JP2750705B2 - Insulation resistance measurement method - Google Patents

Insulation resistance measurement method

Info

Publication number
JP2750705B2
JP2750705B2 JP21762088A JP21762088A JP2750705B2 JP 2750705 B2 JP2750705 B2 JP 2750705B2 JP 21762088 A JP21762088 A JP 21762088A JP 21762088 A JP21762088 A JP 21762088A JP 2750705 B2 JP2750705 B2 JP 2750705B2
Authority
JP
Japan
Prior art keywords
frequency
output
signal
transformer
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP21762088A
Other languages
Japanese (ja)
Other versions
JPH0264470A (en
Inventor
辰治 松野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Tsushinki KK
Original Assignee
Toyo Tsushinki KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Tsushinki KK filed Critical Toyo Tsushinki KK
Priority to JP21762088A priority Critical patent/JP2750705B2/en
Publication of JPH0264470A publication Critical patent/JPH0264470A/en
Application granted granted Critical
Publication of JP2750705B2 publication Critical patent/JP2750705B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は活線状態にて電路等の絶縁抵抗を測定する方
法に関する。
Description: TECHNICAL FIELD The present invention relates to a method for measuring insulation resistance of an electric circuit or the like in a live state.

(従来技術) 従来,漏電等を早期発見する為には第3図に示すよう
な電路の絶縁抵抗測定方法を用いるのが一般的であっ
た。
(Prior Art) Conventionally, in order to detect a leakage current or the like at an early stage, a method of measuring insulation resistance of an electric circuit as shown in FIG. 3 has been generally used.

同図に於いてTはトランス,L1,L2は該トランスTの2
次側電路,LEは前記トランスTの接地線であって,トラ
ンスTの2次側電路には負荷Zを有する。
In the figure, T is a transformer, and L 1 and L 2 are 2 of the transformer T.
Next side path, L E is a ground line of the transformer T, the secondary side path of the transformer T with the load Z.

前記接地線LEには注入トランスOT,変流器ZCTが設けら
れ,前記注入トランスOTには商用周波数とは異なる
周波数を発振する発振器OSCが,前記変流器ZCTには
アンプAMP,フィルタFIL及び同期検波器MULTが直列に接
続すると共に該同期検波器MULTの他の入力端には前記発
振器OSCが接続している。
The injection into the ground line L E transformer OT, current transformer ZCT is provided, said injection oscillator OSC oscillating a different frequency 1 from the commercial frequency 0 the transformer OT is, the amplifier AMP in the current transformer ZCT, The filter FIL and the synchronous detector MULT are connected in series, and the other end of the synchronous detector MULT is connected to the oscillator OSC.

このように構成した回路に於いて接地線LEに周波数
なる測定用信号を注入トランスOTより印加し,電路
L1,L2と大地間に存在する絶縁抵抗R0及び対地静電容量C
0を介して前記接地線LEに帰還する漏洩電流を該接地線L
Eを貫通せしめた変流器ZCTにより検出し,該出力を増幅
器AMPで増幅した後フィルタFILにて周波数の漏洩電
流成分のみを選択し,この成分を周波数の測定用信
号を用いて同期検波器MULTで同期検波し,その出力を用
いて電路の絶縁抵抗を測定していた。
Frequency to the ground line L E In the thus constituted circuit
1 is applied from the injection transformer OT
Insulation resistance R 0 and ground capacitance C existing between L 1 , L 2 and ground
Grounding line leakage current which returns to the ground line L E through 0 L
The output is detected by the current transformer ZCT penetrating E , the output is amplified by the amplifier AMP, then only the leakage current component of frequency 1 is selected by the filter FIL, and this component is synchronized using the measurement signal of frequency 1. Synchronous detection was performed by the detector MULT, and the output was used to measure the insulation resistance of the circuit.

