JP2665912B2 - Insulation resistance measurement method that compensates for the effect of ground resistance - Google Patents

Insulation resistance measurement method that compensates for the effect of ground resistance

Info

Publication number
JP2665912B2
JP2665912B2 JP27532087A JP27532087A JP2665912B2 JP 2665912 B2 JP2665912 B2 JP 2665912B2 JP 27532087 A JP27532087 A JP 27532087A JP 27532087 A JP27532087 A JP 27532087A JP 2665912 B2 JP2665912 B2 JP 2665912B2
Authority
JP
Japan
Prior art keywords
transformer
ground
capacitor
low
electric circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP27532087A
Other languages
Japanese (ja)
Other versions
JPH01116455A (en
Inventor
辰治 松野
Original Assignee
東洋通信機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東洋通信機株式会社 filed Critical 東洋通信機株式会社
Priority to JP27532087A priority Critical patent/JP2665912B2/en
Publication of JPH01116455A publication Critical patent/JPH01116455A/en
Application granted granted Critical
Publication of JP2665912B2 publication Critical patent/JP2665912B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は活線状態にて電路等の絶縁抵抗を測定する方
法,殊に対地浮遊容量が大きい場合無視しえなくなる接
地抵抗の影響を補償した簡易絶縁抵抗測定方法に関す
る。 (従来技術) 従来,漏電等の早期発見の為には第3図に示す装置を
用い,以下説明するような方法によって電路の絶縁抵抗
を測定するのが一般的であった。 即ち,受電変圧器Tの第2種接地線LEを,商用電源周
波数とは異なる周波数なる測定用低周波信号を発振
する発振器OSNに接続されたトランスOTに貫通させる
か,或は接地線を切断しこれに直列に前記発振器を接続
する等して電路L1及びL2に測定用低周波電圧を印加し,
前記接地線LEを貫通せしめた零相変流器ZCTによって電
路と大地間に存在する絶縁抵抗RO及び対地浮遊容量CO
介して前記接地線に帰還する漏洩電流を検出したのちこ
れを増幅器AMPで増幅し,フィルタFILにて商用周波成分
を除去した周波数の成分のみを選択し,かつこれを
整流器DETに加えて得られる電圧を用いて電路の絶縁抵
抗を測定するものであって,この回路は第4図に示す等
価回路で表示することができる。 同第4図に於いて,ROは被測定電路の絶縁抵抗,COは同
じく対地浮遊容量であって,接地線LEに誘起して被測定
電路に流れる測定用低周波発振器OSCの出力信号が前記R
O及びCOを介し接地線へ再び帰還する場合を示してい
る。尚rは接地点Eと大地との間の接地抵抗である。 従来,このような等価回路に基づいて以下の計算から
絶縁抵抗を求めていた。 即ち,同図に於いて接地点Eを介して周波数の発
振器OSCに流れる電流をとし,これを =(A+jB) ……(1) とする。このとき (但し,ω=2πである) である。 一般にRO≫rであり, (ω1COr≪1 ……(4) となるようにωを選べば前記(2)式は 又前記(3)式は Bω1CO ……(6) と表わすことができるから,前記帰還電流を実測す
ることによって上述のA及びBを,更にはこれらから絶
縁抵抗ROを求めることができる。 しかしながら,上述の如き従来の絶縁抵抗測定方法で
は前記式(5)及び(6)から明らかな如く対地浮遊容
量COが大きい時,又印加電圧の周波数ω1/2πが高い時
は浮遊容量COが関与する成分が大きくなるため正確な絶
縁抵抗ROの値が求められないばかりでなく,さらにこれ
が大きくなると接地抵抗rの影響が無視できなくなり測
定そのものが不可能になると云う欠点があった。 (発明の目的) 本発明はこのような従来の電路の絶縁抵抗の測定方法
に於ける欠陥を除去すべくなされたものであって,接地
抵抗の影響を補償した絶縁抵抗測定方法を提供するもの
である。 (発明の概要) 上記目的を達成するために、本発明にかかる絶縁抵抗
測定方法は、変圧器の接地線もしくは電路に低周波信号
を印加したトランスのコアと漏洩電流を検出する変流器
とを結合させトランスのコアに印加された低周波信号の
逆相の信号を変流器に印加するためにトランスのコアと
変流器とを貫通する新たな接続線を設け、これを第1の
可変コンデンサで終端する。 先ず、この状態において変流器出力に含まれる上記低
周波の漏洩電流成分が最小となるように第1の可変コン
デンサを調整することにより対地静電容量COを検出し,
調整後に得られる上記低周波成分の大きさI1を求める。
次に電路と大地間に所定値Cのコンデンサを強制的に挿
入し,この時変流器出力中に含まれる上記低周波の漏洩
電流成分が最小となるように前記第一のコンデンサを調
整して得られる上記低周波成分の大きさI2を求め,これ
ら2つの成分I1とI2とを用い (ここで なる演算をすることにより電路の絶縁抵抗を測定するも
のである。 (実施例) 以下,本発明を図示した実施例に基づいて詳細に説明
する。 本発明の一実施例を第1図に示す。第3図と同一の記
号は同一の意味をもつものとする。 尚,第1図においてはトランスOTと変流器ZCTとに電
路L1,L2を貫通しているが,電路への低周波電圧の印加
ならびに漏洩電流の検出という動作については第3図と
全く等価である。この実施例が前記第3図と異なる部分
は,電路L1,L2を貫通したトランスOTと変流器ZCTに更に
接続線Lpを前記電路とは逆相となるように貫通させ可変
コンデンサCvにて終端したこと及び,接地電路L2と大地
との間にスイッチSWを介して第2のコンデンサCを接続
した点である。 この装置の動作は次の通りである。周波数=ω1/
2πの低周波を発振する発振器の出力をトランスOTに加
えることにより電路と大地間にVsinω1tの電圧が印加さ
れる。まず,接続線Lpが無い場合を考えると変流器ZCT
の出力を増幅器AMPで増幅し,周波数の成分を検出
するフィルタFILに印加すれば,フィルタの出力
(1),(5),(6)式から で表わされる。 次に,変流器ZCT,トランスOTを電路とは逆相となる如
く貫通する接続線LpをコンデンサCvで終端すれば,接続
線Lpに流れる電流は−jω1Cvであるからこのときの
フィルタFILの出力′は となる。したがってフィルタ出力′を整流器DETに
印加すれば,そのときの整流器出力は ……(9) となる。 そこで,上記整流器出力が最小となるように可変コン
デンサCvを調整すれば,CO=Cvのとき最小となり電路の
対地静電容量をコンデンサCvの値から測定することがで
き,CO=Cvのときの整流器出力をI1とすれば となる。 次に,測定電路と大地間に所定値のコンデンサCを挿
入する。これは例えば同図に示したように電路の接地相
(ここではL2)をスイッチSWに介してコンデンサCを大
地に接続すればよく,コンデンサCを挿入したとき(ス
イッチSW“オン”のとき)のフィルタFIL出力′は となるから,フィルタ出力を整流器DETに印加し,整流
器出力が最小となるように可変コンデンサCvを調整する
ばCO+C=Cvのとき最小となり,このときの整流器出力
