JP2614449B2 - Insulation resistance measurement method compensated for ground resistance - Google Patents

Insulation resistance measurement method compensated for ground resistance

Info

Publication number
JP2614449B2
JP2614449B2 JP12494687A JP12494687A JP2614449B2 JP 2614449 B2 JP2614449 B2 JP 2614449B2 JP 12494687 A JP12494687 A JP 12494687A JP 12494687 A JP12494687 A JP 12494687A JP 2614449 B2 JP2614449 B2 JP 2614449B2
Authority
JP
Japan
Prior art keywords
frequency
insulation resistance
ground
resistance
electric circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP12494687A
Other languages
Japanese (ja)
Other versions
JPS63289465A (en
Inventor
辰治 松野
Original Assignee
東洋通信機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東洋通信機株式会社 filed Critical 東洋通信機株式会社
Priority to JP12494687A priority Critical patent/JP2614449B2/en
Publication of JPS63289465A publication Critical patent/JPS63289465A/en
Application granted granted Critical
Publication of JP2614449B2 publication Critical patent/JP2614449B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Measurement Of Resistance Or Impedance (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は活線状態にて電路等の絶縁抵抗を測定する方
法,殊に対地浮遊容量大なる場合無視し得なくなる接地
抵抗を補償した絶縁抵抗測定方法に関する。
The present invention relates to a method for measuring the insulation resistance of an electric circuit or the like in a live state, and in particular, to an insulation which compensates for a ground resistance which cannot be ignored when a floating capacitance to the ground becomes large. It relates to a method for measuring resistance.

(従来技術) 従来,漏電等の早期発見の為には第4図に示す様に電
路の絶縁抵抗測定方法を用いるのが一般的であった。
(Prior Art) Conventionally, a method of measuring the insulation resistance of a circuit as shown in FIG. 4 has been generally used for early detection of electric leakage and the like.

即ち,Zなる負荷を有する受電変圧器Tの第2種接地線
LEを介して発振器OSCから商用周波数と異なった周波数
なる測定用低周波信号電圧V1sin(2π1t)を電
路L1及びL2に入力し,前記接地線LEを貫通せしめた変流
器ZCTにより,電路と大地間に存在する絶縁抵抗R及び
浮遊容量Cを介して帰還する漏洩電流を検出する。
That is, the second-class ground wire of the receiving transformer T having a load of Z
Commercial frequency and different frequency from the oscillator OSC via the L E
1 comprising measuring the low-frequency signal voltage V 1 sin (2π 1 t) input to the path L 1 and L 2, the current transformer ZCT that allowed through the ground line L E, exists between paths and ground insulation A leakage current that returns via the resistor R and the stray capacitance C is detected.

この際前記変流器ZCTの出力に含まれる周波数
成分をフィルタ1にて検出し,その漏洩電流中の有効分
を,例えば前記発振器OSCの出力を用いて掛算器NULTで
同期検波して電路の絶縁抵抗を測定するものであった。
At this time, the component of frequency 1 included in the output of the current transformer ZCT is detected by the filter 1, and the effective part in the leakage current is synchronously detected by the multiplier NULT using, for example, the output of the oscillator OSC. It was to measure the insulation resistance of the electric circuit.

第2図の等価回路を用いて上記測定理論を説明する。 The above measurement theory will be described with reference to the equivalent circuit of FIG.

前記接地線LEの接地点を介して前記発振器OSCに帰
還する電流をI(t)とすると であるから,入力する交流電圧と同相の成分即ち,上記
(1)式右辺第1項に比例した値を同期検波等の方法を
用いて検出すれば絶縁抵抗Rに逆比例した測定値を得る
ことができる。
When a current is fed back to the oscillator OSC via a ground point E of the ground line L E and I (t) Therefore, if a component in phase with the input AC voltage, that is, a value proportional to the first term on the right side of the above equation (1) is detected by a method such as synchronous detection, a measured value inversely proportional to the insulation resistance R is obtained. be able to.

