JPH0552466B2 - - Google Patents

Info

Publication number
JPH0552466B2
JPH0552466B2 JP4184284A JP4184284A JPH0552466B2 JP H0552466 B2 JPH0552466 B2 JP H0552466B2 JP 4184284 A JP4184284 A JP 4184284A JP 4184284 A JP4184284 A JP 4184284A JP H0552466 B2 JPH0552466 B2 JP H0552466B2
Authority
JP
Japan
Prior art keywords
signal
low frequency
current transformer
phase
insulation resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP4184284A
Other languages
Japanese (ja)
Other versions
JPS60186765A (en
Inventor
Tatsuji Matsuno
Yoshio Nomura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Communication Equipment Co Ltd
Original Assignee
Toyo Communication Equipment Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Communication Equipment Co Ltd filed Critical Toyo Communication Equipment Co Ltd
Priority to JP4184284A priority Critical patent/JPS60186765A/en
Publication of JPS60186765A publication Critical patent/JPS60186765A/en
Publication of JPH0552466B2 publication Critical patent/JPH0552466B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Measurement Of Resistance Or Impedance (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は活線状態で電路等の絶縁抵抗並びに対
地浮遊容量等を測定する装置の温度変化或は回路
定数の経年変化等に対する補償方法に関する。
[Detailed Description of the Invention] (Field of Industrial Application) The present invention relates to a method of compensating for temperature changes or secular changes in circuit constants of a device that measures the insulation resistance and ground stray capacitance of electric circuits etc. in a live line state. .

(従来技術) 従来、漏電等の電路に於けるトラブルの早期発
見の為には第1図に示す如き電路の絶縁抵抗測定
方法を用いるのが一般的であつた。
(Prior Art) Conventionally, it has been common to use a method of measuring the insulation resistance of an electrical circuit as shown in FIG. 1 for early detection of troubles in electrical circuits such as leakage of electricity.

これはZなる負荷を有する受電変圧器Tの第2
種接地線LEを商用電源周波数とは異なる周波数1
なる測定用低周波信号発振器OSCに接続された
トランスOTに貫通せしめるか、或は接地線を切
断しこれに直列に前記発振器を接続する等して電
路L1及び電路L2に測定用低周波電圧を印加し、
前記接地線LEを貫通せしめた変流器ZCTによつ
て電路と大地間に存在する絶縁抵抗Ro及び対地
浮遊容量Coを介して前記接地線に帰還する漏洩
電流を検出しこれを増幅器AMPで増幅したのち、
フイルタFILに加え周波数1の成分のみを選択
し、その漏洩電流中の有効分(即ち、印加測定用
低周波電圧と同相の成分)を検出すると共にこれ
を例えば前記発振消OSCの出力信号を用いて掛
算器MULTで同期検波して電路の絶縁抵抗を測
定するよう構成したものであつた。
This is the second of the receiving transformer T with a load Z.
Connect the grounding wire L E to a frequency different from the commercial power frequency1 .
A low frequency signal for measurement is supplied to the circuit L 1 and the circuit L 2 by passing it through the transformer OT connected to the low frequency signal oscillator for measurement OSC, or by cutting the ground wire and connecting the oscillator in series with it. Apply voltage,
A current transformer ZCT passing through the grounding line L E detects the leakage current that returns to the grounding line via the insulation resistance Ro and ground stray capacitance Co existing between the electric line and the ground, and the leakage current is detected by the amplifier AMP. After amplifying,
In addition to the filter FIL, only the frequency 1 component is selected, and the effective component in the leakage current (i.e., the component in phase with the applied low-frequency voltage for measurement) is detected, and this is detected using, for example, the output signal of the oscillation canceling OSC. It was configured to perform synchronous detection using a multiplier MULT to measure the insulation resistance of the electrical circuit.