しかしながら,大地静電容量C0が大きい場合には周波
を充分に低くしなければ周波数f1の漏洩電流中の
大地静電容量による電流成分が著しく大きくなってしま
い,上述した如き手段では正しい絶縁抵抗による電流成
分の測定が困難であった。又,測定用信号の電圧は電路
雑音の影響を受けないようにするにはあまり低くするこ
とができず,一般に0.5V,周波数は20Hz程度である
ため,注入トランスOTの大きさは可搬が困難なほど大き
くなるという欠点があった。
However, if the ground capacitance C 0 is large, the current component due to the ground capacitance in the leakage current at the frequency f 1 becomes extremely large unless the frequency 1 is set sufficiently low. It was difficult to measure the current component by the insulation resistance. In addition, the voltage of the measurement signal cannot be too low to avoid the influence of circuit noise, and is generally 0.5 V and the frequency 1 is about 20 Hz. However, there was a drawback that it became so large that it was difficult.

更に注入トランスに接地線LEを貫通させる場合,注入
トランスOTの2次巻線N2は1ターンとなるため前述した
ように測定用信号の周波数を低く信号電圧を高くす
るとトランスのコアを大きくしなければならなかった。
Further, when passing the ground line L E injection transformer, a secondary winding N 2 is the transformer core Higher low signal voltage frequency 1 of the measurement signal as described above for the one-turn injection transformer OT I had to make it bigger.

又,2次巻線数N2を大きくすれば信号電圧を高くするこ
とは可能であるが,それに伴ないトランスの出力インピ
ーダンスが高くなる傾向があり地絡事故時等の安全性を
考慮するとトランスの出力インピーダンスを高くするこ
とは望ましくなかった。
Also, 2 it is possible to increase the signal voltage by increasing the winding number N 2, it accompanied not tend to transformer output impedance is high transformer and consider the safety of such time ground fault It was not desirable to increase the output impedance of.

(発明の目的) 本発明は上述した問題点に鑑みなされたものであっ
て,注入トランスを小型化し且つ該トランスの出力イン
ピーダンスを低く保ち,静電容量による影響を受けるこ
となく絶縁抵抗を測定することを可能にした絶縁抵抗測
定方法を提供することを目的とする。
(Object of the Invention) The present invention has been made in view of the above-mentioned problems, and has a compact injection transformer, keeps the output impedance of the transformer low, and measures the insulation resistance without being affected by capacitance. It is an object of the present invention to provide an insulation resistance measuring method which enables the above.

(発明の概要) この目的を達成するために本発明の絶縁抵抗測定方法
は、周波数f1及びf2(f1>f2)なる交流信号を印加した
トランスを介して被測定電路に周波数f1及びf2の測定用
信号を注入する手段と、変圧器の接地線に帰還する前記
測定用信号による漏洩電流を検出するために前記接地線
若しくは線路を貫通せしめた変流器等による電流検出手
段とを具え、前記電流検出手段により得た出力中に含ま
れる周波数f1の漏洩電流を前記周波数f2の測定信号より
90度移相した電圧で変調することにより第1の変調信号
を得、又、前記電流検出手段により得た出力中に含まれ
る周波数f2の漏洩電流を前記周波数f1の測定用信号より
90度移相した電圧で変調することにより第2の変調信号
を得、前記第1の変調信号と第2の変調信号との差の信
号に含まれる周波数f1−f2の成分を整流し若しくは前記
周波数f1及びf2の交流信号を用いて発生させた周波数f1
−f2の電圧で同期検波して得た出力値から電路の絶縁抵
抗を測定するよう手段を講ずる。
SUMMARY OF THE INVENTION insulation resistance measuring method of the present invention to achieve this object, the frequency f 1 and f 2 (f 1> f 2) comprising alternating signal frequency f in the circuit under measurement through the applied transformer means for injecting a 1 and the measurement signal f 2, transformer of the ground line or the line current detection by current transformer or the like allowed through the to detect leakage current by the measurement signal fed back to the ground line and means, from the measurement signal of the frequency f 2 the leakage current of a frequency f 1 included in the output obtained by said current detecting means
By modulating at 90 ° phase-shifted voltage to obtain a first modulated signal, also the leakage current of the frequency f 2 included in the output obtained by said current detecting means from the measurement signal of the frequency f 1
A second modulation signal is obtained by modulating with a voltage shifted by 90 degrees, and a component of a frequency f 1 -f 2 included in a signal of a difference between the first modulation signal and the second modulation signal is rectified. or the frequency f 1 and the frequency f 1 generated using the AC signal f 2
Take means to measure the insulation resistance of the electrical path from the output value obtained by synchronous detection at a voltage of -f 2.