しかしながら,上記(1)式からも明らかな様に,こ
の測定法は接地線LEに大地を介して帰還する電流を測定
するにも拘らず接地抵抗を無視しているので,対抗浮遊
容量Cが大きくなると接地抵抗の影響が現われ測定値が
現実の電路の絶縁抵抗と甚しくかけ離れたものとなる。
この欠点を補う手段として同一出願人は特願58−145464
「絶縁抵抗測定方法」に於て接地抵抗を補償した絶縁抵
抗測定方法を提示している。その方法を第5図により簡
単に説明する。接地線LEに夫々及び
)なる低周波信号発生用の発振器OSC1及びOSC2から同
一電圧Vなる信号を入力する。一方,変流器ZCTの出力
を分枝して夫々及びのバンドパルスフィルタBF
P1及びBFP2を介して同期検波回路MULT1及びMULT2の一入
力端に入力すると共に前記両発振器OSC1及びOSC2の出力
を夫々前記同期検波回路MULT1及びMULT2の他の入力端に
入力する。これにより前記同期検波回路MULT1の出力か
ら同相分,即ち有効分ig1及びMULT2の出力からig2
得,その値を下記演算式に代入する。
However, the (1) As is apparent from the equation, since the measurement method ignores even though not ground resistance to measure the current fed back through the earth to the ground line L E, against the stray capacitance C Becomes larger, the effect of the grounding resistance appears, and the measured value is significantly different from the actual insulation resistance of the electric circuit.
As a means for compensating for this disadvantage, the same applicant has filed Japanese Patent Application No. 58-145464.
In "Insulation resistance measurement method", an insulation resistance measurement method that compensates for ground resistance is presented. The method is briefly described with reference to FIG. Husband to the ground line L E s 1 and 2 (1
2) made to enter the same voltage V consists signal from the oscillator OSC 1 and OSC 2 of the low-frequency signal generator. On the other hand, the output of the current transformer ZCT is branched into 1 and 2 band pulse filters BF, respectively.
P 1 and the two oscillators OSC 1 and other input terminal of the output respectively said synchronous detection circuit MULT 1 and MULT 2 of OSC 2 and inputs to one input terminal of the synchronization via the BFP 2 detection circuit MULT 1 and MULT 2 To enter. As a result, the in-phase component, ie, ig 2 is obtained from the outputs of the effective components ig 1 and MULT 2 from the output of the synchronous detection circuit MULT 1 , and the value is substituted into the following equation.

これにより接地抵抗rの影響を補償して電路の絶縁抵
抗Rに逆比例したV/Rを測定することができる。
This makes it possible to measure V / R inversely proportional to the insulation resistance R of the electric circuit while compensating for the influence of the ground resistance r.

しかし,上記方法に於いては変圧器の接地線を介して
電路に入力する周波数及びなる低周波の測定信
号は共に似通った周波数帯の信号であり,従ってこれら
信号の供給源として2個の発振器OSC1,OSC2が必ず必要
となるので回路構成が複雑かつ高価となる欠点があっ
た。
However, in the above method, the low-frequency measurement signals of frequencies 1 and 2 input to the electric circuit via the ground wire of the transformer are both signals in similar frequency bands, and therefore, two sources of these signals are used. Since the oscillators OSC 1 and OSC 2 are always required, the circuit configuration is complicated and expensive.

(発明の目的) 本発明は上記のように従来の絶縁抵抗測定方法の欠点
を除去する為になされたものであって接地抵抗の影響を
補償して電路の絶縁抵抗を正確に測定し,更に接地線に
入力する2つの信号のうち一方をデータ伝送等に使用す
る無変調キャリア信号電圧で兼用することによって回路
構成を簡単にすることができる電路の絶縁抵抗測定方法
を提供することを目的とする。
(Object of the Invention) The present invention has been made in order to eliminate the drawbacks of the conventional insulation resistance measuring method as described above, and to accurately measure the insulation resistance of a circuit by compensating for the influence of ground resistance. An object of the present invention is to provide a method for measuring insulation resistance of an electric circuit, which can simplify a circuit configuration by sharing one of two signals input to a ground line with a non-modulated carrier signal voltage used for data transmission or the like. I do.

(発明の概要) この目的を達成するために、本発明に係る接地抵抗を
補償した絶縁抵抗測定方法の特許請求の範囲第1項記載
の発明は、電路に周波数f1の低周波信号電圧と該周波数
f1より高い周波数f2の低周波信号電圧を印加し、電路の
接地線に帰還する周波数f1及びf2の漏洩電流を個別に検
出すると共に、該漏洩電流のうち周波数f1の漏洩電流を
電路に印加した周波数f1の低周波信号の同相信号により
同期検波して有効分ig1を抽出し、また前記漏洩電流の
うち周波数f1の漏洩電流を電路に印加した周波数f1の低
周波信号とは90゜移相した信号により同期検波して無効
分ic1を抽出し、前記有効分ig1、無効分ic1と前記周波
数f2の漏洩電流を整流して得た信号ioとを用いて所定の
演算を行うことにより、電路の絶縁抵抗を測定したこと
を特徴とする。
(Summary of the Invention) In order to achieve this object, the invention according to claim 1 of the insulation resistance measuring method for compensating for the ground resistance according to the present invention comprises the steps of: frequency
A low-frequency signal voltage of a frequency f2 higher than f1 was applied, and the leakage currents of the frequencies f1 and f2 that returned to the ground line of the electric circuit were individually detected, and among the leakage currents, the leakage current of the frequency f1 was applied to the electric circuit. Synchronous detection is performed by an in-phase signal of the low-frequency signal of frequency f1 to extract an effective component ig1, and a phase shift of 90 ° from the low-frequency signal of frequency f1 in which the leakage current of frequency f1 is applied to the electric circuit among the leakage currents. The synchronous circuit detects the ineffective component ic1 by extracting the ineffective component ic1, the ineffective component ic1 and the signal io obtained by rectifying the ineffective component ic1 and the leakage current of the frequency f2, thereby performing a predetermined operation. Characterized in that the insulation resistance was measured.

