JP2012054683A - Power line carrier transmission/reception apparatus - Google Patents

Power line carrier transmission/reception apparatus Download PDF

Info

Publication number
JP2012054683A
JP2012054683A JP2010194158A JP2010194158A JP2012054683A JP 2012054683 A JP2012054683 A JP 2012054683A JP 2010194158 A JP2010194158 A JP 2010194158A JP 2010194158 A JP2010194158 A JP 2010194158A JP 2012054683 A JP2012054683 A JP 2012054683A
Authority
JP
Japan
Prior art keywords
carrier
transformer
circuit
current
transmission
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010194158A
Other languages
Japanese (ja)
Other versions
JP5657312B2 (en
Inventor
Hideki Osawa
秀樹 大澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TOHOKU DENKI HOAN KYOKAI
Original Assignee
TOHOKU DENKI HOAN KYOKAI
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TOHOKU DENKI HOAN KYOKAI filed Critical TOHOKU DENKI HOAN KYOKAI
Priority to JP2010194158A priority Critical patent/JP5657312B2/en
Publication of JP2012054683A publication Critical patent/JP2012054683A/en
Application granted granted Critical
Publication of JP5657312B2 publication Critical patent/JP5657312B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Cable Transmission Systems, Equalization Of Radio And Reduction Of Echo (AREA)

Abstract

PROBLEM TO BE SOLVED: To implement favorable signal transmission/reception by detecting only a predetermined carrier frequency component despite some noise in transmission information for signal reception at a carrier reception section.SOLUTION: A low voltage cable run 1 used for signal transmission is connected to a demarcation pole 5 by an overhead or any other type of electrical line from an electrical room 6. In the electrical room 6, a transformer 7 causes a voltage drop to a predetermined level before supplying power to each load. A carrier transmission section 12 of a demand detector 11 installed on the demarcation pole transmits information by means of the low voltage cable run 1.

Description

本発明は、電力線を用いた情報伝達を行うに際して、従来の電力線通信方式(以下「PLC方式」という)を用いた場合の雑音の問題点を解決し、搬送波の伝送障害を減少させ得る装置を得ることを目的とする。   The present invention provides an apparatus capable of solving the problem of noise in the case of using a conventional power line communication system (hereinafter referred to as “PLC system”) when transmitting information using a power line, and reducing a transmission failure of a carrier wave. The purpose is to obtain.

電力線を介した通信は、低圧配電線などの電力線を伝送路として通信を行うもので、既設の電力線を利用出来るため、専用通信線が不要という利点を持っている。ところが、前記PLC方式の通信装置を用いたときには、電路ノイズの増加や、負荷の増大などに伴って、搬送波の伝送が不可能になり、装置が使用不能となる等の事例が増大している。   Communication via a power line performs communication using a power line such as a low-voltage distribution line as a transmission line, and has an advantage that a dedicated communication line is unnecessary because an existing power line can be used. However, when the PLC communication device is used, cases such as an increase in electric circuit noise and an increase in load make it impossible to transmit a carrier wave and make the device unusable. .

前述したような電力線を用いた際に、発生する雑音などの問題を解決するための手段として、例えば、特開2009−17441号公報等に開示されているように、雑音の多い電力線を第2候補として自動的に選択することを意図した例が提案されている。前記文献に開示されている例では、電力線のみでなしに、電話線などの任意の電線を用いることができるもので、電力線の他に、雑音の少ない任意の通信線を選択して接続し、情報の送受信を可能としている。   As a means for solving problems such as noise generated when using the power line as described above, a second power line having a lot of noise is disclosed as disclosed in, for example, Japanese Patent Application Laid-Open No. 2009-17441. Examples have been proposed that are intended to be automatically selected as candidates. In the example disclosed in the document, not only the power line but also an arbitrary electric wire such as a telephone line can be used, and in addition to the power line, an arbitrary communication line with less noise is selected and connected, Information can be sent and received.

特開2009−17441号公報JP 2009-17441 A

前記公知例の通信方法においては、送信装置の送信部に切り替えスイッチのような回線選択手段を設けておき、通信を行うときには優先的に電力線以外の配線を選択するように、送信経路を選択する順位を指定している。そして、最も通信速度の速い媒体を選ぶこと、および、電力線を第2番目の媒体とすることで、通信時には、ノイズの少ない良好な通信品質を確保できるようにしている。   In the communication method of the known example, line selection means such as a changeover switch is provided in the transmission unit of the transmission apparatus, and when performing communication, a transmission path is selected so that wiring other than the power line is preferentially selected. The rank is specified. Then, by selecting the medium with the fastest communication speed and using the power line as the second medium, it is possible to ensure good communication quality with little noise during communication.

ところが、通信する媒体を電力線以外には得られないという、送信の条件が限定される通信環境のもとでは、専ら電力線に頼って通信せざるを得ないものである。しかしながら、限定された条件のもとでも、送受信される情報に入り込むノイズを少なくして、良好な通信品質を確保できるようにすることは、当然の要求である。   However, in a communication environment where transmission conditions are limited, that is, a communication medium other than the power line cannot be obtained, communication must be relied solely on the power line. However, even under limited conditions, it is a natural requirement to ensure good communication quality by reducing noise entering information transmitted and received.

本発明は、電力線を用いた情報伝達方法(以下「本方式」という)によって、通信を行う際でも、従来のPLC方式の雑音の問題点を抜本的に解決できて、搬送波の伝送障害を飛躍的に減少させることが可能な通信方法を提供することを目的としている。   The present invention can drastically solve the problem of noise of the conventional PLC system even when performing communication by an information transmission method using a power line (hereinafter referred to as “the present system”), and dramatically reduces the transmission trouble of the carrier wave. An object of the present invention is to provide a communication method that can be reduced.