をI2とすれば(11)式から となる。又,このとき(CO+C=Cv) (10)式は (12)式はとなるから(13),(14)式の比をとれば 尚,ここで (15)式を更に変形すれば となる。 即ち,前記測定された対地静電容量CO,ならびにコン
デンサCの値から(16)式に示したkを算出すると共
に,測定値I1,I2を(17)式に代入することにより電路
の絶縁抵抗を測定することができる。 尚,上記例では単相2線の電路を例で示したが,他の
単相3線,3相3線等の電路でも同様に測定が可能であ
る。 又上記例では接続線を単にトランスOT,変流器ZCTを貫
通するようにしたが,例えば接続線をトランスOTのみに
N回巻線すれば,接続線を流れる電流は−jω1CvNと
なり,これはコンデンサCvの値を1/Nにしてもよいこと
と等価となる。又変流器ZCTにのみN回巻線しても同様
である。更に両者に所定回数巻線すれば,それぞれの積
だけコンデンサCvの値を小さくすることも可能である。 又上記説明では接続線Lpに印加低周波電圧より90度移
相した電流を流すためコンデンサCvを用いたが,このよ
うな電流を流すために第2図に示すようにトランスOTに
貫通もしくは巻線した導線Lqを90度移相器psに印加する
ことにより印加電圧より90度移相した電圧を発生させ,
その出力を電力増幅器PAMPに印加し,その出力を変流器
に貫通もしくは巻線した導線Lrを抵抗器Rvで終端し,導
線Lqに流れる電流が電路に流れる対地静電容量により流
れる電流と逆相となるごとくすれば,抵抗器Rvの値を調
整することにより,第1図のコンデンサCvを調整するこ
とと等価な機能を実現しうることは明らかである。 また,抵抗器Rvの値を固定にしておいて電力増幅器の
出力電圧を可変にして調整してもよい。 (発明の効果) 上記説明の如く,本発明の方法は接地抵抗の影響を補
償できるから,従来にくらべ印加電圧の周波数を高くす
ることが可能でありトランスOTの小型化が可能となり,
小型の測定器を実現するのに効果的である。
DETAILED DESCRIPTION OF THE INVENTION (Industrial application field) The present invention relates to a method for measuring insulation resistance of an electric circuit or the like in a live state, and in particular, compensates for the influence of ground resistance which cannot be ignored when a stray capacitance to ground is large. To a simplified insulation resistance measuring method. (Prior Art) Conventionally, it has been general to measure the insulation resistance of an electric circuit by using a device as shown in FIG. That is, the second type ground line L E of the power receiving transformer T, or pass through the transformer OT connected to the oscillator OSN for oscillating a low-frequency signal for measurements made different frequencies 1 and the commercial power source frequency, or ground line the cut and the like for connecting the oscillator in series to apply a low-frequency voltage measurement paths L 1 and L 2,
This After detecting a leakage current which returns to the ground line via an insulation resistor R O and ground stray capacitance C O exists between path and the earth by the ZCT that allowed through the ground line L E Amplification is performed by the amplifier AMP, and only the frequency 1 component obtained by removing the commercial frequency component by the filter FIL is selected, and this is applied to the rectifier DET to measure the insulation resistance of the electric circuit using the voltage obtained. This circuit can be represented by an equivalent circuit shown in FIG. In the same Figure 4, R O is the measured circuit insulation resistance, C O is also ground stray a capacity of measuring the low-frequency oscillator OSC which flows induced in the ground line L E in the circuit under measurement output The signal is R
It shows a case where the signal returns to the ground line again via O and CO . Note that r is a ground resistance between the ground point E and the ground. Conventionally, the insulation resistance has been determined from the following calculation based on such an equivalent circuit. That is, in the same figure, the current flowing through the oscillator OSC having the frequency 1 via the ground point E is 1, and this is 1 = (A + jB) (1). At this time (However, ω 1 = 2π 1 ). Generally, R O ≫r, and if ω 1 is selected so that (ω 1 C Or ) 2 ≪1 (4), the above equation (2) becomes Since the above equation (3) can be expressed as Bω 1 C O (6), the above-mentioned A and B can be obtained by actually measuring the feedback current 1 , and the insulation resistance R O can be obtained therefrom. Can be. However, according to the conventional insulation resistance measuring method as described above, when the stray capacitance C O to the ground is large, and when the