また特許請求の範囲第2項記載の発明は、特許請求の
範囲第1項記載の発明において、上記周波数f2の低周波
信号電圧をデータ伝送のための無変調キャリア信号電圧
を用いたことを特徴とする。
The invention described in claim 2 is characterized in that, in the invention described in claim 1, the low frequency signal voltage of the frequency f2 is used as an unmodulated carrier signal voltage for data transmission. And

更に特許請求の範囲第3項記載の発明は特許請求の範
囲第1項及び第2項の発明において、上記所定の演算
が、 V1は周波数f1の入力信号電圧、V2は周波数f2の入力信
号電圧、ωは2πf1、ωは2πf2、kはV1 2/2、R
は絶縁抵抗であることを特徴とする。
Further, the invention described in claim 3 is the invention according to claims 1 and 2, wherein the predetermined operation is: V 1 was input signal voltage of the frequency f1, V 2 is the input signal voltage of the frequency f2, omega 1 is 2πf1, ω 2 is 2πf2, k is V 1 2/2, R
Is an insulation resistance.

(実施例) 以下図示した実施例に基づいて本発明を詳細に説明す
る。
(Example) Hereinafter, the present invention will be described in detail based on an illustrated example.

先ず,本発明に係る絶縁抵抗測定方法を説明する前
に,その理解を助ける為従来の手法の欠陥を少しく詳細
に説明する。
First, before describing the insulation resistance measuring method according to the present invention, the defects of the conventional method will be described in some detail in order to help the understanding.

第3図は接地抵抗rを考慮した場合の等価回路図であ
る。
FIG. 3 is an equivalent circuit diagram when the ground resistance r is considered.

この場合接地点Eを介して発振器OSCに帰還する電流
をI(t)と発振器電圧をV1sinω1tとすれば I1(t)=A1V1sinω1t+B1V1cosω1t ……(3) となる。このとき, であり(3)式で接地抵抗rを無視すれば前記(1)式
と同一になることはいうまでもない。
If a current is fed back in this case the oscillator via a ground point E OSC and I (t) of the oscillator voltage V 1 sinω 1 t I 1 ( t) = A 1 V 1 sinω 1 t + B 1 V 1 cosω 1 t ... (3) At this time, It goes without saying that if the ground resistance r is neglected in the equation (3), it becomes the same as the equation (1).

(4)式において,対地浮遊容量C=0のときAは となるが一般にR≫rであるからAは1/Rと考えてよく
前記(3)式の同相分はV/Rとなり,同相分を検出する
ことにより絶縁抵抗を測定することができる。しかし浮
遊容量Cが大きいときには同相分を検出しても(4)式
で示される如く正しい絶縁抵抗を測定していないことに
なる。
In equation (4), when stray capacitance to ground C = 0, A is However, since R≫r generally holds, A can be considered to be 1 / R, and the in-phase component in the above equation (3) becomes V / R, and the insulation resistance can be measured by detecting the in-phase component. However, when the stray capacitance C is large, even if the in-phase component is detected, the correct insulation resistance is not measured as shown by the equation (4).

このような誤差が実際上どの程度になるかを以下に示
す。
The following shows how much such an error actually occurs.

一般にR≫rであるから(4)式においてR+r→R
とすると と表し得る。
In general, since R≫r, in the equation (4), R + r → R
Then It can be expressed as

ここで例えば=20Hz,C=5μF,r=100Ωとすると (ω1Cr)=(2π×20×5×10-6×100) 3.95×10-3 となり(ω1Cr)≪1である。Here, for example, if 1 = 20 Hz, C = 5 μF, r = 100Ω, (ω 1 Cr) 2 = (2π × 20 × 5 × 10 −6 × 100) 2 3.95 × 10 −3 and1 Cr) 2 ≪ It is one.

したがって(5)式は とみなしてよい。Therefore, equation (5) is May be considered.

