JP2750690B2 - Leakage current detection method - Google Patents

Leakage current detection method

Info

Publication number
JP2750690B2
JP2750690B2 JP63059632A JP5963288A JP2750690B2 JP 2750690 B2 JP2750690 B2 JP 2750690B2 JP 63059632 A JP63059632 A JP 63059632A JP 5963288 A JP5963288 A JP 5963288A JP 2750690 B2 JP2750690 B2 JP 2750690B2
Authority
JP
Japan
Prior art keywords
voltage
transformer
output
resistor
leakage current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63059632A
Other languages
Japanese (ja)
Other versions
JPH01232270A (en
Inventor
辰治 松野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Tsushinki KK
Original Assignee
Toyo Tsushinki KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Tsushinki KK filed Critical Toyo Tsushinki KK
Priority to JP63059632A priority Critical patent/JP2750690B2/en
Publication of JPH01232270A publication Critical patent/JPH01232270A/en
Application granted granted Critical
Publication of JP2750690B2 publication Critical patent/JP2750690B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は電路等の漏洩電流を検出することにより,そ
の電路等の絶縁抵抗を測定する方法に関する。
Description: TECHNICAL FIELD The present invention relates to a method for measuring insulation resistance of an electric circuit or the like by detecting leakage current of the electric circuit or the like.

(従来技術) 従来,電路の絶縁不良等によるトラブルを早期に発見
する為に例えば第5図,第6図に示す如き方法で漏洩電
流を検出するのが一般的であった。
(Prior Art) Conventionally, it has been general to detect a leakage current by a method as shown in FIGS. 5 and 6, for example, in order to find a trouble due to an insulation failure of an electric circuit at an early stage.

これらは負荷Zを有する変圧器Tの接地線LEもしくは
電路1,2を商用周波数とは異なる周波数1の発振器OSC
に接続された注入トランスOTに接続するか又は貫通させ
ることにより,電路1,2と大地間に存在する絶縁抵抗R,
対地静電容量Cとを介して変圧器の接地線LEに帰還する
漏洩電流を接地線域は電路を貫通する変流器ZCTで検出
し,その出力を増幅器AMPで増幅したのち,フィルタFIL
Lによって周波数1の成分のみを選択し,これを例えば
発振器OSCの出力信号を用いて同期検波器MULTで同期検
波し注入電圧と同相の漏洩電流成分を検出して電路の絶
縁抵抗を測定するか,又は対地静電容量Cが十分小さ
く,周波数1が十分低いときにはフィルタFILの出力を
単に整流して電路の絶縁抵抗Rを推定していた。
These oscillators OSC in different frequencies 1 and commercial frequency ground line L E or path 2 of the transformer T with the load Z
Connected to or penetrated by the injection transformer OT connected to the
Ground line zone leakage current which returns to the ground line L E of the transformer via the earth capacitance C is detected by the current transformer ZCT that penetrates the path, after amplifying the output by the amplifier AMP, the filter FIL
Select only the component of frequency 1 by L and use the output signal of the oscillator OSC, for example, to synchronously detect it with the synchronous detector MULT, detect the leakage current component in phase with the injection voltage, and measure the insulation resistance of the circuit. Or when the ground capacitance C is sufficiently small and the frequency 1 is sufficiently low, the output of the filter FIL is simply rectified to estimate the insulation resistance R of the electric circuit.

しかしながら,上述した如き従来の方法では漏洩電流
検出のために変流器ZCTを使用している為極めて高価で
あるだけでなく,温度変化による位相特性の変動等の問
題があり,これに対処する為に複雑な補償回路を必要と
する欠点があった。
However, in the conventional method as described above, the current transformer ZCT is used to detect the leakage current, so that it is not only extremely expensive, but also has a problem such as a change in phase characteristics due to a temperature change. Therefore, there is a disadvantage that a complicated compensation circuit is required.

(発明の目的) 本発明は以上説明したような従来の漏洩電流検出に必
要であった変流器を用いずに正しく漏洩電流を検出する
方法を提供することを目的とする。
(Object of the Invention) An object of the present invention is to provide a method for correctly detecting a leakage current without using a current transformer, which is necessary for the conventional leakage current detection as described above.