(実施例) 以下,図面に示した実施例に基づいて本発明を詳細に
説明する。
(Examples) Hereinafter, the present invention will be described in detail based on examples shown in the drawings.

第1図は本発明の実施にあたって用いる装置の一実施
例を示すブロック図である。
FIG. 1 is a block diagram showing an embodiment of an apparatus used in carrying out the present invention.

同図に於いて前記第3図と同一のものには同一の記号
を付す。
3, the same components as those in FIG. 3 are denoted by the same symbols.

注入トランスOTの一次巻線N1に周波数が互いに異なる の2つの発振器OSC1,OSC2を加えることにより電路と大
地との間にe0 sin ω1t+e0 sin ω2tの測定用信号を印
加する。従って接地線LEに帰還する漏洩電流を変流器ZC
Tで検出しその出力を増幅器AMPで増幅し,周波数
成分を検出するフィルタF1及び周波数の成分を検出
するフィルタF2に入力すればフィルタF1の出力に得られ
る周波数の漏洩電流成分i1となり,一方フィルタF2の出力に得られる周波数
漏洩電流成分i2となるから前記フィルタF1の出力を変調器M1の一方の入
力端に入力し,他の入力線には前記発振器OSC2の出力e
sin ω2tを90度移相器PS2に印加して得たe cos ω2tを
入力する。
Have different frequencies to the primary winding N 1 of the injection transformer OT By adding the two oscillators OSC 1 and OSC 2 , a measurement signal of e 0 sin ω 1 t + e 0 sin ω 2 t is applied between the electric circuit and the ground. Thus current transformer ZC leakage current which returns to the ground line L E
Detected in T amplifies the output by the amplifier AMP, the leakage filters F 1 and the frequency 1 obtained at the output of the filter F 1 if the input to the filter F 2 for detecting the component of the frequency 2 for detecting the component of the frequency 1 The current component i 1 is Next, whereas the leakage current component i 2 frequency 2 obtained at the output of the filter F 2 is The output of the filter F 1 from the input to one input terminal of the modulator M 1, the other input line output e of the oscillator OSC 2
The sin omega 2 t enter the e cos ω 2 t obtained by applying the 90-degree phase shifter PS 2.

又,前記フィルタF2の出力は変調器M2の一方の入力端
に入力し,他の入力端には前記発線器OSC1出力e sin ω
1tを90度移相器PS1に印加して得たe cos ω1tを入力す
る。
The output of the filter F 2 is input to one input terminal of the modulator M 2 , and the output OSC 1 output e sin ω is input to the other input terminal.
Ecos ω 1 t obtained by applying 1 t to the 90-degree phase shifter PS 1 is input.

斯くして変調器M1の出力はi1×e cos ω2tが又変調器
M1の出力はi2×e cos ω1tとなる。
Thus, the output of modulator M 1 is i 1 × e cos ω 2 t
The output of M 1 is i 2 × e cos ω 1 t.