frequency ω 1 / 2π of the applied voltage is high, the stray capacitance C In addition to the fact that an accurate value of the insulation resistance R O cannot be obtained because the component involving O increases, the effect of the ground resistance r cannot be neglected if the value is further increased, making the measurement itself impossible. . (Object of the Invention) The present invention has been made to eliminate defects in such a conventional method for measuring insulation resistance of an electric circuit, and provides an insulation resistance measurement method which compensates for the influence of ground resistance. It is. (Summary of the Invention) In order to achieve the above object, an insulation resistance measuring method according to the present invention comprises a transformer core having a low-frequency signal applied to a ground wire or an electric circuit of a transformer and a current transformer for detecting a leakage current. And a new connecting line is provided through the transformer core and the current transformer to apply a signal of the opposite phase of the low-frequency signal applied to the core of the transformer to the current transformer. Terminate with a variable capacitor. First, in this state, the ground capacitance C O is detected by adjusting the first variable capacitor so that the low-frequency leakage current component included in the current transformer output is minimized.
Determining the magnitude I 1 of the low-frequency component obtained after the adjustment.
Next, a capacitor having a predetermined value C is forcibly inserted between the electric circuit and the ground, and the first capacitor is adjusted so that the low-frequency leakage current component contained in the output of the current transformer is minimized. The magnitude I 2 of the low frequency component obtained by the above is obtained, and using these two components I 1 and I 2 (here The following calculation is performed to measure the insulation resistance of the electric circuit. Hereinafter, the present invention will be described in detail based on illustrated embodiments. One embodiment of the present invention is shown in FIG. The same symbols as those in FIG. 3 have the same meaning. In FIG. 1, the transformers OT and the current transformer ZCT pass through the electric circuits L 1 and L 2. The operation of applying a low-frequency voltage to the electric circuit and detecting the leakage current is shown in FIG. They are completely equivalent. This embodiment differs from FIG. 3 in that the connection line Lp is further passed through the transformer OT and the current transformer ZCT which penetrate the electric lines L 1 and L 2 so that the phase is opposite to that of the electric line. and it was terminated at a point of connecting the second capacitor C through a switch SW between the ground path L 2 and ground. The operation of this device is as follows. Frequency 1 = ω 1 /
By applying the output of an oscillator oscillating a low frequency of 2π to the transformer OT, a voltage of V sin ω 1t is applied between the electric circuit and the ground. First, considering that there is no connection line Lp, the current transformer ZCT