(発明の概要) この目的を達成する為に本発明は、電路と大地間に直
接又は該電路の接続線にトランスの二次巻線を挿入接続
すると共にその一次巻線に周波数f1なる交流電圧発生源
と抵抗R1とを直列に接続し、前記交流電圧発生源の出力
を抵抗r0とコンデンサc0とからなる直列回路に接続し、
前記抵抗R1の両端電圧eと前記コンデンサc0の両端電圧
epとの差e−epを用いて前記電路と大地間の絶縁抵抗を
求めるように構成したものである。
SUMMARY OF THE INVENTION The present invention in order to achieve the object, comprising a frequency f 1 to the primary winding is inserted connecting the transformer secondary winding directly or electrical path of the connecting line between the tracks and ground AC connects the voltage source and resistor R 1 in series, it connects the output of the AC voltage source to the resistor r 0 and the series circuit composed of a capacitor c 0 Prefecture,
The resistance R 1 of the voltage across e and the voltage across the capacitor c 0
In this configuration, the insulation resistance between the electric circuit and the ground is obtained using the difference e-ep from ep.

(実施例) 以下,図面に示した実施例に基づいて本発明を詳細に
説明する。
(Examples) Hereinafter, the present invention will be described in detail based on examples shown in the drawings.

先づ,本発明の理解を助ける為実施例の説明に先立っ
て本発明の理論を少しく詳細に説明する。
First, the theory of the present invention will be described in a little more detail prior to the description of the embodiments to assist understanding of the present invention.

第3図は発振器OSCに接続された注入トランスOTの二
次側巻線をトランス等の接地線に挿入接続してその出力
電圧を電路に印加した場合に電路を介して接地線に帰還
する漏洩電流の流れる系の等価回路を示す図である。
Fig. 3 shows leakage when the secondary winding of the injection transformer OT connected to the oscillator OSC is inserted and connected to the ground line of a transformer or the like and the output voltage is applied to the circuit, and returns to the ground line via the circuit. FIG. 3 is a diagram illustrating an equivalent circuit of a system through which current flows.

同図に示す如く注入トランスOTの二次側から電路に印
加された信号は絶縁抵抗Rと対地静電容量Cを介して大
地に流れ,更に接地線を経てトランスに至る。一方トラ
ンスの一次側は発信周波数1,出力電圧esなる発振器O
SCが抵抗R1を介し接続している。今,該注入トランスOT
の一次側インダクタンスをL1,2次側インダクタンスを
L2,相互インダクタンスをM,巻線比をnとし,注入トラ
ンスの一次側電流をi1,二次側電流をi2とすれば発振器
OSCの両端電圧vs及びトランスの2次側回路のループ電
圧は夫々次式の如く表わされる。
As shown in the figure, the signal applied to the electric circuit from the secondary side of the injection transformer OT flows to the ground via the insulation resistance R and the ground capacitance C, and further reaches the transformer via the ground line. On the other hand, the primary side of the transformer is an oscillator O with an oscillation frequency of 1 and output voltage e s
SC is connected via a resistor R 1. Now, the injection transformer OT
Let L 1 be the primary inductance and L be the secondary inductance.
If L 2 , M is the mutual inductance, n is the turns ratio, i 1 is the primary current of the injection transformer, and i 2 is the secondary current, the oscillator
Loop voltage across the voltage v s and the transformer secondary circuit OSC is expressed as the respective following formula.

Vs=(R1+jω1L1)i1+jω1Mi2 …… (Z2+jω1L2)i2+jω1Mi1=0 …… 尚,ここでZ2はトランス一次側回路のループインピーダ
ンスで にて表わされる。
Vs = (R 1 + jω 1 L 1 ) i 1 + jω 1 Mi 2 ... (Z 2 + jω 1 L 2 ) i 2 + jω 1 Mi 1 = 0... Where Z 2 is the loop impedance of the transformer primary side circuit so Is represented by

,式より電流i2を消去すると 今注入トランスOTの一次,二次間の結合係数を1と仮定
すると であるから,前記,式を式に代入し,L2とMを消
去すると と表される。
And erasing the current i 2 Assuming that the coupling coefficient between the primary and secondary of the injection transformer OT is 1, Therefore, if the above equation is substituted into the equation and L 2 and M are eliminated, It is expressed as

更にZ2を消去すべく前記式に式を代入すれば となり,抵抗R1の両端電圧eは e=R1i1 ……… であるので,前記式を式に代入すると ところで一般には電路の絶縁抵抗値Rは比較的大きいの
で,トランスの巻線比nを大きくしかつ周波数ω1/2π
を低くすれば の関係が成立つから,前記は となり, とおけば となる。
Substituting the equation into the above equation to eliminate Z 2 further And the voltage e between both ends of the resistor R 1 is e = R 1 i 1 ... In general, since the insulation resistance R of the electric circuit is relatively large, the winding ratio n of the transformer is increased and the frequency ω1 / 2π
If you lower Since the relationship is established, Becomes Toba Becomes

