JPH06284049A - Data transmission equipment using electric circuit - Google Patents

Data transmission equipment using electric circuit

Info

Publication number
JPH06284049A
JPH06284049A JP5092340A JP9234093A JPH06284049A JP H06284049 A JPH06284049 A JP H06284049A JP 5092340 A JP5092340 A JP 5092340A JP 9234093 A JP9234093 A JP 9234093A JP H06284049 A JPH06284049 A JP H06284049A
Authority
JP
Japan
Prior art keywords
frequency
signal
ground
circuit
data
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5092340A
Other languages
Japanese (ja)
Inventor
Tatsuji Matsuno
辰治 松野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Communication Equipment Co Ltd
Original Assignee
Toyo Communication Equipment Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Communication Equipment Co Ltd filed Critical Toyo Communication Equipment Co Ltd
Priority to JP5092340A priority Critical patent/JPH06284049A/en
Publication of JPH06284049A publication Critical patent/JPH06284049A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation

Landscapes

  • Remote Monitoring And Control Of Power-Distribution Networks (AREA)
  • Cable Transmission Systems, Equalization Of Radio And Reduction Of Echo (AREA)

Abstract

PURPOSE:To evade a collision problem in carrier frequency and to increase the number of set data transmission circuits by detecting a measuring signal between a ground side electric circuit and ground and modulating a carrier signal by a time slot synchronized with voltage impressed between the electric circuit and the ground so as to use the carrier signal time-dividedly. CONSTITUTION:A measuring low frequency signal between the ground side electric circuit connected to an electric circuit 2 through the transformer of each transmission circuit and the ground is detected by a detection circuit 52. A carrier with frequency F1 or the like is modulated and transmitted by a data signal 58 in the former half part of one period in the detected signal. Similarly a carrier with frequency F1 or the like is modulated and transmitted in the latter half part of the detected signal. The number of set data transmission lines can be increased while evading the collision of carrier frequency by using a carrier signal time-dividedly by a time slot synchronized with the measuring low frequency signal. In addition, demodulation is similarly executed.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は電路を利用して、電路上
の複数の箇所からデータ伝送を行う装置の構成に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a structure of an apparatus for transmitting data from a plurality of points on an electric line by using an electric line.

【0002】[0002]