従って,例えば=20Hz,C=5μF,R=100KΩ,r=1
00Ωの場合前記(6)式の{ }内は 1+(ω1C)2Rr=4.95 となり,同相分から検出されるべき絶縁抵抗値100KΩは
100KΩ/4.95=20.2KΩとして測定されてしまうことにな
る。
Therefore, for example, 1 = 20 Hz, C = 5 μF, R = 100 KΩ, r = 1
In the case of 00Ω, the value in {} of the above equation (6) is 1+ (ω 1 C) 2 Rr = 4.95, and the insulation resistance value 100KΩ to be detected from the in-phase component is
It will be measured as 100KΩ / 4.95 = 20.2KΩ.

斯くの如く,従来の接地抵抗を無視した絶縁抵抗測定
方法では対地浮遊容量が大きい場合極めて測定誤差が大
きくなる欠陥を有すること前述の通りである。更に対地
浮遊容量には一般電子機器の電源回路に付加されるノイ
ズフィルタのキャパシタンスも含まれるので今後対地浮
遊容量は大きくなっていく傾向にあるから従来の方法で
はますます正確な測定結果が得られないことになる。
As described above, as described above, the conventional insulation resistance measurement method ignoring the ground resistance has a defect that the measurement error becomes extremely large when the ground stray capacitance is large. Furthermore, since the stray capacitance to the ground includes the capacitance of the noise filter added to the power supply circuit of general electronic equipment, the stray capacitance to the ground tends to increase in the future, so that more accurate measurement results can be obtained with the conventional method. Will not be.

また接地抵抗は一般に季候等によってもその値は変化
することが知られており,これらの影響を受けずに正確
に絶縁抵抗を測定する方法が望まれていた。
It is also known that the value of the ground resistance generally varies depending on the season and the like, and a method of accurately measuring the insulation resistance without being affected by these is desired.

次に,この欠点を除去するために同一出願人が既に提
案した方法(特願58−145464)について簡単に説明す
る。
Next, a method (Japanese Patent Application No. 58-154564) already proposed by the same applicant to eliminate this disadvantage will be briefly described.

即ち,第5図はこの方法に係かる絶縁抵抗測定装置の
ブロック図を示しこれは本発明と同様に接地抵抗の影響
を補償した絶縁抵抗測定手法に関するものである。
That is, FIG. 5 shows a block diagram of an insulation resistance measuring apparatus according to this method, which relates to an insulation resistance measuring method in which the influence of ground resistance is compensated in the same manner as in the present invention.

この方法は,接地線LEに2つの低周波発振器OSC,OSC2
を接続し,電路L1L2に互いに異なる周波数1,を印
加するとともに両信号の漏洩電流を接地線に供給した変
流器ZCTによって導出したのち,夫々の周波数信号のみ
をバンドパスフィルタBPF1,BPF2を介して抽出しかつ夫
々の信号源からの同相信号により同期検波することによ
ってその有効分ig1及びig2を得,更に引き算回路SUBに
於いて前記2式の演算を行う。
This method, two ground lines L E low frequency oscillator OSC, OSC 2
After applying different frequencies 1 and 2 to the electric circuit L 1 L 2 and deriving the leakage current of both signals by the current transformer ZCT supplied to the grounding line, only the respective frequency signals are band-pass filtered BPF 1, BPF 2 extracts through and obtain the active component ig 1 and ig 2 by synchronous detection by the phase signal from the signal source each, performs calculation of the two equations in further subtraction circuit SUB .

この方法によれば,詳細説明は省略するが結果的に電
路と大地間の容量成分を流れる電流が接地抵抗に流れる
ことによって生ずる測定誤差は,2つの低周波信号1,
夫々のものによって互いに相殺され測定結果から除去
されることになり,接地抵抗の影響のない正確な絶縁抵
抗値を求めることができる。
According to this method, the detailed description is omitted, but as a result, the measurement error caused by the current flowing through the capacitance component between the electric circuit and the ground flowing through the ground resistance is caused by two low-frequency signals 1 ,
The two components cancel each other out and are removed from the measurement result, so that an accurate insulation resistance value without the influence of the ground resistance can be obtained.

しかしながら,この手法に於いて用いた演算式(2)
は低周波信号1,が共にほゞ同一周波数帯に属する
場合に成り立つものであるため,装置内に両方の信号の
供給源を必要とし若干回路構成が複雑となる欠点がある
こと上述した通りである。
However, the arithmetic expression (2) used in this method
Since this is true when both low-frequency signals 1 and 2 belong to the same frequency band, there is a disadvantage in that the device requires both signal sources and the circuit configuration is slightly complicated. It is.

一方,電路の絶縁監視装置は一般的にビル屋上或は遠
隔地に設置されその結果を人が常駐する管理室等に電路
を介して伝送することが行なわれている。
On the other hand, an insulation monitoring device for an electric circuit is generally installed on the roof of a building or a remote place, and the result is transmitted to a control room or the like where a person is resident through an electric circuit.