その測定理論を更に説明するならば、前記接地
線LEに印加される測定用信号電圧を例えば正弦
波としてEsinω1t(ω1=2π1)とすれば、接地点
Eを介して帰還する周波数1の漏洩電流Iは I=V/Rosinω1t+ω1CoVcosω1t ……(1) であるから、印加する交流電圧と同相の成分、即
ち上記(1)式の右辺第1項の成分に比例した値を同
期検波等の手段で検出すれば絶縁抵抗Roに逆比
例した測定値を得ることができこれによつて電路
の絶縁抵抗値を求めるものであつた。しかしこの
ように前記接地線に帰還する漏洩電流を変流器
ZCTで検出し、更に該変流器出力に含まれる周
波数1の漏洩電流成分をフイルタFILで選択出力
した場合、変流器→増幅器→フイルタの系で周波
1の漏洩電流は必ず位相がずれるため、これら
の同期をとるためにはこの位相ずれを補償する必
要がありこのために同期検波器の第1の入力端又
は第2の入力端に移相器PSを挿入し、これによ
つて上記位相ずれを補い互いの同期をとつてい
た。
To further explain the measurement theory, if the measurement signal voltage applied to the ground line L E is a sine wave, for example, Esinω 1 t (ω 1 = 2π 1 ), the signal is returned via the ground point E. The leakage current I at frequency 1 is I=V/Rosinω 1 t+ω 1 CoVcosω 1 t (1), so the component in phase with the applied AC voltage, that is, the first term on the right side of equation (1) above, If the proportional value was detected by means such as synchronous detection, a measured value inversely proportional to the insulation resistance Ro could be obtained, and from this, the insulation resistance value of the electrical circuit could be determined. However, in this way, the leakage current that returns to the ground wire can be absorbed by the current transformer.
If the leakage current component of frequency 1 included in the output of the current transformer is detected by ZCT and then selectively outputted by filter FIL, the phase of the leakage current of frequency 1 will always shift in the current transformer → amplifier → filter system. , in order to synchronize these, it is necessary to compensate for this phase shift, and for this purpose, a phase shifter PS is inserted into the first input terminal or second input terminal of the synchronous detector. They compensated for phase shifts and synchronized with each other.

即ちこの移相器PSを設けることにより対地浮
遊容量Coがない状態(Co=0)にて、同期検波
器の第1、第2の入力端に印加される電圧の位相
差が零となるように前もつて設定しておき固定す
るものであつた。
In other words, by providing this phase shifter PS, the phase difference between the voltages applied to the first and second input terminals of the synchronous detector becomes zero when there is no stray capacitance Co to the ground (Co = 0). It was set in advance and fixed.

しかしながら、上述の如き従来の方法では変流
器ZCT、フイルタFIL等の周波数1における位相
特性が温度変化または使用部品特性の経年変化等
によつて変動すると最初の調整値との位相誤差が
発生し、正しい測定結果を提供できなくなる欠点
があつた。これらに対処するためには従来は特性
変動の少ない極めて高品質な零相変流器或はフイ
ルタ等を必要とするが、これらを採用しても位相
誤差の影響をなくすことは困難であつた。
However, in the conventional method as described above, if the phase characteristics at frequency 1 of the current transformer ZCT, filter FIL, etc. change due to temperature changes or secular changes in the characteristics of the parts used, a phase error with the initial adjustment value will occur. However, there was a drawback that it could not provide accurate measurement results. In order to deal with these problems, extremely high-quality zero-phase current transformers or filters with little variation in characteristics have traditionally been required, but even with these, it has been difficult to eliminate the effects of phase errors. .

(発明の目的) 本発明はこれらの欠点を解決するためになされ
たものであつて高品質な変流器或はフイルタを用
いることなく絶縁抵抗測定装置に用いられる構成
部品の位相差を補償し、正確な絶縁抵抗測定を行
なうことのできる絶縁抵抗測定装置の補償方法を
提供することを目的とする。
(Object of the Invention) The present invention has been made to solve these drawbacks, and is a method for compensating the phase difference of components used in an insulation resistance measuring device without using a high-quality current transformer or filter. An object of the present invention is to provide a compensation method for an insulation resistance measuring device that can perform accurate insulation resistance measurements.