【従来技術】従来提案されている電路を用いたデータ伝
送装置の一例を図4に示す。受電トランスTにより高圧
電気を低圧電気に変成し、低圧側電路1、2、3の内、
電路2を接地線4にて第二種接地工事の接地点E2に接
地すると共に、電路1、2間ならびに電路2、3間には
負荷機器5、6等が接続されている。電路上のデータ送
信回路7、8、9にて用いる搬送周波数は夫々異なると
共に、いずれの搬送周波数も商用周波数f0の高調波周
波数と一致しないように設定する。データ送信回路7〜
9では夫々の搬送周波数F1、F2、F3を送信データ
10、11、12で変調し、送信回路出力電流をコンデ
ンサCを介して接地側電路2と第三種接地工事の接地点
E3間に注入する。このように電路に注入した各送信回
路出力電流は接地線4に還流し、この電流を接地線4に
結合せしめた変流器19で検出した後、中心周波数が夫
々F1、F2、F3なるフィルタ13、14、15にて
分離抽出し、各フィルタの出力端に設けた復調回路1
6、17、18によって受信データを復調するものであ
る。しかしながら、従来の装置では各データ送信回路の
変調器に割り当てる搬送周波数は商用周波数の高調波成
分と一致しない周波数、即ち、商用電源の偶数調波数±
(1/3*商用周波数)を搬送周波数として一般に選定
するため、送信回路を同一電路上に多数設置する必要が
あるとき、搬送周波数の上限を例えば10kHzとすれ
ば、実用上選択できる搬送周波数は170〜190波程
度となってしまい、これ以上の送信回路の設置は困難で
あった。例えば、病院内に設置された電路を利用し、入
院患者にIDを発信する送信機を持たせると共に、電路
に設置されたデータ送信回路に各入院患者が発するID
を受信する回路を設け、各人のIDをデータ送信回路を
介して送信することにより、各人が病院内のどこにいる
のかを確認するシステムに従来のデータ伝送装置を用い
た場合、データ送信回路の設置数が選択可能な搬送周波
数によって制限されるため、大病院のように多数のデー
タ送信回路設置点、即ち、入院患者のID受信地点が多
数ある場合には、従来のシステムを適用することが困難
であった。また、いくつかのデータ送信回路の搬送周波
数を同一とした場合、所謂「衝突問題」が発生し、これ
を避けるには複雑な処理が必要であり、装置が高価とな
ると云う問題点があった。
2. Description of the Related Art FIG. 4 shows an example of a data transmission device using a conventionally proposed electric circuit. High-voltage electricity is transformed into low-voltage electricity by the power receiving transformer T.
The electric line 2 is grounded to the ground point E2 of the second type grounding work by the ground wire 4, and load devices 5, 6 and the like are connected between the electric lines 1 and 2 and between the electric lines 2 and 3. The carrier frequencies used in the data transmission circuits 7, 8 and 9 on the electric path are different from each other, and none of the carrier frequencies is set to match the harmonic frequency of the commercial frequency f0. Data transmission circuit 7-
In 9, the respective carrier frequencies F1, F2, F3 are modulated by the transmission data 10, 11, 12, and the transmission circuit output current is injected via the capacitor C between the ground side electric circuit 2 and the ground point E3 of the third type grounding work. To do. The output currents of the respective transmission circuits injected into the electric circuit in this way flow back to the ground line 4, and after the currents are detected by the current transformer 19 coupled to the ground line 4, filters having center frequencies of F1, F2, and F3, respectively. Demodulation circuit 1 separated and extracted by 13, 14 and 15 and provided at the output end of each filter
6, 17, and 18 demodulate the received data. However, in the conventional device, the carrier frequency assigned to the modulator of each data transmission circuit is a frequency that does not match the harmonic component of the commercial frequency, that is, the even number of harmonics of the commercial power source ±
Since (1/3 * commercial frequency) is generally selected as the carrier frequency, when a large number of transmission circuits need to be installed on the same electric circuit, if the upper limit of the carrier frequency is set to 10 kHz, for example, the carrier frequency that can be practically selected is It was about 170 to 190 waves, and it was difficult to install a transmitting circuit beyond this. For example, an in-patient installed in a hospital is provided with a transmitter for transmitting IDs to inpatients, and an ID sent by each in-patient to a data transmission circuit installed in the in-circuit.
When a conventional data transmission device is used in a system for confirming where each person is in the hospital by providing a circuit for receiving the information and transmitting each person's ID through the data transmission circuit, the data transmission circuit Since the number of installations is limited by the selectable carrier frequency, the conventional system should be applied when there are many data transmission circuit installation points, that is, inpatient ID reception points, as in large hospitals. Was difficult. Further, when the carrier frequencies of several data transmission circuits are made the same, a so-called "collision problem" occurs, and in order to avoid this, complicated processing is required, and there is a problem that the device becomes expensive. .

【発明の目的】本発明は上述した従来の問題点を解決す
るためになされたものであって、従来より用いられてい
るデータ伝送装置と比較して、搬送周波数の衝突問題を
生じることなくデータ伝送回路の設置数を増加させるこ
とができるデータ伝送装置を提供することを目的とす
る。
SUMMARY OF THE INVENTION The present invention has been made in order to solve the above-mentioned conventional problems, and compared with a conventional data transmission apparatus, data transmission can be performed without causing a carrier frequency collision problem. An object of the present invention is to provide a data transmission device capable of increasing the number of transmission circuits installed.

【発明の概要】この目的を達成するために、本発明に係
るデータ伝送装置は、変圧器の接地線を介して電路に商
用周波数f0と異なる周波数f1の測定用信号電圧を電
磁誘導或いは直列結合等によって印加し、前記接地線に
還流する周波数f1の漏洩電流成分中、該測定用信号電
圧と同相の成分を検出して電路と大地間との絶縁抵抗を
測定する装置が設置されている電路に用いるデータ伝送
装置において、電路の延長上で該電路の接地側電路と大
地との間に存在する前記測定用信号電圧を検出する回路
と、前記測定用信号電圧に同期した所定のタイムスロッ
トで周波数Fnの搬送波信号を送信データで変調すると
共に、変調した搬送信号電流を前記接地側電路と大地間
に注入する送信回路と、接地線に還流する周波数Fnの
搬送信号電流を検出する回路と、前記搬送信号電流を復
調して得た信号から前記測定信号電圧の所定のタイムス
ロットの信号を分離すると共に、受信データを検出する
受信回路とを備え、周波数Fnの搬送波信号を複数のデ
ータ送信回路が時分割して使用し、データを伝送したこ
とを特徴とする。
SUMMARY OF THE INVENTION In order to achieve this object, a data transmission apparatus according to the present invention includes an electromagnetic induction or series coupling of a measuring signal voltage having a frequency f1 different from a commercial frequency f0 to an electric line via a ground wire of a transformer. An electric circuit provided with a device for measuring the insulation resistance between the electric circuit and the earth by detecting a component in phase with the measuring signal voltage in the leakage current component of the frequency f1 which is applied by the In the data transmission device used for, in the extension of the electric path, a circuit for detecting the measuring signal voltage existing between the ground side electric path of the electric path and the ground, and a predetermined time slot synchronized with the measuring signal voltage. A carrier signal of frequency Fn is modulated with transmission data, and a transmitter circuit for injecting the modulated carrier signal current between the ground side electric circuit and the ground and a carrier signal current of frequency Fn flowing back to the ground line are detected. And a receiving circuit for separating the signal of the predetermined time slot of the measurement signal voltage from the signal obtained by demodulating the carrier signal current and detecting the received data, and a plurality of carrier signals of frequency Fn are provided. The data transmission circuit is used in a time division manner to transmit data.