Is amplified by the amplifier AMP and applied to the filter FIL which detects the component of the frequency 1 , the output 1 of the filter is obtained from the equations (1), (5) and (6). Is represented by Next, if the connection line Lp, which passes through the current transformer ZCT and the transformer OT in a phase opposite to that of the electric circuit, is terminated with a capacitor Cv, the current flowing through the connection line Lp is -jω 1 Cv, so the filter at this time The output 1 'of FIL is Becomes Therefore, if the filter output 1 'is applied to the rectifier DET, then the rectifier output will be ... (9) Therefore, by adjusting the variable capacitor Cv such that the rectifier output is minimized, can be a minimum becomes the earth capacitance of the electrical path when the C O = Cv measured from the value of the capacitor Cv, the C O = Cv if the rectifier output when the I 1 Becomes Next, a capacitor C having a predetermined value is inserted between the measurement circuit and the ground. This can be done, for example, by connecting the capacitor C to the ground via the switch SW to the ground phase (here, L 2 ) of the electric circuit as shown in FIG. 3, and when the capacitor C is inserted (when the switch SW is “ON”). ) Is the filter FIL output 2 ' Since the, by applying a filter output to the rectifier DET, if rectifier output, by adjusting the variable capacitor Cv to minimize becomes C O + C = minimum time of Cv, if the rectifier output at this time is I 2 ( 11) From equation Becomes At this time, (C O + C = Cv) (10) Equation (12) is If we take the ratio of equations (13) and (14), Here, If formula (15) is further modified, Becomes That is, k shown in the equation (16) is calculated from the measured value of the ground capacitance C O and the value of the capacitor C, and the measured values I 1 and I 2 are substituted into the equation (17). Can be measured. In the above example, a single-phase two-wire circuit is shown as an example. However, other single-phase three-wire and three-phase three-wire circuits can be similarly measured. Further, in the above example, the connection line is simply passed through the transformer OT and the current transformer ZCT. However, if the connection line is wound N times only on the transformer OT, the current flowing through the connection line becomes −jω 1 CvN, This is equivalent to making the value of the capacitor Cv 1 / N. The same is true even if winding is performed N times only on the current transformer ZCT. Further, if winding is performed on both of them a predetermined number of times, it is possible to reduce the value of the capacitor Cv by the respective products. In the above description, the capacitor Cv is used to pass a current shifted by 90 degrees from the applied low-frequency voltage to the connection line Lp. However, in order to pass such a current, the capacitor Cv is passed through or wound around the transformer OT as shown in FIG. By applying the wire Lq to the 90-degree phase shifter ps, a voltage 90 degrees shifted from the applied voltage is generated.
The output is applied to the power amplifier PAMP, the output of which is passed or wound through the current transformer, the conductor Lr is terminated with a resistor Rv, and the current flowing through the conductor Lq is opposite to the current flowing due to the earth capacitance flowing through the electric circuit. Obviously, by adjusting the value of the resistor Rv, it is possible to realize a function equivalent to adjusting the capacitor Cv in FIG. Alternatively, the value of the resistor Rv may be fixed, and the output voltage of the power amplifier may be adjusted to be variable. (Effects of the Invention) As described above, the method of the present invention can compensate for the influence of the ground resistance, so that the frequency of the applied voltage can be increased as compared with the conventional method, and the size of the transformer OT can be reduced.
This is effective for realizing a small measuring instrument.