一方,第4図に示す如く,発振器出力Vsを抵抗r0とコ
ンデンサC0との直列回路に加えると,コンデンサC0の両
端電圧epは となり,コンデンサC0,抵抗r0の値を なるように選定すれば となる。従って抵抗R1の両端電圧eと上記コンデンサC0
の両端電圧epの差は前記,式から と表わされ,上記電圧e−epを検出することにより絶縁
抵抗Rに逆比例した測定値が得られることが分かる。
On the other hand, as shown in FIG. 4, the addition of the oscillator output V s in series circuit of the resistor r 0 and capacitor C 0, the voltage across ep of the capacitor C 0 is And the values of the capacitor C 0 and the resistance r 0 are If you choose to become Becomes Thus the voltage across e and the capacitor C 0 of the resistor R 1
The difference between the voltage across e p of the, from the formula Expressed as the measured value inversely proportional to the insulation resistance R by detecting the voltage e-e p that can be obtained can be seen.

又,第4図に於ける抵抗r0の両端電圧をer,第3図に
於ける注入トランスOTの一次側巻線の両端電圧をeoとす
れば 従って,e−ep=er−eo ……… となるから,抵抗r0の両端電圧erと一次側巻線の両端電
圧e0を検出し,その差を求めても前記の関係が得られ
ることが分かる。
Further, the voltage across the at resistor r 0 in FIG. 4 e r, the voltage across the primary winding of the at injection transformer OT in Fig. 3 if e o Thus, e-e p = e and r becomes -e o ........., detects the voltage across e 0 of the voltage across e r and the primary winding of the resistance r 0, the relationship be determined the difference Is obtained.

以下,本発明の実施例を詳細に説明する。 Hereinafter, embodiments of the present invention will be described in detail.

第1図は本発明の一実施例を示すブロック図である。 FIG. 1 is a block diagram showing one embodiment of the present invention.

同図に於てTは受電変圧器,1及び2は該変圧器Tの2
次側電路であって,該電路2は接地線LEにて接地され,
該接地線LEには注入トランスOTの二次巻線を結合若しく
は接続している。該注入トランスOTの1次側には周波数
1なる信号電圧を発生する発振器OSCを抵抗R1を介して
接続すると共に,前記発振器OSCには抵抗r0及びコンデ
ンサC0が直列に接続され,該コンデンサC0の両端にはア
ンプA2が設けられる。更に,該アンプA2の出力端は引算
器SUBの一入力端と接続する一方他の入力端には前記抵
抗R1の両端に接続したアンプA1の出力端を接続する。
In the figure, T is a receiving transformer, and 1 and 2 are 2 of the transformer T.
A next-side electrical path, the power line 2 is grounded by a ground line L E,
Bonded or otherwise connected to the secondary winding of the injection transformer OT to the ground line L E. The primary side of the injection transformer OT has a frequency
With an oscillator OSC that generates a composed signal voltage is connected through a resistor R 1, said oscillator OSC resistor r 0 and capacitor C 0 is connected in series, the amplifier A 2 at both ends of the capacitor C 0 is Provided. Further, the output terminal of the amplifier A 2 is one other input terminal connected to the first input terminal of the subtracter SUB connects the output terminal of the amplifier A 1 which is connected to both ends of the resistor R 1.

又,前記引算器SUBの出力端にはフィルタFIL及び整流
器DETが接続される。
A filter FIL and a rectifier DET are connected to an output terminal of the subtractor SUB.

このように構成した回路に於て,抵抗R1の両端に接続
したアンプA1の出力は前記式で与えられる電圧eが生
じ,コンデンサC0の両端に設けたアンプA2の出力には前
記式で与えられる電圧epが生じる。
Thus At a configuration the circuit, the output of the amplifier A 1 which is connected to both ends of the resistor R 1 is the voltage e applied occurs in the above formula, wherein the output of the amplifier A 2 on both ends of the capacitor C 0 A voltage e p given by the equation results.