【実施例】以下、図面に示した実施例に基づいて本発明
を詳細に説明する。図1は本発明に係るデータ伝送装置
の一実施例を示す図であって、図4と同一の部位には同
一の記号を付し、その説明を省略する。受電トランスT
の低圧側電路1、2、3のうち、電路2は接地線4を介
して第二種接地工事の接地点E2に接地され、商用周波
数f0とは異なる周波数f1の信号を発生する低周波信
号発生器35の出力が電力増幅器36及び注入トランス
37を介して前記接地線4に測定用低周波電圧として印
加されている。電路1、2、3の絶縁抵抗R1、R2、
R3及び対地静電容量C1、C2、C3を介して接地線
4に還流する電流を零相変流器30により検出し、その
出力を増幅器31にて増幅した後、周波数f1の成分を
検出するフィルタ32に印加し、該フィルタ32の出力
を同期検波器33の一方の入力端に供給する。また、同
期検波器33の他の入力端には低周波信号発生器35の
出力を基準位相信号として供給する。前記増幅器31の
出力は、データ受信回路25のバンドパスフィルタ3
9、40にも加えられ、夫々中心周波数F1、F2の周
波数成分を分離検出する。該フィルタ39、40の出力
は、夫々復調器41、42の入力端に印加され、該復調
器41、42出力はデータ分離回路43、44の一方の
入力端に供給される。また、データ分離回路43、44
の他の入力端には低周波信号発生器35の出力が波形整
形回路38を介して供給されている。更に、電路の延長
上には第1、第2、第3データ送信回路48、49、5
0が接地側電路2と第3種接地工事の接地線E3間に例
えばコンデンサを介して挿入されている。図2は各デー
タ送信回路を詳細に示したものであり、トランス53の
一次側の一方の入力端はコンデンサCを介して接地側電
路2と接続し、また、トランス53の一次側の他の入力
端は、注入電流制限用の抵抗54を介して第三種接地工
事の接地点E3に接続している。高入力インピーダンス
増幅器51の一方の入力端はトランス53の一方の入力
端と接続し、また該高入力インピーダンス増幅器51の
他方の入力端は第三種接地工事の接地点E3と接続する
ことにより電路と接地点E3間に存在する信号電圧を高
入力インピーダンス増幅器51によって検出し、その出
力端には周波数f1の測定用低周波信号を検出する検出
回路52が接続している。したがって、検出回路52の
出力端には周波数f1の測定用低周波信号出力57が得
られ、送信データ58を入力するための制御信号として
用いられる。送信データ58は周波数Fn(n=1また
は2)の搬送信号を変調する変調器56に入力し、該変
調器56出力は増幅器55で増幅した後、トランス53
の二次側に供給される。上述のごとく構成したデータ伝
送装置の動作を、図3に示した波形図を用いながら以下
詳細に説明する。尚、図1においてAは零相変流器3
0、増幅器31、フィルタ32、同期検波器33、低周
波信号発生器35、電力増幅器36、注入トランス37
からなる電路の絶縁抵抗を測定するための絶縁抵抗測定
装置であり、本発明にかかるデータ伝送装置では、これ
ら絶縁抵抗測定装置Aの構成部品を一部を共用したもの
を例に挙げて説明している。絶縁抵抗測定装置は電路に
周波数f1の測定用低周波信号(例えばf=12.5H
z等)を印加し、この信号により対地インピーダンスを
介して還流する電流を検出し、印加電圧と同相の成分を
同期検波器33で検出するものであって、このような絶
縁抵抗測定装置については例えば特公平2ー43409
等に開示されているので、詳細な説明は省略する。とこ
ろで、電路に印加された周波数f1の低周波信号は、大
地と全ての電路間に同一の振幅で、同一の位相となるよ
うな低周波信号が選ばれている。したがって、電路上の
任意の点と大地間との電圧を高入力インピーダンス増幅
器51で検出し、周波数f1の成分を低周波信号検出回
路52により抽出すれば、図3(a)に示した如き検出
波形を得ることができる。更に、検出波形を整形すれ
ば、図3(b)に示したような出力波形を得、また、該
出力波形を論理反転すれば図3(c)に示したような波
形が得られる。本発明に係るデータ伝送装置の実施例で
は同一周波数Fnの搬送波信号を2つの送信回路で共用
する場合を示す。即ち、図3(a)に示した周波数f1
の信号の1周期の位相を2分割し、t1<t<t2にお
ける半周期にて第1の送信回路48が搬送周波数F1を
用いてデータ伝送を行い、また、t2<t<t3におけ
る半周期にて第2の送信回路49が同じく搬送周波数F
1を用いてデータ伝送を行うものとする。したがって、
第1送信回路48ではタイミング制御信号として図3
(b)に示した波形の信号を用いて該送信回路48に入
力する送信データ58を制御し、第2送信回路49では
図3(c)に示した波形の信号を用いて該送信回路49
に入力する送信データを制御するように予め設定してお
く。各送信回路設置点において、接地側電路2と大地間
に注入される搬送信号電流は送信データによって変調が
施されており、その変調方式としては、例えば振幅変調
を用いれば良く、振幅変調を用いた場合の第1送信回路
48及び第2送信回路49出力は夫々図3(d)及び
(e)に示したような波形となる。一方、第3の送信回
路50では他の搬送周波数F2を用い、図3(b)に示
した信号をタイミング制御に用いれば、送信回路50が
接地側電路と大地間に注入する電流の波形は図3(f)
に示した如きものとなる。接地線4に還流するこれらの
電流を接地線4に結合せしめた零相変流器30にて検出
し、フィルタ39、40を介して分離抽出すれば、周波
数F1成分を検出するフィルタ39の出力波形は図3
(g)に示すように、また周波数F2成分を検出するフ
ィルタ40の出力波形は図3(h)のごとくなり、更
に、復調器41及び42の出力端には、夫々図3(i)
及び図3(j)に示した出力波形が得られ、各復調器4
1及び42出力はデータ分離回路43及び44に供給さ
れる。一方、低周波信号発生器35の出力は波形整形回
路38を介して前記データ分離回路43及び44に供給
されており、したがって、データ分離回路43、44に
は図3(b)に相当する信号が供給され、データ分離の
ためのタイムスロットとして用いられている。前記デー
タ分離回路43の出力端子45には、搬送波周波数がF
1成分であって、且つ波形整形回路38より供給される
信号の前半周期にて受信したデータが出力される。また
データ分離回路43の出力端子46には、同じく搬送周
波数がF1成分であって、且つ波形整形回路38より供
給される信号の後半周期にて受信したデータが出力され
る。即ち、前記出力端子45からは第1の送信回路48
より送られたデータが図3(k)に示すように復調した
後出力され、また、前記出力端子46からは図3(l)
に示すように第2の送信回路49より送られたデータが
出力される。同様にデータ分離回路44の出力端47か
らは、図3(m)に示すように第3の送信回路50より
送信されたデータが出力される。尚、データの送信開始
及び終了の際には所望のスタートビット及びストップビ
ットを挿入するように構成すればよい。上述したよう
に、電路に商用周波数とは異なる周波数の低周波信号を
印加し、該低周波信号に基づいて送受信側のタイムスロ
ットを割当て、データを送受信することにより、同一搬
送波を複数の送信回路で利用することが可能となり、送
信回路の設置数を著しく増加させることができる。尚、
上述のデータ送信回路ではデータ送信速度を測定用低周
波信号の周波数f1と一致する場合を用いて説明した
が、測定用低周波信号周波数f1に同期してタイムスロ
ット数を増やせば更に高速なデータ伝送も可能なことは
明らかである。但し、当然のことながら、各送信回路の
送出する信号電流の周波数帯域は増加することになり、
電路雑音、特に接地線に還流する電流雑音で使用できる
データ速度には上限がある。更に上記実施例では測定用
低周波信号の位相を2分割するものについて説明した
が、これに限定するものではなく、例えば、位相を4分
割してデータの伝送を行うようにデータ伝送装置を構成
すれば、4個所のデータ送信回路が同一の搬送周波数F
1を共用することができることになる。また、上記実施
例では電路の絶縁抵抗測定装置の一部を共用したが、こ
の装置がない場合には、単に周波数f1の低周波信号を
接地線に印加し、接地線に還流する搬送信号電流を零相
変流器等で検出するようにすればよく、更に送信回路出
力電流を接地側電路と大地間に注入しているが、非接地
側電路と大地間に注入しても同様の結果を得ることが可
能である。但し、この場合、商用周波の漏洩電流が増加
するため漏電遮断器等が誤動作することもありうるので
注意が必要である。また、電路に低周波信号を印加する
代わりに商用周波数をタイムスロット作成用の基準信号