そのために、例えば、電源周波数の高調波に一致しない875Hz(50Hz系統)などの搬送波を用い、ASK(振幅変移変調)、PSK(位相変移変調)などの変調方式を用い、デジタル信号伝達を行う等の手段を選択的に用いて、通信品質の良好な送受信を確保できる装置を、容易に得ることを可能にしようとしているのである。   For this purpose, for example, a carrier wave such as 875 Hz (50 Hz system) that does not match the harmonics of the power supply frequency is used, and digital signal transmission is performed using a modulation method such as ASK (amplitude shift keying) or PSK (phase shift keying). Therefore, it is possible to easily obtain an apparatus capable of ensuring transmission / reception with good communication quality by selectively using the above means.

本発明は、低圧電路の末端の責任分界柱などに設置された、デマンド監視装置などの装置から、配電線を通じて電気室などに設けられた警報表示器へ向けて、単方向の信号伝達を行う電力線搬送波送受信装置に関する。
請求項1の発明は、2線式低圧電路の変圧器から離れた一端に、電源周波数及び電源周波数の高調波に一致しない周波数の搬送波電流を注入して情報を送信する情報送信装置を接続し、前記低圧電路の変圧器に近接する側の端部に情報受信装置を接続して設け、
前記2線式低圧電路は電気室に設けられた変圧器に接続され、前記変圧器巻線を通じて前記低圧電路の他端の低圧電路を経由し、前記情報送信装置の他端の端子に流入するループ回路を形成して、前記搬送波電流が前記ループ回路を循環する状態で、前記情報受信装置との間での情報の伝達を行う装置として構成し、
前記情報受信装置においては、前記低圧電路に注入された前記搬送波電流を、前記変圧器の付近に設置した搬送波検出用変流器により直接受信し、前記受信した搬送波電流を電圧変換して搬送波電圧の情報として利用する、単方向の信号伝達を行うことを特徴とする。
The present invention performs unidirectional signal transmission from a device such as a demand monitoring device installed in a responsibility demarcation column at the end of a low piezoelectric path to an alarm indicator provided in an electrical room or the like through a distribution line. The present invention relates to a power line carrier wave transmitting / receiving device.
In the first aspect of the present invention, an information transmission device that transmits information by injecting a carrier current having a frequency that does not match the power supply frequency and the harmonics of the power supply frequency is connected to one end away from the transformer of the two-wire low piezoelectric circuit. The information receiving device is connected to the end portion on the side close to the transformer of the low piezoelectric path,
The two-wire low piezoelectric path is connected to a transformer provided in an electrical room, and flows through the transformer winding through the low piezoelectric path at the other end of the low piezoelectric path and flows into the terminal at the other end of the information transmitting device. Forming a loop circuit, and configured as a device for transmitting information to and from the information receiving device in a state where the carrier current circulates in the loop circuit;
In the information receiving apparatus, the carrier current injected into the low piezoelectric path is directly received by a carrier detection current transformer installed in the vicinity of the transformer, and the received carrier current is converted into a carrier voltage by voltage conversion. It is characterized by performing unidirectional signal transmission used as the information of

請求項2の発明は、前記搬送波検出用変流器よりも前記変圧器に近い部分に、前記2線式低圧電路に並列に前記搬送波電流周波数に共振する並列共振回路を設け、
前記並列共振回路を通すことにより、前記変圧器巻線両端子間の合成インピーダンスを低減して、前記搬送波送出電流を増加させて、大きな受信信号を得られるように構成することを特徴とする。
The invention of claim 2 is provided with a parallel resonance circuit that resonates at the carrier current frequency in parallel with the two-wire low piezoelectric path in a portion closer to the transformer than the carrier detection current transformer,
By passing the parallel resonant circuit, the combined impedance between the two terminals of the transformer winding is reduced, and the carrier transmission current is increased to obtain a large received signal.

前述したように、搬送波受信部での信号回路を構成したことによって、送信情報に多少のノイズがあっても、予め定めた搬送波周波数成分のみに限定して使用して、情報の検出が可能となり、信号の送受信を良好な状態で行うことができる。
また、本方式では、搬送波異常を減少させることができるという利点があるもので、搬送波送出部が送り出した搬送波電流を、減衰しない状態で直接受信出来るため、数Aを超える非常に強い受信信号を得ることが出来て、電路ノイズの影響を受け難い方式とすることができる。
As described above, by configuring the signal circuit in the carrier wave receiver, even if there is some noise in the transmission information, it is possible to detect the information only by using only the predetermined carrier frequency component. Signal transmission / reception can be performed in good condition.
In addition, this method has an advantage that the carrier wave abnormality can be reduced. Since the carrier current sent by the carrier sending unit can be directly received without being attenuated, a very strong received signal exceeding several A can be obtained. It is possible to obtain a method that is less susceptible to the influence of electric circuit noise.

また、本発明の方式は、大規模電気設備に適用可能である。すなわち、従来方式では、大規模設備に適用しようとすると、受信端子間の合成インピーダンスが小さくなり、受信出来る搬送波電圧が減少し、搬送波が受信出来なくなる事例が増加していたものであるのに対して、本方式では、合成インピーダンスが小さい場合でも非常に強い受信信号を得ることができるため、大規模な設備にも適用が可能である。   In addition, the method of the present invention can be applied to large-scale electrical equipment. In other words, in the conventional system, when applied to a large-scale facility, the combined impedance between receiving terminals decreases, the carrier voltage that can be received decreases, and the number of cases in which the carrier cannot be received increases. In this system, a very strong received signal can be obtained even when the combined impedance is small, so that it can be applied to a large-scale facility.

本発明では、送信距離を増大できるという特徴を発揮できる。つまり、本発明の方式では、基本的に非常に強い受信信号を得ることが出来るため、前記低圧電路の伝送インピーダンスの影響を受けにくく、送信距離を増大(従来方式は、数百mが限界)することが出来る。
また、従来方式から、本方式への変更は、基本的に搬送波信号の入力回路のみであるため、容易に組み込むことができる。
The present invention can exhibit the feature that the transmission distance can be increased. That is, in the method of the present invention, a very strong received signal can be basically obtained, so that it is not easily influenced by the transmission impedance of the low piezoelectric path, and the transmission distance is increased (the conventional method has a limit of several hundred meters). I can do it.
Further, since the change from the conventional method to the present method is basically only the carrier wave signal input circuit, it can be easily incorporated.