(発明の概要) 上記目的を達成する為に本発明は電路に商用周
波数と異なる周波数1なる測定用低周波信号電圧
を印加し、接地線に帰還する前記周波数1の漏洩
電流を第1の変流器及び第1のフイルタを介して
検出すると共に、前記測定用低周波信号源に接続
された負荷に流れる電流から前記第1の変流器及
び前記第1のフイルタと夫々同一特性をもつ第2
の変流器及び第2のフイルタを介して前記周波数
1の成分を検出し、該第2のフイルタ出力と前記
第1のフイルタ出力とを用いて絶縁抵抗を測定す
ることにより、変流器並びにフイルタの回路定数
の変動に伴なう位相特性変動の影響を抑圧するよ
う手段を講ずる。
(Summary of the Invention) In order to achieve the above object, the present invention applies a measurement low frequency signal voltage having a frequency 1 different from the commercial frequency to an electric line, and reduces the leakage current of the frequency 1 returning to the grounding line by a first change. A second current transformer and a first filter having the same characteristics as the first current transformer and the first filter are detected from the current flowing to the load connected to the low frequency signal source for measurement. 2
the frequency through a current transformer and a second filter.
By detecting the component 1 and measuring the insulation resistance using the second filter output and the first filter output, it is possible to detect phase characteristic fluctuations due to fluctuations in the circuit constants of current transformers and filters. Take steps to limit the impact.

(実施例) 以下、本発明を図面に示した実施例に基づいて
詳細に説明する。
(Example) Hereinafter, the present invention will be described in detail based on an example shown in the drawings.

先ず本発明に係る測作方法を説明する前にその
理解を助ける為従来の方法の欠点を少しく詳細に
説明する。
First, before explaining the surveying method according to the present invention, the shortcomings of the conventional method will be explained in some detail to aid understanding.

第(1)式にて示される周波数1の漏洩電流成分I
が変流器ZCT、増幅器AMP、フイルタFILの系
で発生する位相ずれをθとすればフイルタFIL出
力I1は I1=V/Rosin(ω1t+θ) +ω1CoVcos(ω1t+θ) ……(2) となり、これは同期検波器MULTの第1の入力
端に印加される。
Leakage current component I at frequency 1 shown in equation (1)
If θ is the phase shift generated in the system of current transformer ZCT, amplifier AMP, and filter FIL, then filter FIL output I 1 is I 1 = V/Rosin (ω 1 t + θ) + ω 1 CoVcos (ω 1 t + θ) ... (2), which is applied to the first input terminal of the synchronous detector MULT.

また同期検波器の第2の入力端に印加される電
圧を例えば一定振幅のapsin(ω1t+θ1)とすれば、
同期検波器の出力に得られる直流分Dは D=1×p11) ……(3) (−は直流分を意味する) =Vap/2Rocos(θ−θ1) −ω1CpVap sin(θ−θ1) ……(4) 従つてθ=θ1のときの直流出力Doは Do=Vap/2Ro ……(5) となり、V、apは一定となるから絶縁抵抗Roに
逆比例した値を測定することができる。したがつ
て位相ずれθ−θ1が零でない時の上記Doに対す
るDの誤差Eは E=Do−D/Do=1−cos(θ−θ1) +ω1CoRosin(θ−θ1) ……(6) となる。
Furthermore, if the voltage applied to the second input terminal of the synchronous detector is, for example, ap sin (ω 1 t + θ 1 ) with a constant amplitude, then
The DC component D obtained from the output of the synchronous detector is D = 1 × p ( 1 + 1 ) ... (3) (- means DC component) = Va p / 2 Rocos (θ - θ 1 ) − ω 1 C p Va p sin (θ−θ 1 ) ...(4) Therefore, when θ = θ 1 , the DC output Do is Do = Va p /2Ro ... (5) and V and a p are constant. It is possible to measure a value that is inversely proportional to the insulation resistance Ro. Therefore, when the phase shift θ-θ 1 is not zero, the error E of D with respect to the above Do is E=Do-D/Do=1-cos(θ-θ 1 ) +ω 1 CoRosin(θ-θ 1 )... (6) becomes.

今、例えばθ−θ1=1(度)のとき(6)式にてf1
=25Hzで、Ro=20KΩ、Co=5μFとするとき
ω1CoRo15.7となるから誤差εは27.4%となり
著しく測定誤差が大きくなることが分る。
Now, for example, when θ−θ 1 = 1 (degrees), f 1 in equation (6)
= 25Hz, Ro = 20KΩ, and Co = 5μF, ω 1 CoRo = 15.7, so the error ε is 27.4%, which means that the measurement error becomes significantly large.

又変流器ZCTの温度変動例えば−10〜60℃に
対する位相変動特性は、f1=25Hzにては±1度に
も及ぶことになり更に測定誤差が大きくなる。
Furthermore, the phase variation characteristics of the current transformer ZCT with respect to temperature variations, for example -10 to 60 degrees Celsius, range as much as ±1 degree at f 1 =25 Hz, further increasing the measurement error.