として用いることも可能である。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described in detail below with reference to the embodiments shown in the drawings. FIG. 1 is a diagram showing an embodiment of a data transmission apparatus according to the present invention. The same parts as those in FIG. 4 are designated by the same reference numerals, and the description thereof will be omitted. Power receiving transformer T
Of the low-voltage side electric lines 1, 2, and 3 of the electric line 2, the electric line 2 is grounded to the ground point E2 of the second-class grounding work via the ground wire 4, and a low-frequency signal that generates a signal of a frequency f1 different from the commercial frequency f0. The output of the generator 35 is applied as a low frequency voltage for measurement to the ground line 4 via a power amplifier 36 and an injection transformer 37. Insulation resistances R1, R2 of electric circuits 1, 2, 3
The zero-phase current transformer 30 detects the current flowing back to the ground line 4 via R3 and the electrostatic capacitances C1, C2, and C3, and after amplifying its output by the amplifier 31, the component of the frequency f1 is detected. It is applied to the filter 32, and the output of the filter 32 is supplied to one input end of the synchronous detector 33. Further, the output of the low frequency signal generator 35 is supplied to the other input terminal of the synchronous detector 33 as a reference phase signal. The output of the amplifier 31 is the bandpass filter 3 of the data receiving circuit 25.
The frequency components of the center frequencies F1 and F2 are separately detected. The outputs of the filters 39 and 40 are applied to the input ends of demodulators 41 and 42, respectively, and the outputs of the demodulators 41 and 42 are supplied to one input ends of the data separation circuits 43 and 44. In addition, the data separation circuits 43 and 44
The output of the low-frequency signal generator 35 is supplied to the other input terminal of the through a waveform shaping circuit 38. Further, the first, second and third data transmission circuits 48, 49, 5 are provided on the extension of the electric path.
0 is inserted between the grounding side electric circuit 2 and the grounding wire E3 for the third type grounding work via, for example, a capacitor. FIG. 2 shows each data transmission circuit in detail. One input end of the primary side of the transformer 53 is connected to the ground side electric circuit 2 via the capacitor C, and the other input side of the primary side of the transformer 53 is connected. The input end is connected to the ground point E3 of the third type grounding work via the resistor 54 for limiting the injection current. One input end of the high input impedance amplifier 51 is connected to one input end of the transformer 53, and the other input end of the high input impedance amplifier 51 is connected to the ground point E3 of the third-class grounding work to connect the electric circuit. The high input impedance amplifier 51 detects the signal voltage existing between the ground point E3 and the ground point E3, and the output terminal thereof is connected to the detection circuit 52 for detecting the low frequency signal for measurement of the frequency f1. Therefore, the measuring low-frequency signal output 57 of the frequency f1 is obtained at the output end of the detection circuit 52, and is used as a control signal for inputting the transmission data 58. The transmission data 58 is input to a modulator 56 that modulates a carrier signal having a frequency Fn (n = 1 or 2), the output of the modulator 56 is amplified by an amplifier 55, and then the transformer 53.
Is supplied to the secondary side of. The operation of the data transmission apparatus configured as described above will be described in detail below with reference to the waveform chart shown in FIG. In FIG. 1, A is a zero-phase current transformer 3