本発明のデマンド監視装置の説明図である。It is explanatory drawing of the demand monitoring apparatus of this invention. 搬送波送出部の回路構成の説明図である。It is explanatory drawing of the circuit structure of a carrier wave transmission part. 搬送波受信部の回路構成の説明図である。It is explanatory drawing of the circuit structure of a carrier wave receiving part. 本発明のデマンド監視装置の改良例の説明図である。It is explanatory drawing of the example of improvement of the demand monitoring apparatus of this invention. デマンド監視装置の従来例の説明図である。It is explanatory drawing of the prior art example of a demand monitoring apparatus. 図5の回路に組み込まれるZab等価回路の説明図である。It is explanatory drawing of the Zab equivalent circuit integrated in the circuit of FIG. 前記図6のZab回路とVsの関係の説明図である。It is explanatory drawing of the relationship between the Zab circuit of the said FIG. 6, and Vs. 図6のZab回路に対する伝送線路インピーダンスの影響の説明図である。It is explanatory drawing of the influence of the transmission line impedance with respect to the Zab circuit of FIG.

前述したような、現行のPLC方式の問題点を解決するために、本発明においては、図1に説明するように、送受信回路が構成される。低圧電路1は、電気室6から架空方式などの電線路により、責任分界柱5に接続される。また、電気室6では、変圧器7により所定の電圧に低下させて、各負荷に電力を供給する。そして、前記責任分界柱5に設置されたデマンド検出器11の搬送波送出部12から、前記低圧電路1を利用して情報を送信する。   In order to solve the problems of the current PLC system as described above, in the present invention, a transmission / reception circuit is configured as illustrated in FIG. The low piezoelectric path 1 is connected from the electrical chamber 6 to the responsibility demarcation column 5 by an electric line such as an aerial system. Further, in the electric room 6, the voltage is lowered to a predetermined voltage by the transformer 7, and electric power is supplied to each load. Then, information is transmitted from the carrier wave sending unit 12 of the demand detector 11 installed in the responsibility demarcation column 5 using the low piezoelectric path 1.

また、受電側に配置する搬送波受信部16では、低圧電路1を通して送られた情報を受信し、警報表示器15の表示部に表示するような、デマンド監視装置10を構成している。また、前記警報表示器15の搬送波受信部16には、電流/電圧変換回路17を通して処理された情報が入力されて、予め設定されている条件にしたがって、必要に応じて警報を発信する。   Further, the carrier wave receiving unit 16 arranged on the power receiving side constitutes the demand monitoring device 10 that receives information sent through the low piezoelectric path 1 and displays it on the display unit of the alarm indicator 15. Further, information processed through the current / voltage conversion circuit 17 is input to the carrier wave receiver 16 of the alarm indicator 15 and an alarm is transmitted as necessary according to preset conditions.

前記デマンド検出器の搬送波送出部12を、図1に説明するような回路構成とすることで、前記デマンド監視装置の搬送波送出部では、図示するように、責任分界柱5等に設置されたデマンド検出器11から、電気室または、事務室などに設けられた警報表示器15へ向けて、単方向の信号伝達を行うものとして配置されている。   The carrier detector 12 of the demand detector has a circuit configuration as shown in FIG. 1, so that the carrier detector of the demand monitoring device has a demand installed on the responsibility demarcation column 5 as shown in the figure. The detector 11 is arranged to transmit a signal in one direction toward an alarm indicator 15 provided in an electrical room or an office room.

前記受信側に配置する電流/電圧変換回路17に対して、搬送波送出部12では、図2のような送信回路として構成されている。そして、前記デマンド検出器11の搬送波送出部12では、デマンドデータD1の入力値を入力する搬送波送出部CPU21に続いて、A/D変換回路22、発振回路23を接続する変調回路24、ドライバーアンプ25と、結合回路26で処理して、搬送波D2を低圧電路1を介して出力する。   With respect to the current / voltage conversion circuit 17 arranged on the reception side, the carrier wave transmission unit 12 is configured as a transmission circuit as shown in FIG. Then, in the carrier wave sending unit 12 of the demand detector 11, following the carrier wave sending unit CPU 21 for inputting the input value of the demand data D1, the A / D conversion circuit 22, the modulation circuit 24 for connecting the oscillation circuit 23, the driver amplifier 25 and the coupling circuit 26, and the carrier wave D 2 is output via the low piezoelectric path 1.

前記図2の処理回路を構成する各部材は、次のような信号処理の動作を行う。
・ 搬送波送出部CPU21: デマンドデータD1がCPUに入力されると、データに応じた信号をA/D変換回路に送出する。
・ A/D変換回路22: A/D変換回路は、搬送波送出部CPU21からの信号を、デジタル信号に変換して変調回路24に送出する。
Each member constituting the processing circuit of FIG. 2 performs the following signal processing operation.
Carrier wave sending unit CPU21: When demand data D1 is input to the CPU, a signal corresponding to the data is sent to the A / D conversion circuit.
A / D conversion circuit 22: The A / D conversion circuit converts the signal from the carrier wave sending unit CPU 21 into a digital signal and sends it to the modulation circuit 24.

・ 発振回路23: 発振回路は、電源周波数の高周波に一致しない、あらかじめ定めた875Hzなどの搬送波周波数の発振を行う。
・ 変調回路24: 変調回路は、発振回路23からの搬送波周波数信号と、A/D変換回路22からのデジタル信号から、ASK(振幅変移変調)、PSK(位相変移変調)などの変調方式を用い、デジタル信号伝達を行う。
Oscillation circuit 23: The oscillation circuit oscillates at a carrier frequency such as 875 Hz that does not match the high frequency of the power supply frequency.
Modulation circuit 24: The modulation circuit uses a modulation method such as ASK (amplitude shift keying) or PSK (phase shift keying) from the carrier frequency signal from the oscillation circuit 23 and the digital signal from the A / D conversion circuit 22. , Perform digital signal transmission.