次に前記変調器M1及びM2出力を引算器SUB1に印加すれ
ば,該引算器SUB1の出力Sは となり(3)式のi1,i2に前記(1),(2)式のi1,i2
を代入すると と表すことができる。該引算器SUB1出力を次段のローパ
スフィルタLFに印加し周波数成分を除去する
と該ローパスフィルタLF出力S0となる。
Next, if the outputs of the modulators M 1 and M 2 are applied to the subtractor SUB 1 , the output S of the subtractor SUB 1 becomes Next (3) of i 1, i 2 on the (1), (2) of i 1, i 2
Substituting It can be expressed as. When the output of the subtractor SUB 1 is applied to the low-pass filter LF of the next stage to remove the frequency 1 + 2 component, the output S 0 of the low-pass filter LF becomes Becomes

又,前記発振器OSC1出力と発振器OSC2出力を90度移相
した移相器PS2出力とを夫々変調器M3に印加することに
より該変調器M3出力はe2sin ω1t・cos ω2tを得,一方
前記発振器OSC2出力と発振器OSC1出力を90度移相した移
相器PS1出力とを夫々変調器M4に印加することにより該
変調器M4出力はe2 sin ω2t・cos ω1tを得ることがで
きる。従って,前記変調器M3及びM4出力を引算器SUB2
印加することにより該引算器SUB2出力S1は S1=e2 sin ω1t・cos ω2t−e2 sin ω2t・cos ω1t =e2 sin(ω−ω)t ……(6) となる。即ち該引算器SUB2出力はf1−f2の電圧となり該
引算器出力S1と前記ローパスフィルタLF出力S1とを次段
の同期検波器MULT1に印加すれば該同期検波器MULT1出力
OUT1から前記S0とS1との積の直流分が得られる。即ち、 となり、前記出力OUT1は前記(7)式中の直流分である
から となるので絶縁抵抗を測定することができる。
Further, the output of the oscillator OSC 1 and the output of the phase shifter PS 2 obtained by shifting the output of the oscillator OSC 2 by 90 degrees are applied to the modulator M 3 , respectively, so that the output of the modulator M 3 is e 2 sin ω 1 t · cos omega 2 give t, whereas the oscillator OSC 2 output and the oscillator OSC 1 outputs the modulator M 4 output by applying the phase shifter PS 1 output by 90 degrees phase shift to each modulator M 4 is e 2 sin ω 2 t · cos ω 1 t can be obtained. Thus, the cited adder SUB 2 outputs S 1 by applying the modulator M 3 and M 4 outputs to subtracter SUB 2 is S 1 = e 2 sin ω 1 t · cos ω 2 t-e 2 sin ω 2 t · cos ω 1 t = e 2 sin (ω 1 −ω 2 ) t (6) That the cited adder SUB 2 output synchronous detectors by applying a said with the cited adder output S 1 becomes the voltage of f 1 -f 2 low-pass filter LF output S 1 to the next synchronous detector MULT 1 MULT 1 output
From OUT 1, a DC component of the product of S 0 and S 1 is obtained. That is, And the output OUT 1 is a DC component in the equation (7). Therefore, the insulation resistance can be measured.

ところで第3図に示した如き従来の方法で周波数
の測定信号ei sin ωitを印加した場合フィルタFIL出力
に得られる周波数iの漏洩電流iは であるので第2項の対地静電容量C0による漏洩電流(無
効分電流)は周波数 に比例していることがわかる。従って周波数が高く
なると共に無効電流は大きくなり正確な絶縁抵抗を測定
することが困難であったが,本発明によれば(5)式第
2項からも明らかなように無効電流は周波数1,
差に比例するため周波数1,が個々に高くともその
差が小さければ前記無効電流は少ない。
Incidentally frequency 1 at the 3 such conventional method shown in FIG.
The leakage current i of the measuring signal e i sin omega i when applying t frequency i obtained at the filter FIL output Therefore, the leakage current (reactive component current) due to the ground capacitance C 0 in the second term is the frequency It is understood that it is proportional to. Thus although the reactive current with frequency i is increased and it is difficult to accurately measure the insulation resistance increases, according to the present invention (5) reactive current as is apparent from the second term frequency 1 , 2 is proportional to the difference, and the reactive current is small if the difference is small even if the frequencies 1 and 2 are individually high.