この際電路に重畳する信号は数KHz或はそれ以上の搬
送波信号を監視結果にて変調するのが一般的である。
At this time, the signal superimposed on the electric line is generally modulated by monitoring a carrier signal of several KHz or more based on the monitoring result.

そこで,上述した絶縁測定手段に於ける2つの信号の
うちいづれか一方に前記搬送波を利用し得れば,回路構
成を簡単にしかつコストを低減することができる。
Therefore, if the carrier can be used for one of the two signals in the above-described insulation measuring means, the circuit configuration can be simplified and the cost can be reduced.

本発明はこのような事情に鑑みてなされたものであっ
て,これを可能とするため絶縁抵抗を求める演算式を以
下のようにする。
The present invention has been made in view of such circumstances, and an arithmetic expression for obtaining an insulation resistance is as follows in order to make this possible.

周波数の入力信号電圧V1sinω1tによって得られ
る漏洩電流分の同相分,即ち有効分ig1は(2)式のI1
(t)を入力信号電圧で同期検波し,その直流分を求め
ることにより得る。
The in-phase component of the leakage current obtained by the input signal voltage V 1 sinω 1 t of the frequency 1 , that is, the effective component ig 1 is I 1 of the equation (2).
(T) is obtained by synchronously detecting the input signal voltage and obtaining its DC component.

ここで (6)式から となる。 here From equation (6) Becomes

また,周波数の漏洩電流の無効分ic1は(3)式
のI1(t)と入力信号電圧V1sinω1tを90゜位相変調さ
せた電圧V1cosω1tで同期検波することにより求める。
Further, reactive component ics 1 leakage current having a frequency 1 to synchronous detection in (3) of I 1 (t) and the input signal voltage V 1 sin .omega 1 t 90 ° phase-modulated allowed voltage V 1 cos .omega 1 t Ask by

ところで(4)式のB1は一般にR≫r,(ω1Cr)
1の条件によりω1Cとなるから ic1=kω1C ……(10) となる。
By the way, B 1 in the equation (4) is generally R {r, (ω 1 Cr) 2
Since ω 1 C is obtained by the condition of 1, ic 1 = kω 1 C (10).

一方,周波数(≫)の入力信号電圧V2sinω2
t(ω=2π)による漏洩電流I2(t)は I2(t)=A2V2sinω2t+B2V2cosω2t ……(11) となる。A2,B2は(4)式A1,B1の式中のωをωに置
換することにより得る。の入力信号電圧のた
めω≫ωとなり,R≫rであっても(ω2Dr)≪1
となるとは限らず と近似される。
On the other hand, the input signal voltage V 2 sinω 2 of frequency 2 (≫ 1 )
t (ω 2 = 2π 2) due to the leakage current I 2 (t) becomes I 2 (t) = A 2 V 2 sinω 2 t + B 2 V 2 cosω 2 t ...... (11). A 2, B 2 is obtained by replacing the omega 1 in the formula (4) A 1, B 1 in omega 2. 2 ω 2 »ω 1 next for »1 of the input signal voltage, even R»r (ω 2 Dr) 2 «1
Not necessarily Is approximated.

従って周波数の漏洩電流I2(t)を整流し,その
直流電圧ioを得れば(11)式から io2=V2 2(A2 2+B2 2)となる。
Therefore, if the leakage current I 2 (t) at frequency 2 is rectified and its DC voltage io is obtained, io 2 = V 2 2 (A 2 2 + B 2 2) become.

これに(12)式のA2,B2を代入すれば 一般に工場等の低圧電路(例えば500KVA以下)に於て
はおよそr=0〜100Ω,C=0〜10μF,Rは2kΩ以上とな
ることが測定されるのでを1〜3kHz程度とすれば
(14)式に於いて の関係が成立するため となり,(16)式より となる。
Substituting A 2 and B 2 in equation (12) into this gives Generally the low pressure path (hereinafter eg 500 KVA) plant such as the Te at approximately r = 0~100Ω, C = 0~10μF, if 2 to about 1~3kHz Since R is determined to be equal to or larger than 2 k.OMEGA ( 14) In the equation Because the relationship holds And from equation (16) Becomes

ところで電路の絶縁抵抗Rに逆比例した値k/Rは
(8)式から これに(17)式を代入すると (10)式から を(18)式に代入すると となる。従ってV1,V212,kは既知であるから検出
値ig1,ic1,ioを用いて(19)式の演算により電路の絶縁
抵抗を測定することができる。
By the way, the value k / R, which is inversely proportional to the insulation resistance R of the electric circuit, is obtained from the equation (8). Substituting equation (17) into this From equation (10) Substituting into equation (18) Becomes Accordingly, since V 1 , V 2 , ω 1 , ω 2 , and k are known, the insulation resistance of the electric circuit can be measured by the calculation of Expression (19) using the detected values ig 1 , ic 1 , and io.

