PS′?:設けることにより対地浮遊容量Coがな
い状態(Co=O)にて。
By inserting a phase shifter PS into the second input terminal, the above phase shift is corrected and mutual synchronization is achieved. i.e. phase shifter PS′? : Provided in a state where there is no stray capacitance Co to the ground (Co=O).

同期検波器の第1.第2の入力端に印加される電圧の位
相差が零となるように前もって設定しておくものであっ
た。
The first of the synchronous detectors. The phase difference between the voltages applied to the second input terminal was set in advance to be zero.

しかしながら上述の如き従来の方法では変流器ZCT 
、フィルタFIL 、移相器PS等の位相特性は温度変
化または使用部品特性の経年変化等によって変動するた
め、この結果最初の調整値との位相誤差が発生し、正し
い測定結果を提供できなくなる欠点があった。これらに
対処するために従来は特性変動の少ない極めて高品質な
変流器或いはフィルタ等を採用することによって位相誤
差の影響を極力小さくしていたが。
However, in the conventional method as described above, the current transformer ZCT
, filter FIL, phase shifter PS, etc., fluctuate due to temperature changes or changes in the characteristics of the parts used over time. This results in a phase error with the initial adjustment value, making it impossible to provide correct measurement results. was there. In order to cope with these problems, the influence of the phase error has conventionally been minimized by employing extremely high-quality current transformers or filters with little variation in characteristics.

それでもその影響を完全に除去することは困難であった
Even so, it was difficult to completely eliminate that influence.

(発明の目的) 本発明は以上説明したような従来の絶縁抵抗測定方法の
欠点な除去するため罠なされたものであって、高価な部
品を必要とせず安価に測定信号の位相ずれを常時補正し
、常に正確な測定結果をもたらしうる絶縁抵抗測定装置
の位相調整方法を提供することを目的とする。
(Objective of the Invention) The present invention has been made to eliminate the drawbacks of the conventional insulation resistance measurement method as described above, and to constantly correct the phase shift of the measurement signal at low cost without requiring expensive parts. However, it is an object of the present invention to provide a phase adjustment method for an insulation resistance measuring device that can always provide accurate measurement results.

(発明の概要)                 (
本発明はこの目的を達成するため原理的には。
(Summary of the invention) (
In principle, the present invention achieves this objective.

接地線を介して商用電源周波数と異なる測定用低周波信
号電圧を電路に印加し、電路と大地間の絶縁抵抗及び浮
遊容量を介して前記接地線に帰還する測定用低周波信号
の漏洩成分を前記接地線に結合せしめた変流器を介して
抽出し、この信号を同期検波することによって電路の絶
縁抵抗を測定する装置に於いて、前記変流器に新らたに
導線を貫通せしめるとともに、前記電路に測定用低周波
電圧が印加されない状態にて前記導線に測定用低周波電
圧と90°位相が推移した信号を通電し、このとき得ら
れる前記同期検波器出力が零となるように同期検波器に
印加する基準用測定用低周波信号電圧の位相を自動的K
又は手動にて調整するよう構成する。
A low frequency signal voltage for measurement different from the commercial power supply frequency is applied to the electric line via the ground line, and the leakage component of the low frequency signal for measurement that returns to the ground line via the insulation resistance and stray capacitance between the electric line and the earth is detected. In an apparatus for measuring the insulation resistance of an electrical circuit by extracting the signal through a current transformer coupled to the grounding wire and synchronously detecting this signal, a new conductor is passed through the current transformer, and , A signal whose phase has shifted by 90 degrees from the low frequency voltage for measurement is energized through the conductive wire in a state where the low frequency voltage for measurement is not applied to the electric line, and the output of the synchronous detector obtained at this time is zero. Automatically adjusts the phase of the reference measurement low-frequency signal voltage applied to the synchronous detector.
Or configure it to be adjusted manually.

この状態にて前記導線への通電を停止し通常の測定を行
なえば測定回路の位相特性の変動が補償され、このとき
得られる測定結果は正確なものとなる。
In this state, if the current to the conducting wire is stopped and normal measurement is performed, fluctuations in the phase characteristics of the measuring circuit are compensated for, and the measurement results obtained at this time will be accurate.