本発明は上述の位相ずれに伴う誤差の発生を極
力抑える方法を提案するものである。
The present invention proposes a method for suppressing the occurrence of errors due to the above-mentioned phase shift as much as possible.

第2図は本発明に係る絶縁抵抗測定方法の一実
施例を示す回路図であつて第1図と同一の記号は
同一の意味をもつものとする。
FIG. 2 is a circuit diagram showing an embodiment of the insulation resistance measuring method according to the present invention, and the same symbols as in FIG. 1 have the same meanings.

同図に於いて接地線LEに周波数1なる低周波発
生用の発振器OSCをトランスOTを介して直列に
接続して電圧Vなる電圧を印加する。この際接地
線に直列挿入されるトランスのインピーダンスは
十分に低く選ぶ。更に変流器ZCT出力をアンプ
AMPに入力し該アンプ出力を周波数1の成分を
通し、商用周波成分を除去するフイルタFILに印
加することにより(2)式に相当する出力が得られ、
これを同期検波器MULTの第1の入力端1に印
加する。
In the figure, an oscillator OSC for generating a low frequency of frequency 1 is connected in series to the ground line L E via a transformer OT, and a voltage V is applied to the ground line L E. At this time, the impedance of the transformer inserted in series with the ground wire is selected to be sufficiently low. Furthermore, the current transformer ZCT output is amplified.
By inputting the amplifier output to the AMP and applying it to the filter FIL that passes the frequency 1 component and removes the commercial frequency component, an output corresponding to equation (2) can be obtained,
This is applied to the first input terminal 1 of the synchronous detector MULT.

一方、低周波信号印加用のトランスOT2次側
に例えば抵抗Rを接続し、一定電流iを流せば i=V/Rsinω1t ……(7) となる。この電流iを前記変流器ZCTと同一特
性をもつ第2の変流器ZCT1にて検出しこれを前
記増幅器AMPと同一特性をもつ第2の増幅器
AMP1に印加し、その出力を前記フイルタFILと
同一特性をもつ第2のフイルタFIL1に印加すれ
ば、該フイルタFIL1の出力i1は i1=aV/Rsin(ω1t+θ′) ……(8) となる。ここでθ′は変流器ZCT1からフイルタ
FIL1出力までの周波数1における位相ずれであり
一般にθ≒θ′となる。これは変流器ZCT1とZCT、
増幅器AMP1とAMP及びフイルタFIL1とFILの
それぞれの特性がほゞ同一である為である。また
aはこれらの系の利得である。
On the other hand, if, for example, a resistor R is connected to the secondary side of the transformer OT for applying a low-frequency signal, and a constant current i is caused to flow, i=V/Rsinω 1 t (7). This current i is detected by a second current transformer ZCT 1 having the same characteristics as the current transformer ZCT, and is transferred to a second current transformer ZCT 1 having the same characteristics as the amplifier AMP.
AMP 1 and its output is applied to a second filter FIL 1 having the same characteristics as the filter FIL, the output i 1 of the filter FIL 1 is i 1 = aV/Rsin (ω 1 t + θ')... …(8) becomes. where θ′ is from current transformer ZCT 1 to filter
This is the phase shift at frequency 1 up to FIL 1 output, and generally θ≒θ'. This is current transformer ZCT 1 and ZCT,
This is because the characteristics of the amplifiers AMP 1 and AMP and the filters FIL 1 and FIL are almost the same. Also, a is the gain of these systems.