第1図は本発明に係かる絶縁抵抗測定装置の一実施例
を示すブロック図である。
FIG. 1 is a block diagram showing an embodiment of an insulation resistance measuring device according to the present invention.

同図に於いて第4図及び第5図の同一の記号は同一の
意味をもつ。
4, the same symbols in FIGS. 4 and 5 have the same meaning.

即ち,発振周波数の発振器OSC1の出力と発振周波
の発振器OSC2の出力を電力増幅器PAMPの出力は注
入トランスOTを介して接地線LEに結合される。こうし
て,電路L1,L2と大地間には電圧V1sinω1tとV2sinω2t
の電圧が入力される。接地線LEが貫通せしめた変流器ZC
Tの出力中には周波数の漏洩電流I1(t)と周波数
の漏洩電流I2(t)が含まれており,周波数
成分を通すフィルタBP1の出力には(3)式に相当する
漏洩電流が検出される。
That is, the output of the power amplifier PAMP the output of the oscillator OSC 2 of the output of the oscillator OSC 1 of the oscillation frequency 1 oscillation frequency 2 via the injection transformer OT is coupled to the ground line L E. Thus, the voltages V 1 sinω 1 t and V 2 sinω 2 t exist between the electric circuits L 1 and L 2 and the ground.
Is input. Current transformer ZC earth wire L E is allowed through
Frequency and the leakage current I 1 of the frequency 1 (t) during the output of the T
2 includes a leakage current I 2 (t), and a leakage current corresponding to the equation (3) is detected from the output of the filter BP 1 that passes the component of frequency 1 .

この検出された出力を同期検波器MULT1,MULT2の夫々
一方の入力端に入力し,MULT1の他の一方の入力端には発
振器OSC1の出力(V1sinω1t)を入力することにより,MU
LT1の出力には(8)式に相当する直流分ig1が出力され
る。MULT2の他の一方の入力端には発振器OSC1出力を90
゜移位器PSに入力し,得た90゜移位器PS出力V1cosω1t
を入力するとMULT2の出力には(10)式に相当する直流
分ic1が出力される。
Enter the detected output to the synchronous detector MULT 1, MULT 2 each one input terminal, inputting the output of the oscillator OSC 1 to (V 1 sinω 1 t) to other one of the input terminals of MULT1 MU
The output of the LT1 is output DC component ig 1 corresponding to (8). The other input of MULT2 connects the oscillator OSC1 output to 90
゜ Input to the translator PS and obtained 90 得 translator PS output V 1 cosω 1 t
The output of the entering MULT2 DC component ics 1 corresponding to (10) below is output.

一方,変流器ZCT出力を周波数を通すフィルタBP2
に入力する。BP2の出力には(12)式に相当する漏洩電
流成分が得られる。更にBP2出力を整流回路DETに入力す
ればその出力は(13)式に相当する直流分ioが得られ
る。以上のようにして得たig1,ic1,ioを演算回路AUに入
力し,既知のV1,V21を用いて(19)式の演算処
理を行なうことにより,演算回路AU出力には1/Rに比例
した出力を得,絶縁抵抗を測定することができる。
On the other hand, a filter BP2 that passes the current transformer ZCT output through frequency 2
To enter. A leakage current component corresponding to equation (12) is obtained at the output of BP2. Further, when the BP2 output is input to the rectifier circuit DET, the output can obtain a DC component io corresponding to the equation (13). By inputting ig 1 , ic 1 , io obtained as described above to the arithmetic circuit AU, and performing the arithmetic processing of the equation (19) using the known V 1 , V 2 , ω 1 , ω 2 , An output proportional to 1 / R is obtained as the output of the arithmetic circuit AU, and the insulation resistance can be measured.

上記説明では周波数(≫)なる信号電圧を発
振器OSC2から得ている。しかし、同一出願人同一発明者
による特願59−231874の「監視信号の伝送装置」の如く
接地線に警報信号を復調出力するものがある。従って警
報信号データで変調しない無変調時の周波数のキャ
リア信号電圧を発振器OSC2の出力電圧の代替として使用
することもできる。
In the above description to obtain a frequency 2 ( »1) comprising a signal voltage from the oscillator OSC 2. However, there is a device that demodulates and outputs an alarm signal to a ground line, such as the "monitoring signal transmission device" of Japanese Patent Application No. 59-231874 by the same applicant and the same inventor. Therefore it is also possible to use a carrier signal voltage of the frequency 2 of the unmodulated when not modulated by the alarm signal data as a substitute for the output voltage of the oscillator OSC 2.