実施例) 先ず本発明に係る測定方法を説明する前にその理解を助
ける為従来の方法及びその欠点を少しく詳細に説明する
Examples) Before explaining the measuring method according to the present invention, a conventional method and its drawbacks will be explained in some detail to aid understanding.

第(1)式にて示される周波数f1の漏洩電流成分Iが
変流器ZCT、  増幅器AMP、  フィルタFIL
O系を通過する際発生する位相ずれをθとすればフィル
タFIL出カニ1は −・・・・・・・・(2) となシ、これは同期検波器MOLTの第1の入力端に印
加される。
The leakage current component I at frequency f1 shown in equation (1) is the current transformer ZCT, amplifier AMP, and filter FIL.
If the phase shift that occurs when passing through the O system is θ, then the filter FIL output 1 is -... (2) This is the first input terminal of the synchronous detector MOLT. applied.

また同期検波器の第2の入力端に印加される電圧を例え
ば一定振幅のa □ sin (ωs t+01)  
とすれば、同期検波器の出力即ち有効成分りはD= I
xXa□5i11(ωtt−IJt)   ・・・・・
・・・・(3)(□は角周波数01以上の 成分を除去することを意味する) ・・・・・・・・・(4) 従ってσ=σlのときの出力DOは とな’) *”+aOは一定となるから絶縁抵抗R。
In addition, the voltage applied to the second input terminal of the synchronous detector is, for example, a □ sin (ωs t+01) with a constant amplitude.
Then, the output of the synchronous detector, that is, the effective component, is D=I
xXa□5i11(ωtt-IJt) ・・・・・・
・・・・・・(3) (□ means to remove components with angular frequency of 01 or higher) ・・・・・・・・・(4) Therefore, when σ=σl, the output DO is ') *”+aO is constant, so insulation resistance R.

K逆比例した値を測定することができる。したがって位
相ずれ0−01が零でない時の上記り。
A value that is inversely proportional to K can be measured. Therefore, the above is true when the phase shift 0-01 is not zero.

に対するDの誤差Eは = l −cos (e−θt ) +ωtCoRos
in (a−θl)・・・・・・(6)となる。
The error E of D for
in (a-θl) (6).

今9例えばσ−01=1(度)のとき(6)式にてfx
=25Hzで、Ro=20にΩ、Co=5.c+Fとす
るときωtCoRo=15.7となるから誤差Cは27
.4チとなシ著しく測定誤差が大きくなることが分る。
Now 9 For example, when σ-01 = 1 (degree), fx in equation (6)
=25Hz, Ro=20Ω, Co=5. When c+F, ωtCoRo=15.7, so the error C is 27
.. It can be seen that the measurement error becomes significantly larger when the number is 4.

本発明は上述した位相ずれに伴う測定誤差の発生を極力
抑える方法を提案するものである。
The present invention proposes a method for minimizing the occurrence of measurement errors due to the above-mentioned phase shift.

第1図は本発明に係かる絶縁抵抗測定装置の一実施例を
示す回路図であって、前記第3囚に示したものと同様一
方を接地した電路1,2の絶縁抵抗を測定するための装
置である。
FIG. 1 is a circuit diagram showing an embodiment of an insulation resistance measuring device according to the present invention, which is used to measure the insulation resistance of electrical circuits 1 and 2, one of which is grounded, similar to that shown in the third case. This is the device.

即ち、負荷2を有する変圧器Tの2次電路1.2の一方
2に第2種接地線Lxが施こされ。
That is, the second type grounding conductor Lx is connected to one side 2 of the secondary circuit 1.2 of the transformer T having the load 2.

該接地線Lgにはこれが貫通する如く変流器ZCTが又
直接結合によりてトランスOTを夫々接続する。
A current transformer ZCT passes through the ground line Lg and connects each transformer OT by direct coupling.

又、該トランスOTの二次側には切替スイッチSWIを
介して電力増幅器PAMPの出力端が。
Further, the output terminal of the power amplifier PAMP is connected to the secondary side of the transformer OT via a changeover switch SWI.

更に該電力増幅器PAMPの入力端には周波数fxなる
測定用低周波信号を発生する位相制御回路pcが接続さ
れている。
Furthermore, a phase control circuit pc that generates a measurement low frequency signal having a frequency fx is connected to the input end of the power amplifier PAMP.