・ ドライバーアンプ25: ドライバーアンプは、前記変調回路24からの信号を、必要な大きさまで増幅し、結合回路に送る。
・ 結合回路26: 結合回路は、変圧器、コンデンサ等で構成されるもので、前記低圧電路1と接続し、電力線に搬送波電流を送出する。
Driver amplifier 25: The driver amplifier amplifies the signal from the modulation circuit 24 to a required magnitude and sends it to the coupling circuit.
Coupling circuit 26: The coupling circuit is composed of a transformer, a capacitor, and the like, and is connected to the low piezoelectric path 1 to send a carrier current to the power line.

前述したように、デマンド監視装置10の検出器11に設けた搬送波送出部12は、電源周波数の高調波に一致しない875Hz(50Hz系統)などの搬送波を用い、ASK、PSKなどの変調方式を用い、デジタル信号伝達を行っている。
前記デマンド監視装置10の搬送波送出部12からは、変調された搬送波信号を、搬送波送出電流Isとして変圧器7に向けて送出する。
As described above, the carrier sending unit 12 provided in the detector 11 of the demand monitoring device 10 uses a carrier wave such as 875 Hz (50 Hz system) that does not match the harmonics of the power supply frequency, and uses a modulation method such as ASK or PSK. , Doing digital signal transmission.
From the carrier sending unit 12 of the demand monitoring device 10, the modulated carrier signal is sent to the transformer 7 as a carrier sending current Is.

前記デマンド監視装置からの搬送波送出電流Isは、図1に示されているように、変圧器7の巻線を通じてデマンド検出器11の搬送波送出部12へ戻るループ回路を構成している。そして、搬送波送出電流Isが主に変圧器巻線に流れて、変圧器7から戻る経路に配置された検出CT31から、警報表示器15に向けて信号を伝達する。   The carrier transmission current Is from the demand monitoring device constitutes a loop circuit that returns to the carrier transmission unit 12 of the demand detector 11 through the winding of the transformer 7 as shown in FIG. Then, the carrier wave transmission current Is mainly flows through the transformer winding, and a signal is transmitted from the detection CT 31 arranged on the path returning from the transformer 7 toward the alarm indicator 15.

前記警報表示器15の搬送波受信部16には、図3に示すような受信回路が設けられている。前記搬送波受信部30では、低圧電路1に配置する検出CT31に続いて、電流/電圧変換回路32から、バンドパスフィルタ(BPF)33、復調回路34、搬送波受信部CPU35を経て、警報表示器の表示回路36に接続させて設けられる。   The carrier wave receiver 16 of the alarm indicator 15 is provided with a receiving circuit as shown in FIG. In the carrier wave receiving unit 30, following the detection CT 31 arranged in the low piezoelectric path 1, the current / voltage conversion circuit 32, the band pass filter (BPF) 33, the demodulation circuit 34, the carrier wave receiving unit CPU 35, and the alarm display It is provided connected to the display circuit 36.

前記搬送波受信回路に配置される各構成回路部材では、次のような信号処理の動作を行うものとして設けられる。
・ 検出CT31: 低圧電路1に流れる搬送波電流を検出し、電流/電圧変換回路17へ送る。
Each component circuit member arranged in the carrier wave receiving circuit is provided to perform the following signal processing operation.
Detection CT31: A carrier current flowing through the low piezoelectric path 1 is detected and sent to the current / voltage conversion circuit 17.

・ 電流/電圧変換回路17: この回路は、検出CT31で受信した電流を、その大きさに応じた電圧に変換する。
・ BPF33 BPFはバンドパスフィルタの略で、検出CT31で検出された搬送波信号や、ノイズの中から、あらかじめ定めた搬送波周波数成分のみを検出し、復調回路34へ送る。
Current / voltage conversion circuit 17: This circuit converts the current received by the detected CT 31 into a voltage corresponding to the magnitude thereof.
BPF33 BPF is an abbreviation for bandpass filter, and detects only a predetermined carrier frequency component from the carrier signal detected by the detection CT 31 and noise, and sends it to the demodulation circuit 34.

・ 復調回路34: ASK、PSKなどの搬送波送出部からの変調方式に応じて、デジタル信号伝達された変調信号を復調し、デジタル信号に変換する。
・ 搬送波受信部CPU35: CPUは、デマンド検出部11からの受信信号を演算処理し、各種警報発報などの判断を行う。
・ 警報表示36: 搬送波受信部CPU35で判断された各種警報を、図示を省略するブザー、ランプなどで表示する。
Demodulation circuit 34: Demodulates a modulated signal transmitted with a digital signal in accordance with a modulation method from a carrier sending unit such as ASK or PSK, and converts it into a digital signal.
Carrier wave receiving unit CPU 35: The CPU performs arithmetic processing on the received signal from the demand detecting unit 11 and determines various alarms and the like.
Alarm display 36: Various alarms determined by the carrier wave receiver CPU 35 are displayed with a buzzer, a lamp, etc. (not shown).

前記図1に説明した信号処理回路では、例えば、非常に低容量の電気設備の場合に、受信側の合成インピーダンスZabが大きくなり、搬送波送出電流Isが減少し受信が困難となることが考えられる。また、同一電路において、図示された検出点の他に、任意の点で、前記搬送波送出電流Isの受信が必要になることも考えられる。   In the signal processing circuit described in FIG. 1, for example, in the case of an electric facility with a very low capacity, it is considered that the combined impedance Zab on the receiving side increases, the carrier wave sending current Is decreases, and reception becomes difficult. . In addition to the detection points shown in the figure, it may be necessary to receive the carrier transmission current Is at an arbitrary point in the same electric circuit.