例えば前記(5),(6)式に於けるeo=ei =2
0Hzとすれば本発明に於ける方法を用いた場合には
=320Hz,=280Hzとすることができ従って極めて小
さいトランス(約10分の1)を用いても事足りるのであ
る。
For example, e o = e i i = 2 in the above equations (5) and (6)
If the frequency is set to 0 Hz, 1 is obtained when the method of the present invention is used.
= 320 Hz, 2 = 280 Hz, so it is sufficient to use an extremely small transformer (about one tenth).

即ち,(5)式のカッコ内の第1項で示されている抵
抗分に流れる電流と第2項で示されている対地静電容量
の流れる電流との比は(ω−ω)C0R0/2であり,一
方(6)式に於ける有効分電流と無効分電流との比はω
iC0R0であるので両比が等しくなるのは(ω−ω)/
2=ωであり,本発明の方法で周波数との
を十分に小さくするよう周波数を選択する
ことも可能であり,この場合(5)式のカッコ内の第2
項が第1項の有効分に比べて十分小さくなるのでローパ
スフィルタLFの出力S0を整流器DETで整流した出力OUT2
を用いても絶縁抵抗測定が可能となる。
That is, the ratio of the current flowing through the resistance indicated by the first term in the parentheses of the equation (5) to the current flowing through the ground capacitance indicated by the second term is (ω 1 −ω 2 ). C 0 R 0/2 , while the ratio between the active component current and the reactive component current in equation (6) is ω
Since i C 0 R 0 , both ratios are equal (ω 1 −ω 2 ) /
2 = the omega i, the difference between the frequency 1 and 2 in the method of the present invention 1 - 2 selecting a frequency so that sufficiently small is also possible, the second parentheses in this case (5)
Since the term becomes sufficiently smaller than the effective component of the first term, an output OUT 2 obtained by rectifying the output S 0 of the low-pass filter LF by the rectifier DET.
Can be used to measure insulation resistance.

但し,上記周波数差が小さい為フィルタF1
及びF2の選択特性を著しく狭帯域とする必要があり,絶
縁抵抗の測定時間が長くなることは考慮しなければなら
ない。
However, the frequency difference 1 - for 2 small filter F 1
And it is necessary to significantly narrow-band selective properties of F 2, the measurement time of the insulation resistance becomes longer must consider.

上記説明では信号がフィルタ等を径た時に生ずる位相
シフトを無視して説明したが必要に応じて移相器を用い
系の位相シフトを補正するようにしてもよく,又,フィ
ルタF1,F2は前述した様に周波数1,が近接しそれ
に伴ないが小さいためにシャープな狭帯域フ
ィルタを用いなければならず,このフィルタに於ける位
相特性変動は極めて少ない方が望ましく,この条件を満
足するフィルタとしては発振器OSC1,OSC2出力に同期し
て動作する「N路フィルタ」を用いるのが良い。
In the above description, the phase shift generated when the signal passes through the filter or the like has been ignored. However, if necessary, the phase shift of the system may be corrected by using a phase shifter, and the filters F 1 , F 1 2 frequency 1 as described above, 2 is not accompanied therewith proximate 1 - 2 is not necessary to use a sharp narrowband filter for small, very small it is desirably in the phase characteristic variations in the filter, As a filter that satisfies this condition, it is preferable to use an “N-path filter” that operates in synchronization with the outputs of the oscillators OSC 1 and OSC 2 .

又,上記説明では注入トランスOT,変流器ZCTに接地線
LEを貫通させて説明したがこれに限るものでなく,第2
図に示す如く電路が注入トランスOT,変流器ZCTを貫通せ
しめるように設けるか或はクランプする様構成してもよ
く,クランプにて行なった場合には可搬移動型の絶縁抵
抗測定装置を構成することができる。
In the above description, the grounding wire is connected to the injection transformer OT and current transformer ZCT.
It described by penetrating the L E but not limited to this, the second
As shown in the figure, the electric circuit may be provided so as to penetrate the injection transformer OT and the current transformer ZCT, or may be configured to be clamped. Can be configured.