したがつて、フイルタFIL1の出力を移相器PS
に加えθ=θとなるように設定し、移相器PSの
出力を同期検波器MULTの第2の入力端に印加
することにより同期検波器MULTの出力OUT2
には(3)式の関係と同様の計算から D1=aV2/2R ……(9) が得られる。ここでV及びaは一定であるから出
力OUTの値を知ることにより絶縁抵抗を測定す
ることができる。これらの関係を更に詳細に説明
するならば、温度変動等により(2)式に含まれる位
相θがθ+ε1に変化し、(8)式に含まれる位相θ′が
θ′+ε′に変化したとき、これらの位相差は θ+ε1−(θ′+ε′)=θ−θ′+ε1−ε′ となるがここでθ−θ′=0となるよう移相器PS
にて設定しているから位相ずれε1−ε′が誤差発生
の原因となるものの上述の如く前記の両系はほぼ
特性のそろつた回路を使用しε1とε′はほぼ等しく
変動する如く選定すればε1−ε′は著しく小さくな
り誤差の発生は無視しうるものとすることができ
る。
Therefore, the output of filter FIL 1 is transferred to phase shifter PS
In addition, by setting θ=θ and applying the output of the phase shifter PS to the second input terminal of the synchronous detector MULT, the output OUT 2 of the synchronous detector MULT
From a calculation similar to the relationship in equation (3), D 1 = aV 2 /2R (9) can be obtained. Here, since V and a are constant, the insulation resistance can be measured by knowing the value of the output OUT. To explain these relationships in more detail, due to temperature fluctuations, the phase θ included in equation (2) changes to θ + ε 1 , and the phase θ′ included in equation (8) changes to θ′ + ε′. Then, the phase difference between them is θ+ε 1 − (θ′+ε′)=θ−θ′+ε 1 −ε′, but the phase shifter PS is set so that θ−θ′=0.
Since the phase shift ε 1 −ε′ is set at If selected, ε 1 −ε′ becomes extremely small, and the occurrence of an error can be ignored.

尚、フイルタFILの温度による位相特性の変動
が著しく少ないものを使用できる場合にはフイル
タFIL1を挿入しなくても済むから経済的であり
この場合フイルタFILの固定の位相ずれ分は移相
器PSにて調整すればよいことは明らかであろう。
In addition, if you can use a filter FIL whose phase characteristics vary little due to temperature, it is economical because you do not need to insert the filter FIL 1. In this case, the fixed phase shift of the filter FIL can be replaced by a phase shifter. It is clear that adjustments can be made in PS.

以上説明したように本発明の方法によれば変流
器ZCT→フイルタFILの系と同一特性の系を変流
器ZCT1→フイルタFIL1に設けているため、各系
の総合位相ずれの温度、経年変化による変動は相
対的に同一とすることができ、且つ、移相器PS
のみを変動の少ないものとすることにより、それ
ぞれの変動を相殺させることが可能となる。な
お、高安定な移相器は低位置推移をもつ移相器を
複数段接続することにより容易に実現され図示を
省略した各移相器の構成部品の定数変動による位
相変動があつたとしても総合位相特性の変動は極
めて小さいものとすることができる 第3図は測定用信号電圧を零相変流器で検出す
る場合の他の実施例を示す回路図であつてこれは
トランスOTに設けた別巻線を抵抗Rで終端し、
これに流れる電流を変流器ZCT1で検出するもの
である。
As explained above, according to the method of the present invention, a system with the same characteristics as the system of current transformer ZCT → filter FIL is provided in current transformer ZCT 1 → filter FIL 1 , so the temperature of the total phase shift of each system , the fluctuation due to aging can be relatively the same, and the phase shifter PS
By making only the fluctuations small, it becomes possible to offset each fluctuation. Note that a highly stable phase shifter can be easily realized by connecting multiple stages of phase shifters with low positional shift, and even if there is a phase fluctuation due to constant fluctuations of the component parts of each phase shifter (not shown). Fluctuations in the overall phase characteristics can be made extremely small. Figure 3 is a circuit diagram showing another embodiment in which the measurement signal voltage is detected by a zero-phase current transformer. Terminate the separate winding with a resistor R,
The current flowing through this is detected by current transformer ZCT 1 .

第4図は本発明の他の実施例を示す回路図であ
り接地線LEを貫通するトランスOTに設けた別巻
線を抵抗Rで終端し、これに流れる電流を検出す
るものである。
FIG. 4 is a circuit diagram showing another embodiment of the present invention, in which a separate winding provided in a transformer OT passing through a grounding wire L E is terminated with a resistor R, and the current flowing through this is detected.