前述したように、搬送波送出電流Isが減少して、信号の送受信が困難となるという、不都合な事態が生じることを避けるためには、搬送波をさらに強力なものとして受信することが要求される。そのときには、図4に説明するように、受信側に並列共振回路18を電路1と並列に設けることで、解決することが可能である。   As described above, in order to avoid the inconvenience that the carrier transmission current Is decreases and signal transmission / reception becomes difficult, it is required to receive the carrier as a stronger one. At that time, as described in FIG. 4, it can be solved by providing a parallel resonant circuit 18 in parallel with the electric circuit 1 on the receiving side.

前記並列共振回路の働きと、搬送波の受信に関して説明すると、図4の並列共振回路18においては、
・ 並列共振回路18により電力線のa−b間の合成インピーダンスZabが小さくなり、Isが増加するため、大きな受信信号が得られる。
The operation of the parallel resonant circuit and reception of a carrier wave will be described. In the parallel resonant circuit 18 of FIG.
The combined impedance Zab between the power lines ab is reduced by the parallel resonance circuit 18 and Is is increased, so that a large received signal can be obtained.

・ 前記並列共振回路は、電源周波数と周波数帯域が離れているため、電源回路に影響することはない。
・ 同一電路に接続された任意の点で、搬送波を受信する場合も、並列共振回路を設けることにより受信可能となる。
以上のような、構成に基づく動作の特徴を発揮できることとなる。
-Since the parallel resonant circuit is separated from the power supply frequency and the frequency band, the power supply circuit is not affected.
-Even when a carrier wave is received at an arbitrary point connected to the same electric circuit, it can be received by providing a parallel resonance circuit.
The characteristics of the operation based on the configuration as described above can be exhibited.

デマンド監視装置10の検出器11に設けた搬送波送出部12は、電源周波数の高調波に一致しない875Hz(50Hz系統)などの搬送波を用い、ASK、PSKなどの変調方式を用い、デジタル信号伝達を行っている。
前記デマンド監視装置10の搬送波送出部12からは、変調された搬送波信号を、搬送波送出電流Isとして変圧器7に向けて送出する。
The carrier transmission unit 12 provided in the detector 11 of the demand monitoring apparatus 10 uses a carrier wave such as 875 Hz (50 Hz system) that does not match the harmonics of the power supply frequency, and uses a modulation method such as ASK or PSK to transmit digital signals. Is going.
From the carrier sending unit 12 of the demand monitoring device 10, the modulated carrier signal is sent to the transformer 7 as a carrier sending current Is.

前記デマンド監視装置からの搬送波送出電流Isは、変圧器7の巻線を通じてデマンド検出器11の搬送波送出部12へ戻るループ回路を構成している。そして、搬送波送出電流Isが主に変圧器巻線に流れ、変圧器7などの端子aと端子b間の合成インピーダンス(以下「Zab」という。)で生じた電圧降下により、搬送波電圧信号(以下「Vs」という。)が変圧器端子に発生する。
前記デマンド監視装置の受信部16は、前記回路で発生した搬送波電圧信号Vsを検出し、搬送波信号を復調し、各種の警報を発するように構成されている。
The carrier transmission current Is from the demand monitoring device constitutes a loop circuit that returns to the carrier transmission unit 12 of the demand detector 11 through the winding of the transformer 7. Then, the carrier wave sending current Is mainly flows through the transformer winding, and a carrier voltage signal (hereinafter referred to as “Zab”) is generated by a voltage drop caused by a combined impedance (hereinafter referred to as “Zab”) between the terminals a and b of the transformer 7 and the like. "Vs") occurs at the transformer terminal.
The receiver 16 of the demand monitoring device is configured to detect the carrier voltage signal Vs generated by the circuit, demodulate the carrier signal, and issue various alarms.

(従来方式の問題点)
次に、現行のPLC方式の通信原理と問題点を、図5に示した従来例を用いて、改めて説明する。
現行のPLC方式(以下「現行PLC方式」という。)の装置においては、図示するように、責任分界柱5等に設置されたデマンド検出器11から、電気室または、事務室などに設けられた警報表示器15へ向けて、単方向の信号伝達を行うものとして配置されている。
(Problems of the conventional method)
Next, the communication principle and problems of the current PLC system will be described again using the conventional example shown in FIG.
In the apparatus of the current PLC system (hereinafter referred to as “current PLC system”), as shown in the figure, the demand detector 11 installed in the responsibility demarcation column 5 or the like is provided in an electric room or office room. It is arranged to perform signal transmission in one direction toward the alarm indicator 15.

Zabの等価回路;前記変圧器7等の端子a、b間の合成インピーダンスZabの等価回路は、図6のRLC並列回路13で表され、Rは負荷の大きさにより変化し、大容量の負荷ほど抵抗値が小さくなる。   Equivalent circuit of Zab; The equivalent circuit of the combined impedance Zab between the terminals a and b of the transformer 7 and the like is represented by the RLC parallel circuit 13 of FIG. 6, and R varies depending on the size of the load. As the resistance value decreases.

また、前記回路図における符号Lは変圧器などのインダクタンスで、主に変圧器の容量により変化し、大容量になるほど小さくなり、誘導リアクタンスも減少する。さらに、符号Cは、低負荷のフィルター、電力コンデンサ(高圧コンデンサ)の変圧器による低圧側換算によるもので、電気設備が大容量になるほど大きい値となり、容量リアクタンスはCが大きくなるほど小さくなるため、容量リアクタンスは減少する。   The symbol L in the circuit diagram is an inductance of a transformer or the like, which mainly changes depending on the capacity of the transformer, and becomes smaller as the capacity increases, and the inductive reactance also decreases. Furthermore, the symbol C is based on low-voltage conversion by a low-load filter and a transformer of a power capacitor (high-voltage capacitor). The larger the electric equipment, the larger the value, and the larger the C reactance, the smaller the capacitive reactance. The capacitive reactance decreases.