なお,実施例の説明では同期検波器MULT1,MULT2の他
の一方の入力端に入力する電圧を夫々V1sinω1t,V1cos
ω1tとし又,説明簡単の為単相2線の場合を示したが,
電圧の大きさV1は限定する必然性がない為任意の大きさ
の電圧で良く,又,結線は単相2線に限定する必然性は
全くなく単相3線或は3相3線の場合であっても同一の
原理に基づいて実施可能なことは明らかである。
In the description of the embodiment, the voltages input to the other input terminals of the synchronous detectors MULT 1 and MULT 2 are V 1 sinω 1 t and V 1 cos, respectively.
ω 1 t, and a single-phase two-wire case is shown for simplicity of explanation.
The magnitude of the voltage V 1 does not have to be limited, and may be any voltage. The connection is not necessarily limited to a single-phase two-wire, but is a single-phase three-wire or three-phase three-wire. Obviously, it can be implemented based on the same principle.

(発明の効果) 本発明は以上説明した如き手法によって電路の絶縁抵
抗を測定するものであるから接地抵抗の影響を完全にキ
ャンセルすることが可能となるのみならず発振器等の出
力抵抗の影響をも接地抵抗に加味して補償するので対地
浮遊容量増大の傾向にある電子回路を含んだ電路等の絶
縁抵抗を正確に測定する上で著しい効果を発揮する。
(Effects of the Invention) Since the present invention measures the insulation resistance of the electric circuit by the method described above, it is possible not only to completely cancel the influence of the ground resistance but also to reduce the influence of the output resistance of the oscillator and the like. Also, since the compensation is performed in consideration of the ground resistance, it has a remarkable effect in accurately measuring the insulation resistance of an electric circuit including an electronic circuit which tends to increase the stray capacitance to the ground.

更に実施例からも明らかな如く本発明の測定方法を実
現する測定用回路は極めて簡単,従って安価に供給可能
であるから工場等の電路の絶縁状態自動監視システムに
適用する際殊に効果的である。
Further, as is clear from the embodiment, the measuring circuit for realizing the measuring method of the present invention is extremely simple and can be supplied at a low cost, so that it is particularly effective when applied to an insulation monitoring system for electric lines in factories and the like. is there.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明の絶縁抵抗測定方法を実現するための一
実施例を示すブロック図,第2図は電路の絶縁抵抗の等
価回路図,第3図は接地抵抗を考慮した場合の等価回路
図,第4図は従来の絶縁抵抗測定方法を説明する図,第
5図は特願58−145464「絶縁抵抗測定方向」を実現する
ための一実施例を示すブロック図である。 T……変圧器,L1,L2……電路,LE……接地線,OSC1,OSC2
……発振器,MULT1,MULT2……同期検波器,FIL……フィル
タ,BP1,BP2……フィルタ,PS……90゜移相器,PAMP……電
力増幅器OT……注入トランス,ZCT……変流器,DET……整
流器,AU……演算回路,SUB……引算回路。
FIG. 1 is a block diagram showing an embodiment for realizing the insulation resistance measuring method of the present invention, FIG. 2 is an equivalent circuit diagram of an insulation resistance of an electric circuit, and FIG. 3 is an equivalent circuit in consideration of a ground resistance. FIG. 4 is a view for explaining a conventional insulation resistance measuring method, and FIG. 5 is a block diagram showing an embodiment for realizing Japanese Patent Application No. 58-154564 "insulation resistance measurement direction". T …… Transformer, L 1 , L 2 …… Electric circuit, L E …… Grounding wire, OSC 1 , OSC 2
…… Oscillator, MULT 1 , MULT 2 … Synchronous detector, FIL …… Filter, BP 1 , BP 2 …… Filter, PS …… 90 ° phase shifter, PAMP …… Power amplifier OT …… Injection transformer, ZCT …… Current transformer, DET …… Rectifier, AU …… Operation circuit, SUB… Subtraction circuit.