0, amplifier 31, filter 32, synchronous detector 33, low frequency signal generator 35, power amplifier 36, injection transformer 37
An insulation resistance measuring device for measuring the insulation resistance of an electric circuit consisting of the following. In the data transmission device according to the present invention, an explanation will be given taking as an example the one in which some of the components of the insulation resistance measuring device A are shared. ing. The insulation resistance measuring device uses a low frequency signal for measurement (for example, f = 12.5H) having a frequency f1 in the electric circuit.
z) is applied, the current flowing back through the ground impedance is detected by this signal, and the component in phase with the applied voltage is detected by the synchronous detector 33. Regarding such an insulation resistance measuring device, For example, Japanese Patent Publication No. 2-43409
Etc., and detailed description thereof will be omitted. By the way, as the low frequency signal of the frequency f1 applied to the electric line, a low frequency signal having the same amplitude and the same phase between the ground and all the electric lines is selected. Therefore, if the voltage between an arbitrary point on the electric path and the ground is detected by the high input impedance amplifier 51 and the component of the frequency f1 is extracted by the low frequency signal detection circuit 52, the detection as shown in FIG. Waveforms can be obtained. Further, if the detected waveform is shaped, the output waveform as shown in FIG. 3B is obtained, and if the output waveform is logically inverted, the waveform as shown in FIG. 3C is obtained. In the embodiment of the data transmission apparatus according to the present invention, the case where the carrier signal of the same frequency Fn is shared by two transmission circuits is shown. That is, the frequency f1 shown in FIG.
The phase of one cycle of the signal is divided into two, the first transmission circuit 48 performs data transmission using the carrier frequency F1 in a half cycle at t1 <t <t2, and a half cycle at t2 <t <t3. At the second transmission circuit 49, the carrier frequency F
1 is used to perform data transmission. Therefore,
In the first transmission circuit 48, the timing control signal shown in FIG.
The transmission data 58 input to the transmission circuit 48 is controlled using the waveform signal shown in FIG. 3B, and the second transmission circuit 49 uses the waveform signal shown in FIG.
It is set in advance to control the transmission data to be input to. At each transmission circuit installation point, the carrier signal current injected between the ground-side electric circuit 2 and the ground is modulated by the transmission data. As the modulation method, for example, amplitude modulation may be used. In this case, the outputs of the first transmission circuit 48 and the second transmission circuit 49 have the waveforms shown in FIGS. 3D and 3E, respectively. On the other hand, if another carrier frequency F2 is used in the third transmission circuit 50 and the signal shown in FIG. 3B is used for timing control, the waveform of the current that the transmission circuit 50 injects between the ground side electric circuit and the ground is Figure 3 (f)
As shown in. These currents flowing back to the ground line 4 are detected by the zero-phase current transformer 30 coupled to the ground line 4, and separated and extracted via the filters 39 and 40, the output of the filter 39 for detecting the frequency F1 component. Waveform is Figure 3