尚,本発明の実施にあたっては単相2線式電路を用い
て説明したが単相3線式,3相3線式電路等一端接地電路
であれば適用することはでき,更に変流器出力中には商
用周波数とその高調波成分の漏洩電流成分も含まれ
るので測定用信号1,は商用周波数とその高調
波周波数成分と一致しない周波数を選定することが望ま
しい。
Although the present invention has been described using a single-phase two-wire circuit, the present invention can be applied to any one-side grounded circuit such as a single-phase three-wire or three-phase three-wire circuit. Since the leakage current components of the commercial frequency 0 and its harmonic components are also included therein, it is desirable to select the measurement signals 1 and 2 from frequencies that do not coincide with the commercial frequency 0 and its harmonic frequency components.

(発明の効果) 本発明は上述した如く手段を講ずるので測定用信号と
して従来より高い周波数の信号を用いることができ,従
って小型の注入トランスにて絶縁抵抗測定が行なうこと
ができる為可搬型の測定器を構成する上で著効を奏する
ものである。
(Effects of the Invention) Since the present invention employs the above-described means, it is possible to use a signal having a higher frequency than the conventional one as a signal for measurement. Therefore, the insulation resistance can be measured with a small injection transformer. This is very effective in configuring a measuring instrument.

【図面の簡単な説明】 第1図は本発明の実施にあたって用いる装置の構成を示
すブロック図,第2図は本発明の変形実施例を示す図,
第3図は従来の測定方法を示す図である。 T……受電変圧器,ZCT……変流器,OT……注入トラン
ス, AMP……増幅器,FIL,F1,F2,LF……フィルタ,MULT,MULT1
……同期検波器,M1乃至M4……変調器,PS1,PS2……90度
移相器,OSC1,OSC2……発振器, SUB1,SUB2……引算器, LE……接地線,L1,L2……電路 R0……絶縁抵抗,C0……対地静電容量,Z……負荷, DET……整流器。
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a block diagram showing a configuration of an apparatus used in carrying out the present invention, FIG. 2 is a view showing a modified embodiment of the present invention,
FIG. 3 is a diagram showing a conventional measuring method. T ...... receiving transformer, ZCT ...... current transformer, OT ...... injection transformer, AMP ...... amplifier, FIL, F 1, F 2 , LF ...... filter, MULT, MULT 1
… Synchronous detector, M 1 to M 4 … Modulator, PS 1 , PS 2 … 90-degree phase shifter, OSC 1 , OSC 2 …… Oscillator, SUB 1 , SUB 2 …… Subtractor, L E ...... ground line, L 1, L 2 ...... path R 0 ...... insulation resistance, C 0 ...... capacitance to ground, Z ...... load, DET ...... rectifier.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】周波数f1及びf2(f1>f2)なる交流信号を
印加したトランスを介して被測定電路に周波数f1及びf2
の測定用信号を注入する手段と、変圧器の接地線に帰還
する前記測定用信号による漏洩電流を検出するために前
記接地線若しくは電路を貫通せしめた電流検出手段とを
具え、 前記電流検出手段により得た出力中に含まれる周波数f1
の漏洩電流を前記周波数f2の測定信号より90度移相した
電圧で変調することにより第1の変調信号を得、又、 前記電流検出手段により得た出力中に含まれる周波数f2
の漏洩電流を前記周波数f1の測定用信号より90度移相し
た電圧で変調することにより第2の変調信号を得、 前記第1の変調信号と第2の変調信号との差の信号に含
まれる周波数f1−f2の成分を整流し若しくは前記周波数
f1及びf2の交流信号を用いて発生させた周波数f1−f2
電圧で同期検波して得た出力値から電路の絶縁抵抗を測
定することを特徴とした絶縁抵抗測定方法。
1. A frequency f 1 and f 2 frequency (f 1> f 2) to the AC signal to be measured path through the applied transformer comprising f 1 and f 2
Means for injecting the measurement signal of the above, and current detection means for penetrating through the ground line or the electric circuit to detect a leakage current due to the measurement signal returning to the ground line of the transformer, the current detection means Frequency f 1 included in the output obtained by
Obtain a first modulated signal by modulating the leakage current at a voltage which is 90 ° phase-shifted from the measurement signal of the frequency f 2 of, also, the frequency f 2 included in the output obtained by said current detecting means
The second modulation signal is obtained by modulating the leakage current of the above with a voltage shifted by 90 degrees from the measurement signal of the frequency f 1 , and a signal having a difference between the first modulation signal and the second modulation signal is obtained. Rectify the contained frequency f 1 −f 2 component or
A method for measuring insulation resistance of an electric circuit, comprising: measuring an insulation resistance of an electric circuit from an output value obtained by synchronous detection with a voltage of a frequency f 1 −f 2 generated using alternating current signals of f 1 and f 2 .
JP21762088A 1988-08-31 1988-08-31 Insulation resistance measurement method Expired - Lifetime JP2750705B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21762088A JP2750705B2 (en) 1988-08-31 1988-08-31 Insulation resistance measurement method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21762088A JP2750705B2 (en) 1988-08-31 1988-08-31 Insulation resistance measurement method