【図面の簡単な説明】 第1図は本発明の実施例を示す図,第2図は本発明の他
の実施例を示す図,第3図は従来の方法を説明する図,
第4図は電路の絶縁抵抗測定系の等価回路を示す図であ
る。 T……受電トランス,ZCT……変流器,OT……トランス,AM
P……増幅器,FIL……フィルタ,DET……整流器,OSC……
発振器,SW……スイッチ。
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a diagram showing an embodiment of the present invention, FIG. 2 is a diagram showing another embodiment of the present invention, FIG.
FIG. 4 is a diagram showing an equivalent circuit of an insulation resistance measuring system of an electric circuit. T: Power receiving transformer, ZCT: Current transformer, OT: Transformer, AM
P …… Amplifier, FIL …… Filter, DET …… Rectifier, OSC ……
Oscillator, SW ... Switch.

Claims (1)

(57)【特許請求の範囲】 1.変圧器の接地線又は電路に低周波信号を印加するト
ランスのコアと漏洩電流を検出する変流器とを結合する
と共に、前記トランスのコアに印加された前記低周波信
号の逆相の信号を前記変流器に印加するために前記トラ
ンスのコアと変流器とを貫通する新たな接続線を設け、
前記接続線には第1のコンデンサを挿入し、更に電路と
大地との間に所定値の第2のコンデンサをスイッチング
手段を介して設け、 前記第2のコンデンサを電路と大地との間に挿入しない
状態にて前記変流器出力中に含まれる低周波信号の漏洩
電流成分が最小となるように前記第1のコンデンサの値
を調整し、この調整によって得られた低周波信号の漏洩
電流成分の大きさと、 前記第2のコンデンサを電路と大地との間に挿入した状
態にて前記変流器出力中に含まれる低周波信号の漏洩電
流成分が最小となるように前記第1のコンデンサの値を
調整し、この調整によって得られた低周波信号の漏洩電
流成分の大きさと、 前記第1及び第2のコンデンサの値とを用いて電路の絶
縁抵抗を算出したことを特徴とする接地抵抗の影響を補
償した絶縁抵抗測定方法。 2.前記接続線が前記トランスのコアもしくは前記変流
器のいずれか一方又は両者に巻線してなることを特徴と
する特許請求の範囲第1項記載の接地抵抗を補償した絶
縁抵抗測定方法。
(57) [Claims] A transformer core for applying a low-frequency signal to a ground wire or an electric circuit of a transformer and a current transformer for detecting a leakage current are coupled, and a signal having a phase opposite to that of the low-frequency signal applied to the transformer core is formed. Providing a new connection through the transformer core and the current transformer to apply to the current transformer;
A first capacitor is inserted into the connection line, and a second capacitor having a predetermined value is provided between the electric circuit and the ground via switching means, and the second capacitor is inserted between the electric circuit and the earth. The value of the first capacitor is adjusted so that the leakage current component of the low-frequency signal included in the output of the current transformer is minimized in a state where the current is not transmitted, and the leakage current component of the low-frequency signal obtained by this adjustment is adjusted And the size of the first capacitor so that the leakage current component of the low-frequency signal included in the current transformer output is minimized in a state where the second capacitor is inserted between the electric circuit and the ground. A ground resistance, wherein a value of the leakage current component of the low-frequency signal obtained by the adjustment and a value of the first and second capacitors are used to calculate an insulation resistance of the electric circuit. Absolutely compensated for the effects of Resistance measurement method. 2. 2. The method according to claim 1, wherein the connection line is wound around one or both of the transformer core and the current transformer.