As shown in (g), the output waveform of the filter 40 for detecting the frequency F2 component is as shown in FIG. 3 (h), and the output terminals of the demodulators 41 and 42 are shown in FIG. 3 (i), respectively.
And the output waveform shown in FIG. 3 (j) is obtained, and each demodulator 4
The 1 and 42 outputs are supplied to the data separation circuits 43 and 44. On the other hand, the output of the low-frequency signal generator 35 is supplied to the data separation circuits 43 and 44 via the waveform shaping circuit 38. Therefore, the data separation circuits 43 and 44 have signals corresponding to those shown in FIG. Are used as time slots for data separation. At the output terminal 45 of the data separation circuit 43, the carrier frequency is F
The data which is one component and is received in the first half cycle of the signal supplied from the waveform shaping circuit 38 is output. Further, to the output terminal 46 of the data separation circuit 43, similarly, the carrier frequency is the F1 component, and the data received in the latter half cycle of the signal supplied from the waveform shaping circuit 38 is output. That is, from the output terminal 45, the first transmission circuit 48
The data sent from the output terminal 46 is output after being demodulated as shown in FIG. 3 (k).
The data sent from the second transmission circuit 49 is output as shown in FIG. Similarly, the output terminal 47 of the data separation circuit 44 outputs the data transmitted from the third transmission circuit 50 as shown in FIG. It should be noted that a desired start bit and stop bit may be inserted at the start and end of data transmission. As described above, a low-frequency signal having a frequency different from the commercial frequency is applied to the electric circuit, a time slot on the transmission / reception side is assigned based on the low-frequency signal, and data is transmitted / received to transmit the same carrier wave to a plurality of transmission circuits. Therefore, the number of transmission circuits installed can be significantly increased. still,
In the above-mentioned data transmission circuit, the case where the data transmission rate matches the frequency f1 of the measuring low frequency signal has been described. However, if the number of time slots is increased in synchronization with the measuring low frequency signal frequency f1, higher speed data can be obtained. Obviously, transmission is also possible. However, as a matter of course, the frequency band of the signal current sent by each transmission circuit increases,
There is an upper limit to the data rate that can be used with line noise, especially current noise flowing back to the ground line. Further, in the above embodiment, the case where the phase of the low frequency signal for measurement is divided into two has been described, but the present invention is not limited to this, and the data transmission device is configured to divide the phase into four for data transmission. If the four data transmission circuits have the same carrier frequency F,
1 can be shared. Further, although a part of the insulation resistance measuring device of the electric line is shared in the above embodiment, if this device is not provided, a low-frequency signal of frequency f1 is simply applied to the ground line and the carrier signal current flowing back to the ground line is used. Can be detected by a zero-phase current transformer, and the output current of the transmitter circuit is injected between the ground-side electric circuit and ground. It is possible to obtain However, in this case, it is necessary to note that the leakage current of the commercial frequency increases and the leakage breaker or the like may malfunction. It is also possible to use a commercial frequency as a reference signal for time slot creation, instead of applying a low frequency signal to the electric circuit.