合成インピーダンスZabと搬送波電圧信号Vsの相関関係 : 前記合成インピーダンスZabに、図7のように、電流Isが流れるとZabのインピーダンスにより電圧降下Vsが生ずる。そして、その電圧降下Vsは、 Vs=Is×Zab で表され、電流Isはほぼ一定の電流に保たれているため、VsはZabの大きさに比例する。   Correlation between Synthetic Impedance Zab and Carrier Voltage Signal Vs: When current Is flows through synthetic impedance Zab as shown in FIG. 7, voltage drop Vs is generated due to the impedance of Zab. The voltage drop Vs is expressed by Vs = Is × Zab, and the current Is is maintained at a substantially constant current, so that Vs is proportional to the magnitude of Zab.

前記Zabの定数と受電電圧Vsの関係をさらに説明するに、
・変圧器、電力コンデンサの容量が大きく、負荷が増大する程Zabは小さくなり、変圧器、電力コンデンサなどの容量が小さい場合は大きくなる。
・送信部から送信する搬送波電流は、定電流特性を持たせる場合が多いため、合成インピーダンスが変化しても、電流値の変化は少ない。
・以上の条件から、受信部が受信する搬送波電圧Vsは、合成インピーダンスに比例するため、大容量の電気設備ほど、Vsは小さくなり、小容量の電気設備ほどVsは大きくなる、という特性がある。
To further explain the relationship between the Zab constant and the received voltage Vs,
-The capacity of the transformer and the power capacitor is large. As the load increases, the Zab decreases. When the capacity of the transformer, the power capacitor, etc. is small, the capacity increases.
-Since the carrier current transmitted from the transmitter often has constant current characteristics, even if the combined impedance changes, the change in the current value is small.
From the above conditions, the carrier voltage Vs received by the receiving unit is proportional to the combined impedance, so that there is a characteristic that Vs is smaller for larger capacity electrical equipment and Vs is larger for smaller capacity electrical equipment. .

ところが、現行PLC方式では、以下に列挙するように、多くの問題点が残っている。
・ 電気設備が大規模となると、変圧器の誘導リアクタンスおよび電力コンデンサなどによる容量リアクタンスが減少し、搬送波受信部が接続された端子a〜端子b間の合成インピーダンスZabも減少するため、Vsも減少し搬送波の受信が困難となる。
・ 低圧負荷設備のフィルター用コンデンサを用いた負荷の数が多くなると、合成された静電容量が大きくなり、Zabが減少し、搬送波の受信が困難となる。
However, many problems remain in the current PLC system as listed below.
・ When the electrical equipment becomes large-scale, the capacitive reactance due to the inductive reactance of the transformer and the power capacitor decreases, and the combined impedance Zab between the terminals a and b to which the carrier wave receiver is connected also decreases, so Vs also decreases. However, it is difficult to receive the carrier wave.
-When the number of loads using the filter capacitors of the low-voltage load equipment increases, the synthesized capacitance increases, Zab decreases, and reception of the carrier wave becomes difficult.

・ 送信部と受信部は電力線を用いているため、双方の距離が長くなると、伝送線路インピーダンス(以下「Zlin」という。)の影響を受ける。前記伝送線路インピーダンスZlinは、図8のように送受信間に直列に挿入するため、双方の距離が長くなるとZlinの値が増大し、送信側が定電流特性を維持出来なくなり、電流lsが減少し、搬送波電圧Vsが小さくなるため搬送波の受信は困難となる。
・ 近年のインバーターなど半導体機器の増加により、電路ノイズが増加し、搬送波周波数に接近した帯域のノイズに影響を受け、搬送波を受信出来ない事例が増加している。
前述したように、現行のPLC方式による信号伝達方式では、多くの障害があったのである。
-Since the transmission unit and the reception unit use power lines, if the distance between both increases, the transmission unit is affected by transmission line impedance (hereinafter referred to as "Zlin"). Since the transmission line impedance Zlin is inserted in series between transmission and reception as shown in FIG. 8, when the distance between both increases, the value of Zlin increases, the transmission side cannot maintain constant current characteristics, and the current ls decreases. Since the carrier voltage Vs is small, it is difficult to receive the carrier.
・ Due to the increase in semiconductor devices such as inverters in recent years, electric circuit noise has increased, and the number of cases in which a carrier wave cannot be received is affected by noise in a band close to the carrier frequency.
As described above, there are many obstacles in the signal transmission system based on the current PLC system.

(本発明の特徴)
前述したように、従来の信号伝達方式では、種々の解決を要する課題が残っていたのであるが、本発明においては、前記図1に説明したように、低圧電路の末端では、デマンド検出器11に設けた搬送波送出部12から、低圧電路1を通して検出情報を送信する。そして、受電側に配置する搬送波受信部16では、低圧電路1を通して送られた情報を受信し、警報表示器15の表示部に表示するような、デマンド監視装置10を構成している。
(Features of the present invention)
As described above, the conventional signal transmission system still has problems that require various solutions. In the present invention, as described with reference to FIG. 1, the demand detector 11 is provided at the end of the low piezoelectric path. The detection information is transmitted through the low piezoelectric path 1 from the carrier wave transmission unit 12 provided in FIG. The carrier wave receiving unit 16 arranged on the power receiving side constitutes the demand monitoring device 10 that receives information transmitted through the low piezoelectric path 1 and displays it on the display unit of the alarm indicator 15.

前記デマンド検出器の搬送波送出部12を、図2に説明しているような、信号処理回路で構成しているものであることから、前記デマンド監視装置の搬送波送出部では、責任分界柱5等に設置されたデマンド検出器11から、電気室または、事務室などに設けられた警報表示器15へ向けて、単方向の信号伝達を行うものとすることができる。   Since the carrier transmission unit 12 of the demand detector is configured by a signal processing circuit as illustrated in FIG. 2, the carrier transmission unit of the demand monitoring device has a responsibility demarcation column 5 or the like. It is possible to perform unidirectional signal transmission from the demand detector 11 installed in to the alarm indicator 15 provided in the electric room or office.