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】電路に周波数f1の低周波信号電圧と該周波
数f1より高い周波数f2の低周波信号電圧を印加し、電路
の接地線に帰還する周波数f1及びf2の漏洩電流を個別に
検出すると共に、該漏洩電流のうち周波数f1の漏洩電流
を電路に印加した周波数f1の低周波信号の同相信号によ
り同期検波して有効分ig1を抽出し、また前記漏洩電流
のうち周波数f1の漏洩電流を電路に印加した周波数f1の
低周波信号とは90゜移相した信号により同期検波して無
効分ic1を抽出し、前記有効分ig1、無効分ic1と前記周
波数f2の漏洩電流を整流して得た信号ioとを用いて所定
の演算を行うことにより、電路の絶縁抵抗を測定したこ
とを特徴とする接地抵抗を補償した絶縁抵抗測定方法。
1. A low-frequency signal voltage having a frequency f1 and a low-frequency signal voltage having a frequency f2 higher than the frequency f1 are applied to an electric circuit, and leakage currents at the frequencies f1 and f2 which are fed back to the ground line of the electric circuit are individually detected. At the same time, the leak current of frequency f1 among the leak currents is synchronously detected by an in-phase signal of a low frequency signal of frequency f1 applied to the electric circuit to extract an effective component ig1, and the leak current of frequency f1 among the leak currents The low frequency signal of frequency f1 applied to the electric circuit is synchronously detected by a signal shifted by 90 ° to extract an invalid component ic1, and rectifies the effective component ig1, the invalid component ic1 and the leakage current of the frequency f2. A method of measuring insulation resistance in which ground resistance is compensated, wherein insulation resistance of an electric circuit is measured by performing a predetermined operation using the obtained signal io.
【請求項2】上記周波数f2の低周波信号電圧をデータ伝
送のための無変調キャリア信号電圧を用いたことを特徴
とする特許請求の範囲第1項記載の接地抵抗を補償した
絶縁抵抗測定方法。
2. The method according to claim 1, wherein the low-frequency signal voltage of the frequency f2 is an unmodulated carrier signal voltage for data transmission. .
【請求項3】上記所定の演算が、 V1は周波数f1の入力信号電圧、V2は周波数f2の入力信号
電圧、ωは2πf1、ωは2πf2、kはV1 2/2、Rは
絶縁抵抗であることを特徴とする特許請求の範囲第1項
及び第2項記載の接地抵抗を補償した絶縁抵抗測定方
法。
3. The method according to claim 2, wherein the predetermined operation is V 1 was Patent input signal voltage of the frequency f1, V 2 is the input signal voltage of the frequency f2, omega 1 is 2πf1, ω 2 is 2πf2, k is V 1 2/2, R is characterized in that an insulation resistance 3. The method for measuring insulation resistance according to claim 1, wherein said insulation resistance is compensated for ground resistance.
JP12494687A 1987-05-21 1987-05-21 Insulation resistance measurement method compensated for ground resistance Expired - Lifetime JP2614449B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12494687A JP2614449B2 (en) 1987-05-21 1987-05-21 Insulation resistance measurement method compensated for ground resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12494687A JP2614449B2 (en) 1987-05-21 1987-05-21 Insulation resistance measurement method compensated for ground resistance

Publications (2)

Publication Number Publication Date
JPS63289465A JPS63289465A (en) 1988-11-25
JP2614449B2 true JP2614449B2 (en) 1997-05-28

Family

ID=14898112

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12494687A Expired - Lifetime JP2614449B2 (en) 1987-05-21 1987-05-21 Insulation resistance measurement method compensated for ground resistance

Country Status (1)

Country Link
JP (1) JP2614449B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103163381B (en) * 2011-12-09 2015-07-29 北京动力源科技股份有限公司 A kind of detection method of sun power electrode plate ground insulation resistance, device and circuit

Also Published As

Publication number Publication date
JPS63289465A (en) 1988-11-25

Similar Documents

Publication Publication Date Title
US4851761A (en) Method for measuring insulation resistance of electric line
JP2614449B2 (en) Insulation resistance measurement method compensated for ground resistance
JPH1078461A (en) Measuring method for insulation resistance
JP2612703B2 (en) Insulation resistance measurement method with canceling ground resistance
JP2617324B2 (en) Insulation resistance measurement method
JPH0552466B2 (en)
JP2614447B2 (en) Insulation resistance measurement method that compensates for the effect of ground resistance
JPH079447B2 (en) Insulation resistance measuring method and device
JP2696513B2 (en) Electrical capacitance measurement method for ground
JP2750707B2 (en) Insulation resistance measurement method compensated for ground resistance
JP2612719B2 (en) Simple insulation resistance measurement method for electrical circuits
JP2750690B2 (en) Leakage current detection method
JP2750705B2 (en) Insulation resistance measurement method
JP2556980B2 (en) Electric fault detection method
JP2929197B2 (en) Insulation resistance measurement method that compensates for the effect of ground resistance
JP2764582B2 (en) Simple insulation resistance measurement method
JP2654549B2 (en) Simple insulation resistance measurement method
JPS60155981A (en) Insulation resistance measurement
JP2764584B2 (en) Measurement method of insulation resistance of branch circuit
JP2802283B2 (en) Method and apparatus for detecting defective electrical insulation
JP2646089B2 (en) Method for measuring insulation resistance of low-voltage circuit
JP2516763B2 (en) Insulation resistance measurement method for two lines
JP2896572B2 (en) Simple insulation resistance measurement method
JP2681187B2 (en) Insulation fault location search method
JP2750716B2 (en) Insulation resistance measurement method for low voltage wiring etc.