同、前記トランスOTの一次側インピーダンスは低く、
電路の接地機能を妨げないものである。前記変流器ZC
Tの2次コイル出力は増幅器AMP及び商用周波数を除
去するフィルタFILを経て同期検波器MULTに入力
し、その出力は第2のスイッチSWzによって2ルート
に切分け、一方は抵抗R2とコンデンサCIとを逆り型
に接続した保持回路を介して出力端0UT2に、又他方
は同様に抵抗R3とコンデンサC2とからなる保持回路
を介して前記位相制御回路pcにフィードバックする。
Similarly, the primary impedance of the transformer OT is low;
It does not interfere with the grounding function of the electrical circuit. Said current transformer ZC
The output of the secondary coil of T is input to the synchronous detector MULT via the amplifier AMP and the filter FIL that removes the commercial frequency, and the output is divided into two routes by the second switch SWz, one route is connected to the resistor R2 and the capacitor CI. The other is fed back to the output terminal 0UT2 via a holding circuit connected in an inverted manner, and the other is fed back to the phase control circuit pc via a holding circuit consisting of a resistor R3 and a capacitor C2.

前記周期検波器MULTの基準信号としては。The reference signal for the periodic detector MULT is as follows.

位相制御回路PCの出力を印加し、かつ前記2つの切替
スイッチSWl及びSWzは該位相制御回路PCの出力
によって制御する。
The output of the phase control circuit PC is applied, and the two changeover switches SWl and SWz are controlled by the output of the phase control circuit PC.

又、前記切替スイッチSW1の一方にはコンデンサCを
直列に含む信号線3をその一部が前記変流器ZCTを貫
通して電力増幅器PAMPの負極に至るようにループ接
続するよう構成する。
Further, a signal line 3 including a capacitor C in series is connected to one side of the changeover switch SW1 in a loop such that a part thereof passes through the current transformer ZCT and reaches the negative electrode of the power amplifier PAMP.

以下、このように構成した絶縁抵抗測定装置の動作及び
操作について詳細に説明する。
The operation and operation of the insulation resistance measuring device configured as described above will be described in detail below.

先づ、第1のスイッチSWIが第1図に示す如く実線側
に接続している場合、接地線Lxに流れる周波数f1の
漏洩電流は(1)式で与えられ。
First, when the first switch SWI is connected to the solid line side as shown in FIG. 1, the leakage current at frequency f1 flowing through the grounding line Lx is given by equation (1).

かつ同期検波器の出力は前述の如り(2)式で与えられ
る。一方、スイッチSWtが破線側に接続されている場
合トランスOTの一次側は抵抗R1で終端されているか
ら電力増幅器PAMPの出力電圧なeとすれば、電力増
幅器PAMPの出力をコンデンサCを介して変流器を貫
通する導線に流れる電流I2は I 2= ωI Cecosω1 t  ・・・・・・
・・・(71となる。又、このときのフィルタFILの
出カニ3は Is = ωtc6cos(ω1t+σ)  −−−−
−−−−−(8)したがりて同期検波器MULTの出力
D1はIh = l3xa□5in(ωIt十θl)(
□印は(31式と同じ意味を もつ) となる。
And the output of the synchronous detector is given by equation (2) as described above. On the other hand, when the switch SWt is connected to the dashed line side, the primary side of the transformer OT is terminated with the resistor R1, so if the output voltage of the power amplifier PAMP is e, then the output of the power amplifier PAMP is connected via the capacitor C. The current I2 flowing through the conductor passing through the current transformer is I2=ωI Cecosω1t...
...(71) Also, the output 3 of the filter FIL at this time is Is = ωtc6cos(ω1t+σ) −−−−
------- (8) Therefore, the output D1 of the synchronous detector MULT is Ih = l3xa□5in (ωIt + θl) (
The □ mark has the same meaning as formula 31.

即ち(9)式から明らかなようK 、 GJI 、C、
e、a□を一定とすれば1θ−θ11〈−のときθ−θ
l>0ならDt(0,又0−θ1〈0表らDl〉0とな
るから、DIの値もしくは極性を判別するととによシ同
期検波器に印加する副作用低周波信号a。5in(ω1
t+σ1)の位相θ1を調整して、Dlを零に近づける
ようにすればθ−θ1−+Qとするととができる。
That is, as is clear from equation (9), K, GJI, C,
If e and a□ are constant, when 1θ-θ11〈-, θ-θ
If l>0, Dt(0, and 0-θ1〈0, Dl〉0. Therefore, when the value or polarity of DI is determined, the side effect low frequency signal a.5in(ω1
By adjusting the phase θ1 of t+σ1) to bring Dl closer to zero, θ−θ1−+Q can be obtained.