ここで前述した如く 即ち (ここでL1は注入トランスOTの一次側インダクタンス)
となるように抵抗r0,コンデンサC0の値を選べば,アン
プA2の出力電圧は前記式で示した如く で与えられる。
As mentioned earlier here That is (Where L 1 is the primary inductance of the injection transformer OT)
If the values of the resistor r 0 and the capacitor C 0 are selected so that the output voltage of the amplifier A 2 becomes as shown in the above equation, Given by

更に,アンプA1とアンプA2の出力を夫々引算回路SUB
に印加すれば該引算回路SUBの出力には前記式に相当
するe−epなる電圧が得られ,該出力をフィルタFILに
印加し周波数1の成分のみを検出し,その出力を整流
すればその出力OUT1は前記式から明らかなように絶縁
抵抗Rに逆比例した電圧を得ることができる。ここでフ
ィルタFILは接地線に帰還する漏洩電流のうち商用周波
数成分を除去するためのものである。
Furthermore, each output of amplifier A 1 and the amplifier A 2 s subtraction circuit SUB
If applied to the output of the cited calculation circuit SUB e-e p becomes voltage corresponding to the formula is obtained by applying the output to the filter FIL to detect only a component of frequency 1, by rectifying the output For example, the output OUT1 can obtain a voltage inversely proportional to the insulation resistance R as is apparent from the above equation. Here, the filter FIL is for removing a commercial frequency component from the leakage current returning to the ground line.

第2図は本発明の他の実施例を示すブロック図であ
り,第1図と同一部分には同一符号を付す。
FIG. 2 is a block diagram showing another embodiment of the present invention, and the same parts as those in FIG. 1 are denoted by the same reference numerals.

同図に於て前述した第1図の実施例と異なる点はフィ
ルタFILの出力を同期検波器MULTの一入力端に接続し,
該MULTの他の入力端には発振器OSCの出力を印加するこ
とにより,前記フィルタFIL出力中の注入電圧と同相成
分を検出することにより絶縁抵抗Rに逆比例した出力を
得た点である。
In this figure, the difference from the embodiment of FIG. 1 described above is that the output of the filter FIL is connected to one input terminal of a synchronous detector MULT.
The point that the output of the oscillator OSC is applied to the other input terminal of the MULT to detect an in-phase component with the injection voltage in the output of the filter FIL, thereby obtaining an output inversely proportional to the insulation resistance R.

上述した如く回路を構成すれば変流器を用いることな
く絶縁抵抗Rを知ることができる。
If the circuit is configured as described above, the insulation resistance R can be known without using a current transformer.

尚,本実施例に於て注入トランスOTの2次側を接地線
に結合させて説明したがこれに限るものでなく注入トラ
ンスのコアを分割型とし,電路1及び2に直接結合させ
同様の方法を用いて測定してもよく,又電路の形式は本
実施例では単相二線式を用いて説明したが例えば単相三
線式をはじめとする他の電路等に用いてもよいことは明
らかである。又,電路は電力伝送線に限るものではなく
空中線等他の目的に使用される導電路に広く適用可能で
ある。
In this embodiment, the secondary side of the injection transformer OT has been described as being connected to the ground line. However, the present invention is not limited to this. The measurement may be performed by using a method, and the type of the electric circuit is described using a single-phase two-wire system in the present embodiment. However, it may be used for other electric circuits such as a single-phase three-wire system. it is obvious. Further, the electric circuit is not limited to the electric power transmission line, but can be widely applied to a conductive path used for other purposes such as an antenna.

更に,式の電圧epを発生する為に抵抗r0及びコンデ
ンサC0を用いたがこれに限るわけでなく,又差の電圧e
−epは抵抗R1並びにコンデンサC0夫々の両端電圧の差を
用いたが他の検出方法でも電圧e−epに相当する電圧を
得ることができることは明らかである。
Further, the resistor r 0 and the capacitor C 0 are used to generate the voltage e p in the equation, but the present invention is not limited to this.
-E p is clear that it is possible but with differences in the resistance R 1 and the capacitor C 0 Each of the voltage across obtain a voltage corresponding to the voltage e-e p in other detection methods.

(発明の効果) 本発明は上述した如く構成し且つ機能するものである
から変流器を用いることなく絶縁抵抗を測定することが
できるので,低コスト化を達成するのみならず変流器を
用いた場合に考慮しなくてはならない該変流器の温度変
化及び経年変化等による位相特性の変動が生じない為精
度の高い測定結果を得るうえで著効を奏するものであ
る。
(Effect of the Invention) Since the present invention is constructed and functions as described above, it is possible to measure the insulation resistance without using a current transformer. Since the phase characteristic does not fluctuate due to the temperature change and aging of the current transformer which must be considered when using the current transformer, the present invention is extremely effective in obtaining a highly accurate measurement result.