Publications (2)

Publication Number Publication Date
JPH0264470A JPH0264470A (en) 1990-03-05
JP2750705B2 true JP2750705B2 (en) 1998-05-13

Family

ID=16707148

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21762088A Expired - Lifetime JP2750705B2 (en) 1988-08-31 1988-08-31 Insulation resistance measurement method

Country Status (1)

Country Link
JP (1) JP2750705B2 (en)

Also Published As

Publication number Publication date
JPH0264470A (en) 1990-03-05

Similar Documents

Publication Publication Date Title
US4857830A (en) Method for measuring insulation resistance of electric line
US4851761A (en) Method for measuring insulation resistance of electric line
JP2750705B2 (en) Insulation resistance measurement method
JPH1078461A (en) Measuring method for insulation resistance
JP2896572B2 (en) Simple insulation resistance measurement method
JP2617324B2 (en) Insulation resistance measurement method
JPS60186765A (en) Compensating method of measuring device for insulation resistance
JPH079447B2 (en) Insulation resistance measuring method and device
JPS61155869A (en) Measuring method of phase-compensated insulation resistance
JP2764584B2 (en) Measurement method of insulation resistance of branch circuit
JP2614447B2 (en) Insulation resistance measurement method that compensates for the effect of ground resistance
JP2612703B2 (en) Insulation resistance measurement method with canceling ground resistance
JP2612719B2 (en) Simple insulation resistance measurement method for electrical circuits
JP2617325B2 (en) Insulation resistance measurement method
JP2614449B2 (en) Insulation resistance measurement method compensated for ground resistance
JP2764582B2 (en) Simple insulation resistance measurement method
JPH0640113B2 (en) Simple insulation resistance measuring method
JP2696513B2 (en) Electrical capacitance measurement method for ground
JP2654549B2 (en) Simple insulation resistance measurement method
JP2750716B2 (en) Insulation resistance measurement method for low voltage wiring etc.
JPS58127172A (en) Insulation resistance measuring apparatus for electric line with suppressed stray capacity
JP2665912B2 (en) Insulation resistance measurement method that compensates for the effect of ground resistance
JP2681187B2 (en) Insulation fault location search method
JP2750707B2 (en) Insulation resistance measurement method compensated for ground resistance
JPH06284049A (en) Data transmission equipment using electric circuit