JP27532087A 1987-10-30 1987-10-30 Insulation resistance measurement method that compensates for the effect of ground resistance Expired - Lifetime JP2665912B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27532087A JP2665912B2 (en) 1987-10-30 1987-10-30 Insulation resistance measurement method that compensates for the effect of ground resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27532087A JP2665912B2 (en) 1987-10-30 1987-10-30 Insulation resistance measurement method that compensates for the effect of ground resistance

Publications (2)

Publication Number Publication Date
JPH01116455A JPH01116455A (en) 1989-05-09
JP2665912B2 true JP2665912B2 (en) 1997-10-22

Family

ID=17553803

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27532087A Expired - Lifetime JP2665912B2 (en) 1987-10-30 1987-10-30 Insulation resistance measurement method that compensates for the effect of ground resistance

Country Status (1)

Country Link
JP (1) JP2665912B2 (en)

Also Published As

Publication number Publication date
JPH01116455A (en) 1989-05-09

Similar Documents

Publication Publication Date Title
JPH0389129A (en) Winding temperature measuring apparatus for rotary electric machine
JP2665912B2 (en) Insulation resistance measurement method that compensates for the effect of ground resistance
JPH04269660A (en) Electric measuring apparatus
JP2617325B2 (en) Insulation resistance measurement method
JPS60186765A (en) Compensating method of measuring device for insulation resistance
JP2646097B2 (en) Simple insulation resistance measurement method
JP2764582B2 (en) Simple insulation resistance measurement method
JP2612724B2 (en) Insulation resistance measurement method
JPH028529B2 (en)
JP2654549B2 (en) Simple insulation resistance measurement method
JPH0640113B2 (en) Simple insulation resistance measuring method
JPH0798337A (en) Current detector
JPH0458581B2 (en)
JP2612719B2 (en) Simple insulation resistance measurement method for electrical circuits
JP2896572B2 (en) Simple insulation resistance measurement method
JPS6319569A (en) Method for detecting leaked current
JP2750690B2 (en) Leakage current detection method
JP2556980B2 (en) Electric fault detection method
JP2750707B2 (en) Insulation resistance measurement method compensated for ground resistance
SU1765784A1 (en) Converter of transient electric resistance of contacts into voltage
JP2896574B2 (en) Compensation method for phase characteristics of zero-phase current transformer
JP2942892B2 (en) Measurement method of insulation resistance of ungrounded circuit
JP2614447B2 (en) Insulation resistance measurement method that compensates for the effect of ground resistance
JP2593669B2 (en) Method for locating defective electrical insulation
JP2750705B2 (en) Insulation resistance measurement method