そして、図3のように、搬送波受信部での信号回路を構成したことによって、送信情報に多少のノイズがあっても、予め定めた搬送波周波数成分のみを検出できるものとなり、信号の送受信を良好な状態で行うことができる。   And, as shown in FIG. 3, by configuring the signal circuit in the carrier wave receiver, even if there is some noise in the transmission information, only the predetermined carrier frequency component can be detected, and signal transmission and reception is good. It can be done in the state.

本方式の特徴としては、まず、搬送波異常を減少させることができるという利点がある。つまり、従来方式では、受信出来る搬送波電圧が数百mV程度と低いため、搬送波周波数に接近したノイズの影響を受けやすかった。これに対して、本方式では、搬送波送出部が送り出した搬送波電流を、減衰しない状態で直接受信出来るため、数Aを超える非常に強い受信信号を得ることが出来て、電路ノイズの影響を受け難い方式となっている。   As a feature of this method, first, there is an advantage that carrier wave abnormality can be reduced. In other words, in the conventional system, the receivable carrier voltage is as low as about several hundred mV, so that it is easily affected by noise close to the carrier frequency. On the other hand, in this method, the carrier current sent by the carrier sending unit can be directly received without being attenuated, so that a very strong received signal exceeding several A can be obtained and affected by electric circuit noise. It is a difficult system.

本発明の方式は、大規模電気設備に適用可能である。すなわち、従来方式では、大規模設備に適用しようとすると、受信端子間の合成インピーダンスZabが小さくなり、受信出来る搬送波電圧が減少し、搬送波が受信出来なくなる事例が増加している。これに対して、本方式では、Zabが小さい場合でも非常に強い受信信号を得ることができるため、大規模な設備にも適用が可能である。   The method of the present invention can be applied to large-scale electrical equipment. That is, in the conventional system, when applied to a large-scale facility, the combined impedance Zab between the receiving terminals decreases, the receivable carrier voltage decreases, and the number of cases where the carrier cannot be received increases. On the other hand, this system can be applied to a large-scale facility because a very strong received signal can be obtained even when Zab is small.

本発明では、送信距離を増大できるという特徴を発揮できる。つまり、本発明の方式では、基本的に非常に強い受信信号を得ることが出来るため、伝送線路インピーダンスZlinの影響を受けにくく、送信距離を増大(従来方式は、数百mが限界)することが出来る。
また、従来方式から、本方式への変更は、基本的に搬送波信号の入力回路のみであるため、方式の変更が容易である。
以上のような特徴を発揮できるのである。
The present invention can exhibit the feature that the transmission distance can be increased. That is, in the system of the present invention, a very strong received signal can be basically obtained, so that it is not easily affected by the transmission line impedance Zlin and the transmission distance is increased (the conventional system has a limit of several hundred meters). I can do it.
Further, since the change from the conventional method to the present method is basically only the carrier wave signal input circuit, the change of the method is easy.
The above characteristics can be exhibited.

1 低圧電路、 5 責任分界柱、 6 電気室、 7 変圧器、
10 デマンド監視装置、 11 デマンド検出器、 12 搬送波送出部、
15 警報表示器、 16 搬送波受信部、 17 電流/電圧変換回路、
18 並列共振回路、 21 搬送波送信部CPU、 22 A/D変換回路、
23 発振回路、 24 変調回路、 25 ドライバーアンプ、
26 結合回路、 30 搬送波受信部、 31 検出CT、
33 BPF、 34 復調回路、 35 搬送波受信部CPU、
36 警報表示装置。
1 Low piezoelectric path, 5 Responsible demarcation column, 6 Electrical room, 7 Transformer,
10 demand monitoring device, 11 demand detector, 12 carrier wave transmission unit,
15 alarm indicator, 16 carrier wave receiver, 17 current / voltage conversion circuit,
18 parallel resonance circuit, 21 carrier wave transmission part CPU, 22 A / D conversion circuit,
23 oscillation circuit, 24 modulation circuit, 25 driver amplifier,
26 coupling circuit, 30 carrier wave receiver, 31 detection CT,
33 BPF, 34 demodulation circuit, 35 carrier wave receiver CPU,
36 Alarm display device.

Claims (2)