【図面の簡単な説明】[Brief description of the drawings]

第1図及び第2図は本発明の一実施例を示すブロック
図,第3図及び第4図は本発明の原理を説明するための
ブロック図,第5図及び第6図は従来の測定方法を示す
ブロック図である。 T……受電トランス,1,2……電路,LE……接地線,MULT
……同期検波器,AMP,A1,A2……アンプ,OSC……発振器,
OT……注入トランス,ZCT……変流器,DET……整流器,FIL
……フィルタ,Z……負荷。
1 and 2 are block diagrams showing an embodiment of the present invention, FIGS. 3 and 4 are block diagrams for explaining the principle of the present invention, and FIGS. 5 and 6 are conventional measurement methods. It is a block diagram showing a method. T ...... receiving transformer, 1, 2 ...... paths, L E ...... ground line, MULT
…… Synchronous detector, AMP, A 1 , A 2 …… Amplifier, OSC …… Oscillator,
OT …… Injection transformer, ZCT …… Current transformer, DET …… Rectifier, FIL
…… Filter, Z …… Load.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】電路と大地間に直接又は該電路の接続線に
トランスの二次巻線を挿入接続すると共にその一次巻線
に周波数f1なる交流電圧発生源と抵抗R1とを直列に接続
すると共に前記交流電圧発生源の出力を抵抗r0とコンデ
ンサc0とからなる直列回路に接続し、前記抵抗R1の両端
電圧eと前記コンデンサc0の両端電圧epとの差e−epを
用いて前記電路と大地間の絶縁抵抗を求めたことを特徴
とする漏洩電流検出方法。
1. A a path directly between ground or an AC voltage source comprising a frequency f 1 to the primary winding with the secondary winding of the transformer to the power line of the connection line is inserted and connected between the resistor R 1 in series connected in series circuit comprising the output of the alternating voltage source from the resistor r 0 and a capacitor c 0 Metropolitan with connecting, the difference e-ep the voltage across ep across voltage e and the capacitor c 0 of the resistor R 1 A method for detecting a leakage current, wherein an insulation resistance between the electric circuit and the ground is obtained by using a method.
JP63059632A 1988-03-14 1988-03-14 Leakage current detection method Expired - Lifetime JP2750690B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63059632A JP2750690B2 (en) 1988-03-14 1988-03-14 Leakage current detection method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63059632A JP2750690B2 (en) 1988-03-14 1988-03-14 Leakage current detection method

Publications (2)

Publication Number Publication Date
JPH01232270A JPH01232270A (en) 1989-09-18
JP2750690B2 true JP2750690B2 (en) 1998-05-13

Family

ID=13118801

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63059632A Expired - Lifetime JP2750690B2 (en) 1988-03-14 1988-03-14 Leakage current detection method

Country Status (1)

Country Link
JP (1) JP2750690B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2015253206A1 (en) * 2014-04-29 2016-11-10 The University Of Akron Smart sensor network for power grid health monitoring

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5374257A (en) * 1976-12-14 1978-07-01 Fuji Electric Co Ltd Insulation monitor

Also Published As

Publication number Publication date
JPH01232270A (en) 1989-09-18

Similar Documents

Publication Publication Date Title
JP2750690B2 (en) Leakage current detection method
JP2617324B2 (en) Insulation resistance measurement method
JPH1078461A (en) Measuring method for insulation resistance
JPH0552466B2 (en)
JP2646097B2 (en) Simple insulation resistance measurement method
JP2654549B2 (en) Simple insulation resistance measurement method
JP3240186B2 (en) Method and apparatus for automatically adjusting sensitivity of current transformer for detecting leakage current
JP2617325B2 (en) Insulation resistance measurement method
JPH0640113B2 (en) Simple insulation resistance measuring method
JP2614447B2 (en) Insulation resistance measurement method that compensates for the effect of ground resistance
JP2750707B2 (en) Insulation resistance measurement method compensated for ground resistance
JP2764582B2 (en) Simple insulation resistance measurement method
JP2896574B2 (en) Compensation method for phase characteristics of zero-phase current transformer
JPS5933233B2 (en) Grounding system insulation resistance measuring device
JP2612719B2 (en) Simple insulation resistance measurement method for electrical circuits
JP2612703B2 (en) Insulation resistance measurement method with canceling ground resistance
JP2665912B2 (en) Insulation resistance measurement method that compensates for the effect of ground resistance
JP2556980B2 (en) Electric fault detection method
JP2772426B2 (en) Phase compensation method for zero-phase current transformer
JP2750716B2 (en) Insulation resistance measurement method for low voltage wiring etc.
RU2028638C1 (en) Method for insulation resistance test in branched dc and ac lines
JPH0458581B2 (en)
JP2696513B2 (en) Electrical capacitance measurement method for ground
JPS58127172A (en) Insulation resistance measuring apparatus for electric line with suppressed stray capacity
JP2614449B2 (en) Insulation resistance measurement method compensated for ground resistance