本実施例においては説明簡単の為単相2線の場
合を示したが本発明はこれに限定する必然性は全
くなく単相3線式或は3相3線式の場合であつて
も同一の原理に基いて実施可能なことは明らかで
あり、又低周波信号の印加に当り前記接地線を切
断して挿入したが、発振器と接続されたトランス
を貫通させてもよく、また同期検波器MULTの
第2の入力端に印加される電圧の位相を上記実施
例より90゜推移させるようにすれば同期検波器出
力に対地浮遊容量に比例した値を得ることができ
これによつて電路の対値浮遊容量をも測定可能で
ある。
In this embodiment, a single-phase, two-wire case is shown for ease of explanation, but the present invention is not necessarily limited to this, and the same applies even in the case of a single-phase, three-wire system or a three-phase, three-wire system. It is clear that it can be implemented based on the principle, and although the grounding wire was cut and inserted when applying the low frequency signal, it may also be passed through the transformer connected to the oscillator, and the synchronous detector MULT If the phase of the voltage applied to the second input terminal of the synchronous detector is shifted by 90 degrees from the above example, a value proportional to the stray capacitance to ground can be obtained from the output of the synchronous detector. It is also possible to measure stray capacitance.

また本実施例には示していないが、(2)式で表わ
されるフイルタFILの出力I1の絶対値 を整流回路で別途検出すると共にフイルタFILの
出力I1とフイルタFIL1の出力との位相差δを検出
し|I1|cosδの演算をほどこすことにより絶縁抵
抗Roの逆数に比例した値を求めることができる
ことになるから、上述の方法と同様に絶縁抵抗測
定に於ける回路位相変動の補償方法としても利用
することができる。
Although not shown in this embodiment, the absolute value of the output I 1 of the filter FIL expressed by equation (2) is detected separately by a rectifier circuit, and the phase difference δ between the output of the filter FIL and the output of the filter FIL 1 is detected, and by calculating | I 1 |cosδ, a value proportional to the reciprocal of the insulation resistance Ro can be obtained. Since this method can be obtained, it can also be used as a compensation method for circuit phase fluctuations in insulation resistance measurement, similar to the method described above.

更に上記説明で零相電流の検出に零相変流器
ZCTを用いているが、本発明は何らこれに限定
する必要はなく例えば零相変流器ZCTを用いず、
接地線LEを切断しこれに低抵抗を直列に挿入し、
この抵抗の両端の電圧値を検出してもよい。但し
このときは第2図に示した実施例における電相変
流器ZCT,ZCT1を除去し、フイルタFIL,FIL1
のみを残せばよい。
Furthermore, in the above explanation, a zero-sequence current transformer is used to detect zero-sequence current.
Although ZCT is used, the present invention does not need to be limited to this in any way, and for example, without using a zero-phase current transformer ZCT,
Cut the grounding wire L E and insert a low resistance in series with it,
The voltage value across this resistor may be detected. However, in this case, the electric phase current transformers ZCT and ZCT 1 in the embodiment shown in Fig. 2 are removed, and the filters FIL and FIL 1 are replaced.
All you have to do is leave only the

また測定信号電圧を正弦波として説明したがこ
れに限定されるものではなく、例えば矩形波であ
つてもよくその基本波成分或は高周波成分を用い
てもよい。
Furthermore, although the measurement signal voltage has been described as a sine wave, it is not limited to this. For example, it may be a rectangular wave, and its fundamental wave component or high frequency component may be used.

(発明の効果) 本発明は上述した如く構成し且つ機能するもの
であるから電路の絶縁抵抗、対値浮遊容量又は電
路抵抗等の測定回路に於いて測定用信号電圧の印
加信号の漏洩成分検出回路に使用する増幅器、フ
イルタ等と同一特性を有する同様の回路を介して
得る前記測定用信号を用いて前記諸測定を行うよ
う構成したものであつて、温度の変化或は使用部
品の経年変化による測定回路の特性変化が互いに
相殺されるから極めて安価に正確な電路の諸特性
測定を行ううえで著効を奏する。
(Effects of the Invention) Since the present invention is constructed and functions as described above, it is possible to detect the leakage component of the applied signal of the signal voltage for measurement in a circuit for measuring the insulation resistance, relative stray capacitance, or resistance of the electric circuit. The device is configured to perform the various measurements using the measurement signal obtained through a similar circuit having the same characteristics as the amplifier, filter, etc. used in the circuit, and is subject to changes in temperature or aging of the parts used. Since the changes in the characteristics of the measurement circuit due to the above cancel each other out, it is very effective in accurately measuring various characteristics of the electric circuit at a very low cost.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の絶縁抵抗を測定する方法を示す
ブロツク図。第2図は本発明の一実施例を示すブ
ロツク図、第3及び第4図は本発明の他の実施例
を示すブロツク図である。
FIG. 1 is a block diagram showing a conventional method for measuring insulation resistance. FIG. 2 is a block diagram showing one embodiment of the invention, and FIGS. 3 and 4 are block diagrams showing other embodiments of the invention.

Claims (1)

【特許請求の範囲】 1 接地線を介して一端が接地された電路に周波
数f1なる測定用低周波信号を印加し、前記接地線
に結合した変流器、増幅器及びフイルタを介して
接地線に還流する前記低周波信号を導出し、この
低周波信号を前記印加した信号と同相成分にて同
期検波することによつて当該電路の対地絶縁抵抗
に逆比例した信号を、また、前記接地線に還流す
る漏洩電流を前記印加信号とは90度位相の推移し
た信号により同期検波することによつて当該電路
の対地容量に比例した信号を検出し、電路の絶縁
抵抗または対地容量を測定する方法において、前
記同期検波手段に供給する基準信号を前記還流信
号を導出するに使用するものと略同一特性の第二
の変流器、増幅器及びフイルタを介して入力する
ことによつて同期検波器する二つの信号の位相ず
れを防止したことを特徴とする絶縁抵抗等測定装
置の補償方法。 2 前記同期検波器に基準信号を供給する第二の
変流器、増幅器及びフイルタからなる系統に位相
器を挿入し、当該同期検波器に入力する前記帰還
低周波信号と前記基準信号との位相関係が所望値
になるように調整し得るようにしたことを特徴と
する特許請求の範囲1項記載の絶縁抵抗等測定装
置の補償方法。 3 接地線を介して一端が接地された電路に周波
数f1なる測定用低周波信号を印加し、前記接地線
に結合した変流器、増幅器及び第一のフイルタを
介して接地線に還流する前記低周波信号を導出す
ると共にこの低周波信号の絶対値|I1|を求め、
前記接地線に印加した低周波信号の一部を前記還
流信号を導出するに使用するものと同一特性の第
二の変流器、増幅器及びフイルタの直列回路に供
給し、該第二のフイルタ出力と前記第一のフイル
タ出力信号との位相差δを検出し、|I1|・cosδ
なる演算によつて当該電路の対地絶縁抵抗に逆比
例した値を求めたことを特徴とする絶縁抵抗等測
定装置の補償方法。 4 前記接地線に結合した変流器に置換して抵抗
器を挿入し、該抵抗器両端から前記低周波信号の
還流成分を導出すると共に、前記第二の変流器を
除去したことを特徴とする特許請求の範囲3項記
載の絶縁抵抗等測定装置の補償方法。
[Claims] 1. A low frequency measurement signal having a frequency f1 is applied to an electrical line whose one end is grounded via a grounding line, and the grounding line is connected via a current transformer, an amplifier, and a filter coupled to the grounding line. By deriving the low frequency signal that flows back to the ground line and synchronously detecting this low frequency signal using the in-phase component of the applied signal, a signal that is inversely proportional to the ground insulation resistance of the electric line can be generated. A method of measuring the insulation resistance or grounding capacity of the electrical circuit by synchronously detecting the leakage current flowing back into the circuit using a signal whose phase has shifted by 90 degrees from the applied signal to detect a signal proportional to the grounding capacity of the electrical circuit. , the reference signal supplied to the synchronous detection means is inputted through a second current transformer, an amplifier, and a filter having substantially the same characteristics as those used for deriving the reflux signal, thereby performing a synchronous detection. A compensation method for a measuring device for insulation resistance, etc., characterized in that a phase shift between two signals is prevented. 2. A phase shifter is inserted into a system consisting of a second current transformer, an amplifier, and a filter that supplies a reference signal to the synchronous detector, and the phase between the feedback low frequency signal input to the synchronous detector and the reference signal is adjusted. 2. A method for compensating an apparatus for measuring insulation resistance, etc. according to claim 1, characterized in that the relationship can be adjusted to a desired value. 3. Apply a low frequency signal for measurement with a frequency of f 1 to the electrical line whose one end is grounded via the grounding wire, and return the signal to the grounding wire via the current transformer, amplifier, and first filter coupled to the grounding wire. Deriving the low frequency signal and determining the absolute value |I 1 | of this low frequency signal,
A part of the low frequency signal applied to the ground wire is supplied to a series circuit of a second current transformer, an amplifier and a filter having the same characteristics as those used for deriving the freewheeling signal, and the output of the second filter is Detect the phase difference δ between and the first filter output signal, |I 1 |・cosδ
1. A method for compensating an insulation resistance, etc., measuring device, characterized in that a value inversely proportional to the ground insulation resistance of the electrical circuit is determined by the following calculation. 4. A resistor is inserted in place of the current transformer connected to the grounding wire, and the reflux component of the low frequency signal is derived from both ends of the resistor, and the second current transformer is removed. A method of compensating for an apparatus for measuring insulation resistance, etc., according to claim 3.
JP4184284A 1984-03-05 1984-03-05 Compensating method of measuring device for insulation resistance Granted JPS60186765A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4184284A JPS60186765A (en) 1984-03-05 1984-03-05 Compensating method of measuring device for insulation resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4184284A JPS60186765A (en) 1984-03-05 1984-03-05 Compensating method of measuring device for insulation resistance

Publications (2)

Publication Number Publication Date
JPS60186765A JPS60186765A (en) 1985-09-24
JPH0552466B2 true JPH0552466B2 (en) 1993-08-05

Family

ID=12619506

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4184284A Granted JPS60186765A (en) 1984-03-05 1984-03-05 Compensating method of measuring device for insulation resistance

Country Status (1)

Country Link
JP (1) JPS60186765A (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4851761A (en) * 1988-11-03 1989-07-25 Toyo Communication Equipment Co., Ltd. Method for measuring insulation resistance of electric line
US4857830A (en) * 1988-11-03 1989-08-15 Toyo Communication Equipment Co., Ltd. Method for measuring insulation resistance of electric line
US4857855A (en) * 1988-11-03 1989-08-15 Toyo Communication Equipment Co., Ltd. Method for compensating for phase of insulation resistance measuring circuit
KR970000643Y1 (en) * 1993-12-27 1997-01-30 주식회사 유니온금속 Valve for air conditioner
JP4835286B2 (en) * 2006-06-30 2011-12-14 株式会社明電舎 Insulation monitoring system and method for low voltage electrical equipment
JP5455776B2 (en) * 2010-05-12 2014-03-26 三菱電機株式会社 Current measuring device

Also Published As

Publication number Publication date
JPS60186765A (en) 1985-09-24

Similar Documents

Publication Publication Date Title
US4857830A (en) Method for measuring insulation resistance of electric line
JPH0552466B2 (en)
US4851761A (en) Method for measuring insulation resistance of electric line
JP2617324B2 (en) Insulation resistance measurement method
JPH0473553B2 (en)
JP2696513B2 (en) Electrical capacitance measurement method for ground
JP2646089B2 (en) Method for measuring insulation resistance of low-voltage circuit
JPH0721523B2 (en) Insulation resistance measurement method that compensates for fluctuations in circuit constants
JP2750690B2 (en) Leakage current detection method
JP2614447B2 (en) Insulation resistance measurement method that compensates for the effect of ground resistance
JP2764582B2 (en) Simple insulation resistance measurement method
JP2696510B2 (en) Measurement method of insulation resistance of electric circuit
JP2750707B2 (en) Insulation resistance measurement method compensated for ground resistance
JPH0640113B2 (en) Simple insulation resistance measuring method
JP2617325B2 (en) Insulation resistance measurement method
JP2896574B2 (en) Compensation method for phase characteristics of zero-phase current transformer
JP2612703B2 (en) Insulation resistance measurement method with canceling ground resistance
JPS63175772A (en) Phase compensating method for insulation resistance measuring instrument
JPS58127172A (en) Insulation resistance measuring apparatus for electric line with suppressed stray capacity
JPH028529B2 (en)
JPH0814593B2 (en) Stray capacitance compensation method in insulation resistance measurement of electric circuits etc.
JP2665912B2 (en) Insulation resistance measurement method that compensates for the effect of ground resistance
JPH0721522B2 (en) Insulation resistance measurement method with phase compensation
JPS637349B2 (en)
JPH0721518B2 (en) Insulation resistance measurement method