第2図は第1図に示した測定装置の各部の出力波形を示
したものである。同図に於いて(イ)は前記スイッチS
Wx、SWzを周期T/2にて切替えた場合の同期検波
器MTJLTの出力電圧であって、(a)はスイッチが
実線K (b)はスイッチが破線の場合を夫々示す。又
(ロ)は出力OUT zの波形を示しておシ、スイッチ
SWl、SWzが実線の期間は同期検波器Mt、lLT
の出力がそのまま出現するが、スイッチが破線の期間は
抵抗R2とコンデンサC1とからまる保持回路の働きK
よって切替直前の電圧がそのまま保持された状態となる
。又、同第2図し→は位相制御回路PCの入力電圧、即
ちコンデンサCzの両端電圧を示したものであって、ス
イッチSW1.SWzが破線のときは同期検波器MtJ
LT出力電圧がそのまま出現するが、同スイッチが実線
のときは切替直前の値が保持される。
FIG. 2 shows the output waveforms of each part of the measuring device shown in FIG. 1. In the same figure, (a) is the switch S.
The output voltage of the synchronous detector MTJLT when Wx and SWz are switched at a cycle T/2, (a) shows the case where the switch is a solid line K, and (b) shows the case where the switch is a broken line. Also, (b) shows the waveform of the output OUT z, and during the period when the switches SWl and SWz are in solid lines, the synchronous detectors Mt and ILT
The output appears as it is, but during the period when the switch is indicated by the broken line, the holding circuit K which is entangled with the resistor R2 and the capacitor C1 works.
Therefore, the voltage immediately before switching is maintained as it is. Further, in the same Figure 2, the symbol ``→'' indicates the input voltage of the phase control circuit PC, that is, the voltage across the capacitor Cz. When SWz is a broken line, synchronous detector MtJ
The LT output voltage appears as is, but when the switch is in the solid line, the value immediately before switching is held.

同図から明らかな如く、上述した回路によれば例えば周
期T/2にてスイッチSW 1 、 SW tを切替え
たとしても出力端OUT*に現れる信号によって電路の
絶縁抵抗値を算出しても不都合は生じないから、該出力
を用いて絶縁抵抗値を算出しつつ、コンデンサC2の両
端電圧即ち。
As is clear from the figure, according to the circuit described above, even if the switches SW 1 and SW t are switched at a period of T/2, it is inconvenient to calculate the insulation resistance value of the electric path from the signal appearing at the output terminal OUT*. does not occur, so while calculating the insulation resistance value using the output, the voltage across the capacitor C2, that is.

第2図(/−1の電圧を用いて、これが零になるように
同期検波器MULT K印加する基準信号の位相を調整
する。
Using a voltage of (/-1) in FIG. 2, adjust the phase of the reference signal applied to the synchronous detector MULTK so that the voltage becomes zero.

同、この場合、スイッチSWI  とSWzは共に連動
して切替えるが、切替周期は前記実施例の如くT/2に
限定する必要はなく、要は電路に測定用低周波信号を印
加していない状態にて前記変流器に貫通した信号線に測
定用低周波信号を印加しそのときのコンデンサC2の両
端電圧が零になるよう制御するものであればいかなる手
段であってもよい。
Similarly, in this case, the switches SWI and SWz are switched in conjunction with each other, but the switching cycle does not need to be limited to T/2 as in the above embodiment, and the point is that the low frequency signal for measurement is not applied to the electric line. Any means may be used as long as it applies a low frequency measurement signal to the signal line passing through the current transformer and controls the voltage across the capacitor C2 to be zero at that time.

又、更には、変流器ZCT、  増幅器AMP。Furthermore, current transformer ZCT, amplifier AMP.