低圧電路の末端の責任分界柱などに設置された、デマンド監視装置などの装置から、配電線を通じて電気室などに設けられた警報表示器へ向けて、単方向の信号伝達を行う電力線搬送波送受信装置において、
2線式低圧電路の変圧器から離れた一端に、電源周波数及び電源周波数の高調波に一致しない周波数の搬送波電流を注入して情報を送信する情報送信装置を接続し、前記低圧電路の変圧器に近接する側の端部に情報受信装置を接続して設け、
前記2線式低圧電路は電気室に設けられた変圧器に接続され、前記変圧器巻線を通じて前記低圧電路の他端の低圧電路を経由し、前記情報送信装置の他端の端子に流入するループ回路を形成して、前記搬送波電流が前記ループ回路を循環する状態で、前記情報受信装置との間での情報の伝達を行う装置として構成し、
前記情報受信装置においては、前記低圧電路に注入された前記搬送波電流を、前記変圧器の付近に設置した搬送波検出用変流器により直接受信し、前記受信した搬送波電流を電圧変換して搬送波電圧の情報として利用する、単方向の信号伝達を行うことを特徴とする電力線搬送波通信装置。
Power line carrier transmission / reception device that transmits signals in one direction from a device such as a demand monitoring device installed at a demarcation pillar at the end of a low piezoelectric path to an alarm indicator installed in an electrical room or the like through a distribution line In
An information transmission device for transmitting information by injecting a carrier current having a frequency that does not match the power supply frequency and the harmonics of the power supply frequency is connected to one end away from the transformer of the two-wire type low piezoelectric circuit. An information receiving device is connected to the end on the side close to
The two-wire low piezoelectric path is connected to a transformer provided in an electrical room, and flows through the transformer winding through the low piezoelectric path at the other end of the low piezoelectric path and flows into the terminal at the other end of the information transmitting device. Forming a loop circuit, and configured as a device for transmitting information to and from the information receiving device in a state where the carrier current circulates in the loop circuit;
In the information receiving apparatus, the carrier current injected into the low piezoelectric path is directly received by a carrier detection current transformer installed in the vicinity of the transformer, and the received carrier current is converted into a carrier voltage by voltage conversion. A power line carrier wave communication device that performs unidirectional signal transmission used as information of
前記搬送波検出用変流器よりも前記変圧器に近い部分に、前記2線式低圧電路に並列に前記搬送波電流周波数に共振する並列共振回路を設け、
前記並列共振回路を通すことにより、前記変圧器巻線両端子間の合成インピーダンスを低減して、前記搬送波送出電流を増加させて、大きな受信信号を得られるように構成することを特徴とする請求項1に記載の電力線搬送波送通信装置。
A portion closer to the transformer than the current transformer for carrier wave detection is provided with a parallel resonance circuit that resonates with the carrier current frequency in parallel with the two-wire low piezoelectric path,
The configuration is such that a large received signal can be obtained by reducing the combined impedance between both terminals of the transformer winding and increasing the carrier wave sending current by passing the parallel resonant circuit. Item 4. A power line carrier transmission and communication device according to Item 1.
JP2010194158A 2010-08-31 2010-08-31 Power line carrier wave transmitter / receiver Active JP5657312B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010194158A JP5657312B2 (en) 2010-08-31 2010-08-31 Power line carrier wave transmitter / receiver

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010194158A JP5657312B2 (en) 2010-08-31 2010-08-31 Power line carrier wave transmitter / receiver

Publications (2)

Publication Number Publication Date
JP2012054683A true JP2012054683A (en) 2012-03-15
JP5657312B2 JP5657312B2 (en) 2015-01-21

Family

ID=45907580

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010194158A Active JP5657312B2 (en) 2010-08-31 2010-08-31 Power line carrier wave transmitter / receiver

Country Status (1)

Country Link
JP (1) JP5657312B2 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49127153A (en) * 1973-04-10 1974-12-05 Tohoku Electric Power Co Power distribution management system by power line communication
JPS61136327A (en) * 1984-12-06 1986-06-24 Nec Corp Signal coupling system for low voltage distribution line communication equipment
JPS6238033A (en) * 1985-08-13 1987-02-19 Fuji Electric Co Ltd Information transmission system
JPH06284049A (en) * 1993-03-26 1994-10-07 Toyo Commun Equip Co Ltd Data transmission equipment using electric circuit
JP2004532562A (en) * 2001-03-29 2004-10-21 アンビエント・コーポレイション Coupling circuit for power line communication
JP2007028003A (en) * 2005-07-13 2007-02-01 Sumitomo Electric Ind Ltd Communication system
JP2008278569A (en) * 2007-04-26 2008-11-13 Matsushita Electric Works Ltd Power distribution system

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49127153A (en) * 1973-04-10 1974-12-05 Tohoku Electric Power Co Power distribution management system by power line communication
JPS61136327A (en) * 1984-12-06 1986-06-24 Nec Corp Signal coupling system for low voltage distribution line communication equipment
JPS6238033A (en) * 1985-08-13 1987-02-19 Fuji Electric Co Ltd Information transmission system
JPH06284049A (en) * 1993-03-26 1994-10-07 Toyo Commun Equip Co Ltd Data transmission equipment using electric circuit
JP2004532562A (en) * 2001-03-29 2004-10-21 アンビエント・コーポレイション Coupling circuit for power line communication
JP2007028003A (en) * 2005-07-13 2007-02-01 Sumitomo Electric Ind Ltd Communication system
JP2008278569A (en) * 2007-04-26 2008-11-13 Matsushita Electric Works Ltd Power distribution system

Also Published As

Publication number Publication date
JP5657312B2 (en) 2015-01-21

Similar Documents

Publication Publication Date Title
US9423443B2 (en) System and method of detecting and locating intermittent and other faults
JP2012034484A (en) Power supply device and vehicle
US6411073B1 (en) Method and device for locating a metal line
JP2013058170A5 (en)
CN104764973A (en) Induction type wiring harness detection system and method
JP2012147560A (en) Wireless power transmission device
KR20140102153A (en) Data-on-supply repeater
JP5657312B2 (en) Power line carrier wave transmitter / receiver
CN109142983B (en) High-frequency injection signal frequency selection method and device based on line parameter errors
CN202330535U (en) Insulating bar type non-contact electricity testing alarm
JP2008064762A (en) System and method of radio frequency detection for medical equipment
JP6396169B2 (en) Communication device and welding system
JP5255528B2 (en) Voltage / current power receiving type train detection system
US11211197B2 (en) Inductive current transformer for transmitting information using current modulation
JP5262525B2 (en) Train control transceiver
CN101478322A (en) Low frequency communication receiving system
KR20110014929A (en) Realtime distribution line monitoring system from the theft
JP6195064B2 (en) Non-contact power / signal transmission system
CN219245733U (en) Three-phase off-line alarm circuit
KR20190063628A (en) Power line energy harvester
CN201352789Y (en) Low-frequency communication receiving system
JP2016131314A (en) Radio communication system
JP6271295B2 (en) Power line carrier communication apparatus and watt-hour meter with communication function provided with the same
CN110021151A (en) A kind of communication power supply acquisition monitoring device based on Internet of Things
JP2008198046A (en) Carrier transmission system for insulation monitoring device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130809

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140304

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140401

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140519

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141120

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141126

R150 Certificate of patent or registration of utility model

Ref document number: 5657312

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250