【発明の効果】同一の搬送波を複数の送信回路が時分割
で共用できるものであり、電路上の近くに多数のセンサ
等が設置され、これらのデータを収集する等において、
経済的なデータ伝送を提供可能とするものである。
The same carrier wave can be shared by a plurality of transmission circuits in a time-division manner, and a large number of sensors and the like are installed near the electric line to collect these data.
It is possible to provide economical data transmission.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係るデータ伝送装置の一実施例を示す
図。
FIG. 1 is a diagram showing an embodiment of a data transmission device according to the present invention.

【図2】本発明に係るデータ伝送装置のデータ送信回路
を示す図。
FIG. 2 is a diagram showing a data transmission circuit of the data transmission device according to the present invention.

【図3】本発明に係るデータ伝送装置の各部における波
形を示す図。
FIG. 3 is a diagram showing waveforms at various parts of the data transmission device according to the present invention.

【図4】従来のデータ伝送装置の構成を示す図。FIG. 4 is a diagram showing a configuration of a conventional data transmission device.

【符号の説明】[Explanation of symbols]

1、2、3・・・電路、 4・・・接地線、25・・
・データ受信回路、48、49、50・・・データ送信
回路 A・・・絶縁抵抗測定装置
1, 2, 3 ... Electric circuit, 4 ... Ground wire, 25 ...
・ Data receiving circuit, 48, 49, 50 ... Data transmitting circuit A ... Insulation resistance measuring device

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】変圧器の接地線を介して電路に商用周波数
f0と異なる周波数f1の測定用信号電圧を電磁誘導或
いは直列結合等によって印加し、前記接地線に還流する
周波数f1の漏洩電流成分中、該測定用信号電圧と同相
の成分を検出して電路と大地間との絶縁抵抗を測定する
装置が設置されている電路に用いるデータ伝送装置にお
いて、 電路の延長上で該電路の接地側電路と大地との間に存在
する前記測定用信号電圧を検出し、前記測定用信号電圧
に同期した所定のタイムスロットで周波数Fnの搬送波
信号を送信データで変調すると共に、変調した搬送信号
電流を前記接地側電路と大地間に注入するデータ送信回
路と、 接地線に還流する周波数Fnの搬送信号電流を検出し
て、前記搬送信号電流を復調して得た信号から前記測定
信号電圧の所定のタイムスロットの信号を分離すると共
に、受信データを検出するデータ受信回路とを備え、周
波数Fnの搬送波信号を複数のデータ送信回路が時分割
して使用し、データを伝送したことを特徴とする電路を
用いたデータ伝送装置。
1. A leakage current component of frequency f1 which is returned to the ground line by applying a measurement signal voltage of a frequency f1 different from the commercial frequency f0 to the electric line through a ground line of the transformer by electromagnetic induction or series coupling. In the data transmission device used for the electric line where a device for measuring the insulation resistance between the electric line and the ground by detecting the component in phase with the signal voltage for measurement is installed, on the extension side of the electric line, the ground side of the electric line The measuring signal voltage existing between the electric path and the ground is detected, the carrier signal of the frequency Fn is modulated with the transmission data at a predetermined time slot synchronized with the measuring signal voltage, and the modulated carrier signal current is detected. A data transmission circuit for injecting between the ground-side electric circuit and the ground, and a carrier signal current of a frequency Fn that flows back to the ground line is detected, and the measured signal is obtained from a signal obtained by demodulating the carrier signal current. And a data receiving circuit for detecting received data while separating a signal of a predetermined time slot of pressure, and a plurality of data transmitting circuits time-divisionally use a carrier signal of frequency Fn to transmit data. A data transmission device using a characteristic electric circuit.
【請求項2】前記接地線に商用周波数f0と異なる周波
数f1の前記測定用信号電圧を電磁誘導或いは直列結合
等によって印加する回路を具備することを特徴とする特
許請求の範囲第一項記載の電路を用いたデータ伝送装
置。
2. The circuit according to claim 1, further comprising a circuit for applying the measuring signal voltage having a frequency f1 different from the commercial frequency f0 to the ground line by electromagnetic induction or series coupling. Data transmission device using electric circuit.
【請求項3】電路に商用周波数とは異なる周波数の信号
電圧を印加する低周波信号印加回路と、 電路の延長上で該電路の接地側電路と大地との間に存在
する前記低周波信号電圧を検出し、該低周波信号電圧に
同期した所定のタイムスロットで周波数Fnの搬送波信
号を送信データで変調すると共に、変調した搬送信号電
流を前記接地側電路と大地間に注入するデータ送信回路
と、 接地線に還流する周波数Fnの搬送信号電流を検出し
て、前記搬送信号電流を復調して得た信号から前記低周
波信号電圧の所定のタイムスロットの信号を分離すると
共に、受信データを検出するデータ受信回路とを備え、
周波数Fnの搬送波信号を複数のデータ送信回路が時分
割して使用し、データを伝送したことを特徴とする電路
を用いたデータ伝送装置。
3. A low frequency signal applying circuit for applying a signal voltage of a frequency different from a commercial frequency to an electric line, and the low frequency signal voltage existing between the ground side electric line of the electric line and the ground on the extension of the electric line. And a carrier wave signal having a frequency Fn is modulated with transmission data in a predetermined time slot synchronized with the low frequency signal voltage, and a modulated carrier signal current is injected between the ground side electric circuit and the ground. Detecting a carrier signal current having a frequency Fn that flows back to the ground line, separating a signal of a predetermined time slot of the low frequency signal voltage from a signal obtained by demodulating the carrier signal current, and detecting received data And a data receiving circuit for
A data transmission device using an electric circuit, wherein a plurality of data transmission circuits time-divisionally uses a carrier signal of frequency Fn to transmit data.
JP5092340A 1993-03-26 1993-03-26 Data transmission equipment using electric circuit Pending JPH06284049A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5092340A JPH06284049A (en) 1993-03-26 1993-03-26 Data transmission equipment using electric circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5092340A JPH06284049A (en) 1993-03-26 1993-03-26 Data transmission equipment using electric circuit