フィルタFIL及び同期検波器MULTのルートに90
°移相した測定用低周波信号を通電する手段は、上述し
た実施例に限らず他の方法を用いてもよい。
90 at the root of filter FIL and synchronous detector MULT
The means for energizing the phase-shifted measurement low-frequency signal is not limited to the above-described embodiment, and other methods may be used.

又、このような位相制御回路は既知の技術で実現可能な
ので詳述を省略する。なお、スイッチSWIの切替に伴
い、同期検波器出力に発生する過渡現象をさけるため切
替後、過渡現象が定常的になったときの同期検波器の出
力のみを用いる如くするために同期検波器とスイッチ8
Wxの間に更にサンプリング回路を付加してもよい。
Furthermore, since such a phase control circuit can be realized using known technology, a detailed description thereof will be omitted. In addition, in order to avoid transient phenomena that occur in the output of the synchronous detector when the switch SWI is switched, only the output of the synchronous detector when the transient phenomenon becomes steady after switching is used. switch 8
A sampling circuit may be further added between Wx.

上記実施例では単相2線式電路の場合で示したが、単相
3線、3相3線の電路であってもよいことは明らかでお
る。
In the above embodiment, a single-phase two-wire electric circuit is shown, but it is clear that a single-phase three-wire or three-phase three-wire electric circuit may be used.

また、コンデンサCの挿入方法等については同一原理の
元で、更に多くの拡張した展開が可能である。
Furthermore, the method of inserting the capacitor C can be further expanded based on the same principle.

(発明の効果) 以上説明したごとく9本発明は絶縁抵抗測定装置の測定
回路の位相変動特性を補償するものであるから極めて精
度の高い測定装置を提供することができる。
(Effects of the Invention) As explained above, the present invention compensates for the phase fluctuation characteristics of the measuring circuit of an insulation resistance measuring device, so it is possible to provide a measuring device with extremely high accuracy.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示すブロック図。 第2図は本発明の実施例を示す各部の波形を示す図であ
って(イ)は同期検波器の出力波形、(ロ)は出力端0
UT2の出力波形、(ハ)はコンデンサC2の両端電圧
を示す図、第3図は従来の絶縁抵抗測定装置を示すブロ
ック図である。 T・・・・・・・・・トランス、   1,2・・・・
・・・・・電路。 Lz・・・・・・・−接地線、   E・・・・・・・
・・接地点。 ZCT・・・・・・・・・変流器、    AMP・・
・・・・・・・増幅器、    FIL・・・・・・・
・・フィルタ。 MTJLT・・・・・・・・・同期検波器、    O
SC・・・・・・・・・発振器、    OT・・・・
・・・・・印加トランス。 PS・・・・・・・・・移相器、    SWI  S
Wz・・・・・・・・・スイッチ、    PC・・・
・・・・・・位相制御回路。 PAMP・・・−・・・・電力増幅器。 特許出願人  東洋通信機株式会社 y、Z  ロ
FIG. 1 is a block diagram showing one embodiment of the present invention. FIG. 2 is a diagram showing waveforms of various parts showing an embodiment of the present invention, in which (a) is the output waveform of the synchronous detector, and (b) is the output terminal 0.
The output waveform of the UT2, (c) is a diagram showing the voltage across the capacitor C2, and FIG. 3 is a block diagram showing a conventional insulation resistance measuring device. T......Trans, 1,2...
...Electric circuit. Lz・・・・・・− Ground wire, E・・・・・・・
...Grounding point. ZCT...Current transformer, AMP...
・・・・・・Amplifier, FIL・・・・・・
··filter. MTJLT・・・・・・・Synchronous detector, O
SC......Oscillator, OT...
...Impression transformer. PS・・・・・・・・・Phase shifter, SWI S
Wz......Switch, PC...
・・・・・・Phase control circuit. PAMP...--Power amplifier. Patent applicant: Toyo Tsushinki Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] 1、変圧器の接地線を介して電路に商用周波数と異なる
周波数f_1の測定用低周波信号電圧を間欠的に断接し
て印加すると共に、前記接地線に結合した変流器の出力
中に含まれる前記周波数f_1の漏洩電流を前記低周波
信号電圧で同期検波することにより電路の絶縁抵抗を測
定する装置に於いて、前記変流器を貫通する導線に前記
低周波信号電圧より90°位相の推移した所定値の電流
を前記低周波電圧を前記接地線に印加していない状態で
流した時前記同期検波出力が零に近づくように前記同期
検波器に印加する低周波信号電圧の位相を自動的に調整
することにより測定回路の位相特性変動を補償したこと
を特徴とする絶縁抵抗測定装置の位相補償方法。
1. A low frequency signal voltage for measurement with a frequency f_1 different from the commercial frequency is intermittently applied to the electric line via the grounding wire of the transformer, and the signal voltage included in the output of the current transformer coupled to the grounding wire is applied. In an apparatus for measuring the insulation resistance of an electrical circuit by synchronously detecting the leakage current at the frequency f_1 with the low frequency signal voltage, a conductor passing through the current transformer is connected to a conductor that is 90° out of phase with the low frequency signal voltage. The phase of the low frequency signal voltage applied to the synchronous detector is automatically adjusted so that the synchronous detection output approaches zero when a current of a predetermined value that has changed is caused to flow in a state where the low frequency voltage is not applied to the grounding wire. 1. A phase compensation method for an insulation resistance measuring device, characterized in that phase characteristic fluctuations of a measuring circuit are compensated for by adjusting the phase characteristic of the measuring circuit.
JP868987A 1987-01-16 1987-01-16 Insulation resistance measuring device phase compensation method Expired - Fee Related JPH083508B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP868987A JPH083508B2 (en) 1987-01-16 1987-01-16 Insulation resistance measuring device phase compensation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP868987A JPH083508B2 (en) 1987-01-16 1987-01-16 Insulation resistance measuring device phase compensation method