Publications (1)

Publication Number Publication Date
JPH06284049A true JPH06284049A (en) 1994-10-07

Family

ID=14051671

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5092340A Pending JPH06284049A (en) 1993-03-26 1993-03-26 Data transmission equipment using electric circuit

Country Status (1)

Country Link
JP (1) JPH06284049A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012054683A (en) * 2010-08-31 2012-03-15 Tohoku Denki Hoan Kyokai Power line carrier transmission/reception apparatus
JP2015201919A (en) * 2014-04-04 2015-11-12 三菱電機ビルテクノサービス株式会社 power management system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012054683A (en) * 2010-08-31 2012-03-15 Tohoku Denki Hoan Kyokai Power line carrier transmission/reception apparatus
JP2015201919A (en) * 2014-04-04 2015-11-12 三菱電機ビルテクノサービス株式会社 power management system

Similar Documents

Publication Publication Date Title
US4988972A (en) Method for transmitting and receiving signals over transmission power lines
US4504705A (en) Receiving arrangements for audio frequency signals
EP0099265A1 (en) Demodulator
US6411073B1 (en) Method and device for locating a metal line
US5210497A (en) Cable fault tracing systems
CN217116077U (en) Signal demodulation circuit and signal receiving module
JPH06284049A (en) Data transmission equipment using electric circuit
US4510399A (en) Demodulator circuit for parallel AC power systems
JP3183450B2 (en) Wiring current route search method
US3761622A (en) Amplitude modulated telemetering system
CN220234658U (en) Circuit topology and power supply device for sampling and transmitting analog signals
JP2750705B2 (en) Insulation resistance measurement method
JPS5972238A (en) Signal control circuit
US20240036092A1 (en) Measuring the impedance in grounding systems
JP2004328614A (en) Method of correcting unbalanced signal
JPH09284255A (en) Signal transmission system for signal transmission via high voltage distribution line
JPH07119785B2 (en) Insulation monitoring device
US5952879A (en) Device for the simultaneous demodulation of a multifrequency signal, particularly for an eddy current measurement
JPS6258230B2 (en)
US5459417A (en) Apparatus for detecting DC content of an AC waveform
JP2767585B2 (en) Distribution line carrier signal transmission device
JPH05218912A (en) Transmission/reception method for carrier signal applied to electric line
JP2896572B2 (en) Simple insulation resistance measurement method
JP3194635B2 (en) Circuit insulation or ground resistance monitoring device and signal application method
JPH06268557A (en) Transmitter-receiver for insulation monitor data