Publications (2)

Publication Number Publication Date
JPS63175772A true JPS63175772A (en) 1988-07-20
JPH083508B2 JPH083508B2 (en) 1996-01-17

Family

ID=11699889

Family Applications (1)

Application Number Title Priority Date Filing Date
JP868987A Expired - Fee Related JPH083508B2 (en) 1987-01-16 1987-01-16 Insulation resistance measuring device phase compensation method

Country Status (1)

Country Link
JP (1) JPH083508B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02118270U (en) * 1989-03-07 1990-09-21
JPH05337097A (en) * 1992-06-05 1993-12-21 Ya Man Ltd Body fat measuring device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02118270U (en) * 1989-03-07 1990-09-21
JPH05337097A (en) * 1992-06-05 1993-12-21 Ya Man Ltd Body fat measuring device
JPH0661322B2 (en) * 1992-06-05 1994-08-17 ヤーマン株式会社 Body fat measuring device

Also Published As

Publication number Publication date
JPH083508B2 (en) 1996-01-17

Similar Documents

Publication Publication Date Title
US4546441A (en) Method and apparatus for time based measurement of impedance
JPS63175772A (en) Phase compensating method for insulation resistance measuring instrument
JPS61155869A (en) Measuring method of phase-compensated insulation resistance
US4857855A (en) Method for compensating for phase of insulation resistance measuring circuit
JPS60186765A (en) Compensating method of measuring device for insulation resistance
JP2617324B2 (en) Insulation resistance measurement method
JP2573789B2 (en) Insulation resistance measuring device
JP2764582B2 (en) Simple insulation resistance measurement method
JPH0640113B2 (en) Simple insulation resistance measuring method
JP2696513B2 (en) Electrical capacitance measurement method for ground
JP2617325B2 (en) Insulation resistance measurement method
JPS58127172A (en) Insulation resistance measuring apparatus for electric line with suppressed stray capacity
JP2646089B2 (en) Method for measuring insulation resistance of low-voltage circuit
JPS63135872A (en) Stray capacitance compensation for insulation resistance of electric circuit
JPS63151870A (en) Insulation resistance measurement with phase compensation
JP2665912B2 (en) Insulation resistance measurement method that compensates for the effect of ground resistance
JP2614447B2 (en) Insulation resistance measurement method that compensates for the effect of ground resistance
JPS6327767A (en) Position compensation method in insulating resistance measuring apparatus
JP2754011B2 (en) Insulation resistance measurement method with phase compensation
JPS637349B2 (en)
JPS63289464A (en) Insulation resistance measurement compensated for phase
JPH028529B2 (en)
JPS5810666A (en) Measuring method for insulation resistance
JPS62254617A (en) Method of measring insulation resistance
SU1026100A2 (en) Hall emf meter

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees