JPH028529B2 - - Google Patents

Info

Publication number
JPH028529B2
JPH028529B2 JP17563284A JP17563284A JPH028529B2 JP H028529 B2 JPH028529 B2 JP H028529B2 JP 17563284 A JP17563284 A JP 17563284A JP 17563284 A JP17563284 A JP 17563284A JP H028529 B2 JPH028529 B2 JP H028529B2
Authority
JP
Japan
Prior art keywords
current
measurement
low frequency
current transformer
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP17563284A
Other languages
Japanese (ja)
Other versions
JPS6154815A (en
Inventor
Tatsuji Matsuno
Yoshio Nomura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Communication Equipment Co Ltd
Original Assignee
Toyo Communication Equipment Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Communication Equipment Co Ltd filed Critical Toyo Communication Equipment Co Ltd
Priority to JP17563284A priority Critical patent/JPS6154815A/en
Publication of JPS6154815A publication Critical patent/JPS6154815A/en
Publication of JPH028529B2 publication Critical patent/JPH028529B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Measurement Of Resistance Or Impedance (AREA)
  • Emergency Protection Circuit Devices (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は変流器を用いて電路等の漏洩電流を検
出する場合の位相誤差を除去する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a method for removing phase errors when detecting leakage current in electrical circuits, etc. using a current transformer.

(従来の技術) 従来、活線状態にて電路等の絶縁抵抗を測定す
る方法として受電変圧器の低圧2次側の接地線に
測定用低周波電圧を印加し、接地線に低圧電路の
絶縁低抗、対地静電容量を介して帰還する漏洩電
流を検出し該漏洩電流中の前記測定用低周波電圧
成分と同位相成分、即ち有効分を検出することに
より電路の絶縁抵抗を測定する方法が広く行なわ
れている。
(Prior art) Conventionally, as a method of measuring the insulation resistance of a power line, etc. in a live line state, a low-frequency voltage for measurement is applied to the ground wire on the low-voltage secondary side of the power receiving transformer, and the insulation resistance of the low-voltage power line is applied to the ground wire. A method of measuring the insulation resistance of an electric circuit by detecting a leakage current that returns through a low resistance, ground capacitance, and detecting a component in phase with the measurement low frequency voltage component, that is, an effective component in the leakage current. is widely practiced.

この場合上記漏洩電流の検出にあたつては前記
接地線を貫通せしめた変流器(以下ZCTと略す)
による場合が一般的である。
In this case, in order to detect the leakage current, a current transformer (hereinafter abbreviated as ZCT) that passes through the grounding wire is used.
This is generally the case.

(発明が解決せんとする問題点) しかしながら、ZCTの一次電流として比較的
大電流が流れる場合、この電流によつてZCTの
磁心インダクタンス特性等が変化するため、2次
巻線電流の位相が変動してしまい位相検出に誤差
を生じる。従つて電路の絶縁抵抗等の正確なる測
定ができないと云う問題があつた。
(Problem to be solved by the invention) However, when a relatively large current flows as the primary current of the ZCT, this current changes the magnetic core inductance characteristics of the ZCT, so the phase of the secondary winding current changes. This causes an error in phase detection. Therefore, there was a problem in that it was not possible to accurately measure the insulation resistance of the electric circuit.

即ち、上記接地線に帰還する漏洩電流中には商
用周波成分と印加した低周波成分が含まれている
が、一般に測定用電圧としての印加電圧は負荷機
器への影響を考慮して電路の商用周波の2次電圧
にくらべて十分に低い(例えば電路電圧100又は
200Vに対して測定用印加電圧は2〜3V程度)。
したがつて商用周波の漏洩電流は上記低周波成分
のそれにくらべ著しく大きくなるのが現状であ
り、このためZCTの2次巻線出力中の低周波成
分の位相は商用周波成分の増減に伴つて大きく変
動することが観測される。一方上述の如く、低周
波成分の中の印加電圧と同相の有効分を検出する
に当つてはこのような位相変動は結果的に絶縁抵
抗の測定値に直接誤差として影響することになる
ためZCT出力の位相誤差変動が大きく正確な測
定が不可能であつた。
In other words, the leakage current that returns to the grounding wire contains commercial frequency components and applied low frequency components, but generally the applied voltage as the measurement voltage is set to It is sufficiently low compared to the secondary voltage of the frequency (e.g. line voltage 100 or
The applied voltage for measurement is about 2 to 3 V compared to 200 V).
Therefore, the current situation is that the commercial frequency leakage current is significantly larger than that of the low frequency component mentioned above, and for this reason, the phase of the low frequency component in the ZCT secondary winding output changes as the commercial frequency component increases or decreases. Large fluctuations are observed. On the other hand, as mentioned above, when detecting the effective component in the same phase as the applied voltage among the low frequency components, such phase fluctuations will directly affect the measured value of insulation resistance as an error, so ZCT Accurate measurement was impossible due to large phase error fluctuations in the output.

以下、変流器に大電流が流れる場合の磁心イン
ダクタンスの影響を説明する。
The influence of magnetic core inductance when a large current flows through a current transformer will be explained below.

第3図は電流I〓の流れている線路Iを貫通せし
めたZCTの2次巻線(nターン)出力を抵抗R0
にて終端した場合を示している。これを等価回路
で示せば第4図のようになる。
Figure 3 shows the secondary winding (n-turn) output of the ZCT that passes through the line I through which the current I is flowing, and connects it to the resistor R0.
This shows the case where the terminal is terminated at . If this is shown as an equivalent circuit, it will be as shown in FIG.

同図に於いてLはZCTのインダクタンス、R
は実効抵抗であり終端抵抗R0に得られる電圧V0
は V0=I〓/n R0XL/XL+R+R0 (1) XL=jωL となる。又、V〓0とI〓との位相差φは(1)式から φ=tan-1R+R0/ωL (2) となる。したがつて電流I〓による該ZCTの磁心の
ヒステリシスの影響でインダクタンスLが変化す
れば位相φは変化することになる。
In the same figure, L is the inductance of ZCT, R
is the effective resistance and the voltage V 0 obtained at the terminating resistor R 0
is V 0 =I〓/n R 0 X L /X L +R+R 0 (1) X L =jωL. Further, the phase difference φ between V〓 0 and I〓 is obtained from equation (1) as follows: φ=tan −1 R+R 0 /ωL (2). Therefore, if the inductance L changes due to the influence of the hysteresis of the magnetic core of the ZCT due to the current I, the phase φ will change.

また(2)式のR0は電流電圧変換すれば零とでき
ることは明らかであるが、Rを零にすることは困
難である。
Furthermore, although it is clear that R 0 in equation (2) can be made zero by converting current to voltage, it is difficult to make R zero.

第5図は電流Iの変化に対する位相の実測例で
ありこの場合電流の変化によつて数degにわたつ
て変化することが分る。このようにZCTの1次
電流の変化巾が大きいと位相変動も大きくなる。
FIG. 5 shows an example of actual measurement of the phase with respect to changes in current I, and it can be seen that in this case, the phase changes over several degrees due to changes in current. In this way, when the range of change in the primary current of ZCT is large, the phase fluctuation also becomes large.

従つて1次電流の変化巾を小さくすることによ
つて位相変動を小さくすることができる。
Therefore, by reducing the variation width of the primary current, the phase fluctuation can be reduced.

(問題を解決するための手段) 本発明は上述のような従来の電路等の絶縁抵抗
等の測定に於いて使用する変流器の磁心インダク
タンスの変動を抑圧し、より正確な測定を行うた
めになされたものであつて、以下の如き構成をと
る。
(Means for Solving the Problem) The present invention suppresses fluctuations in the magnetic core inductance of a current transformer used in the conventional measurement of insulation resistance, etc. of electrical circuits, etc., as described above, and achieves more accurate measurement. It has the following structure.

即ち、従来の電路の絶縁抵抗測定方法に於いて
使用する、測定用低周波電圧の漏洩成分を検出す
るために接地線を貫通した変流器に新らたな接続
線を貫通せしめ、別途設けた手段によつて該変流
器に影響を与える前記測定用低周波電圧以外の周
波数電流成分とほゞ同レベルかつ逆位相の電流成
分を導出しこれを前記接続線を介して前記変流器
の一次側に印加せしめるように構成する。
That is, in order to detect the leakage component of the low-frequency voltage for measurement, which is used in the conventional method of measuring the insulation resistance of electric circuits, a new connecting wire is passed through the current transformer that passes through the grounding wire, and a separate connection wire is installed. A current component having approximately the same level and opposite phase as a frequency current component other than the measurement low-frequency voltage that affects the current transformer is derived by means of the above-mentioned means, and is connected to the current transformer via the connection line. The configuration is such that the voltage is applied to the primary side.

この際上述した不要電流成分と同一レベルかつ
逆位相電流成分を導出手段はどのようなものであ
つてもよい。
At this time, any means may be used to derive a current component having the same level and opposite phase as the above-mentioned unnecessary current component.

(作 用) 本発明はこのように構成するものであるから、
接地線に還流する各電流成分のうち測定用低周波
電圧以外の成分は前記変流器の一次側に於いて相
殺され該変流器ZCTの磁心にこれらの電流が影
響しない。従つて従来比較的高電流として前記接
地線に還流する商用周波電流或はその他の電流に
よつて変流器ZCTの磁心の中心インダクタンス
が振られ検出すべき測定用低周波電流の位相に誤
差を生ずると云う欠点を除去することができ、か
つ該変流器の2次側に接続した増幅器の入力にこ
れら不要電圧が生じないことから以後の信号処理
を極めて容易とすることができる。
(Function) Since the present invention is configured as described above,
Among the current components flowing back to the grounding wire, components other than the low frequency voltage for measurement are canceled out on the primary side of the current transformer, and these currents do not affect the magnetic core of the current transformer ZCT. Therefore, conventionally, the central inductance of the magnetic core of the current transformer ZCT is swung by the commercial frequency current or other current flowing back to the ground wire as a relatively high current, causing an error in the phase of the low frequency current for measurement to be detected. Further, since these unnecessary voltages are not generated at the input of the amplifier connected to the secondary side of the current transformer, subsequent signal processing can be made extremely easy.

(実施例) 以下本発明の詳細を図示した実施例に基づいて
説明する。
(Example) The details of the present invention will be explained below based on the illustrated example.

第1図は本発明の一実施例を示すブロツク図で
ある。同図において受電トランス2の低圧電路3
及び4のうちどちらか一方例えば4は接地線5を
介して大地と接続されるが、前記電路に測定用低
周波電圧を印加するために信号発振器OSCを接
続したトランス6と、前記測定用低周波電圧によ
る電路からの漏洩成分を検出するための第1の変
流器ZCT1及び前記測定用低周波電圧以外の成分
を検出するための第2の変流器ZCT2とを前記接
地線に夫々貫通させると共に前記第1の変流器の
2次巻き線出力を増幅器AMP1に、又その出力を
前記測定用低周波電圧のみを抽出する帯域波器
BPFを介して同期検波器MULに入力し、これと
該部に於いて位相シフタPSを介して得る前記低
周波発振器OSCの出力の一部との積出力を端子
7に得る。
FIG. 1 is a block diagram showing one embodiment of the present invention. In the figure, the low voltage line 3 of the power receiving transformer 2
and 4, for example, 4 is connected to the ground via a grounding wire 5, and a transformer 6 to which a signal oscillator OSC is connected in order to apply a low frequency voltage for measurement to the electric line, and the low frequency voltage for measurement A first current transformer ZCT 1 for detecting leakage components from the electric circuit due to frequency voltage and a second current transformer ZCT 2 for detecting components other than the measurement low frequency voltage are connected to the ground wire. a bandpass waveform generator that passes through each of the secondary windings of the first current transformer to the amplifier AMP 1 , and extracts only the low frequency voltage for measurement from the output of the secondary winding of the first current transformer;
It is input to the synchronous detector MUL via the BPF, and the product output of this and a part of the output of the low frequency oscillator OSC obtained through the phase shifter PS is obtained at the terminal 7.

更に前記第2の変流器ZCT2の二次巻き線出力
を増幅器AMP2に、又その出力を帯域阻止波器
BEF1を介して測定用低周波電圧以外の成分を抽
出し所要の増幅をAMP3で行なつてこれを抵抗
R1及びR2を介して前記ZCT1に結合した接続線8
に印加する。この際ZCT1に印加する電流は接続
線を流れる商用周波成分の電流とほゞ同一レベル
かつ逆位相となるようにし、これらの電流が互い
に相殺されるようにしておく。
Further, the secondary winding output of the second current transformer ZCT 2 is sent to the amplifier AMP 2 , and its output is sent to the band-stop waveform generator.
Components other than the low frequency voltage for measurement are extracted via BEF 1 , the necessary amplification is performed using AMP 3 , and this is connected to the resistor.
Connection line 8 coupled to said ZCT 1 via R 1 and R 2
to be applied. At this time, the current applied to ZCT 1 is made to have approximately the same level and opposite phase as the current of the commercial frequency component flowing through the connection line, so that these currents cancel each other out.

このように構成した電路の絶縁抵抗測定回路で
は、該電路と大地との間に存在する絶縁抵抗R3
及びR4と浮遊容量C1及びC2を経て電路への印加
する測定用低周波電圧V1〔V〕及び電路電圧をV0
〔V〕(商用周波数0)は各電圧波形を正弦波とす
れば夫々接地線5に帰還する漏洩電流Iは一般に
次式となる。
In the circuit for measuring the insulation resistance of an electric path configured in this way, the insulation resistance R 3 that exists between the electric path and the ground is measured.
and the measurement low frequency voltage V 1 [V] applied to the circuit via R 4 and stray capacitances C 1 and C 2 and the circuit voltage V 0
[V] (commercial frequency 0 ) If each voltage waveform is a sine wave, the leakage current I that returns to the grounding wire 5 is generally expressed by the following equation.

I=(√2V0/R1)sinω0t+√2V0ω0C1cosω0t+√
2V1{1/R3)+(1/R4)}sinω1t +√2V1ω1(C1+C2)cosω1t ……(3) 又、この電流のうちからZCT2、AMP2、BEF1
及びAMP3からなる前述のルートを介して接続線
8に印加する測定用低周波電圧1以外の成分i0
算出すると次式で表わし得る。
I=(√2V 0 /R 1 ) sinω 0 t+√2V 0 ω 0 C 1 cosω 0 t+√
2V 1 {1/R 3 ) + (1/R 4 )}sinω 1 t +√2V 1 ω 1 (C 1 +C 2 )cosω 1 t ...(3) Also, from this current, ZCT 2 and AMP 2 , BEF 1
The component i 0 other than the measurement low frequency voltage 1 applied to the connection line 8 via the above-mentioned route consisting of AMP 3 and AMP 3 is calculated and can be expressed by the following equation.

i0=(√2V0a0/R1)sin(ω0t+θ0)+ √2V0ω0C1a0cos(ω0t+θ0) ……(4) 但し、a0;係数、θ0;ZCT2による位相ずれこ
こで上記式(4)にてa0≒1となるようにAMP2
BEF1−AMP3で構成する系で調整し、更にこれ
を前述の接続線8をZCT1に於いて接地線5に流
れる電流と逆相になる如く結合すれば測定用低周
波電圧1を検出する変流器ZCT1の2次電流は I0=I−i0 =(√2V0/R1){sinω0t−a0sin(ω0t+θ0)} +√2V0ω0C1{cosω0t−a0cos(ω0t+θ0)} +√2V1{(1/R3+1/R4)sinω1t +√2V1ω1(C1+C2)cosω1t ……(5) ここでa0≒1かつ両者の位相ずれは1〜2degな
るから上式(5)の第1項及び第2項は小さいものに
することは可能である。
i 0 = (√2V 0 a 0 /R 1 ) sin (ω 0 t + θ 0 ) + √2V 0 ω 0 C 1 a 0 cos (ω 0 t + θ 0 ) ...(4) However, a 0 ; coefficient, θ 0 ; Phase shift due to ZCT 2 Here, in the above equation (4), AMP 2
Adjust with the system consisting of BEF 1 - AMP 3 , and further connect the above-mentioned connection wire 8 in ZCT 1 so that the current flowing through the ground wire 5 is in reverse phase to detect the low frequency voltage 1 for measurement. The secondary current of current transformer ZCT 1 to _ _ _ {cosω 0 t−a 0 cos (ω 0 t+θ 0 )} +√2V 1 {(1/R 3 +1/R 4 ) sinω 1 t +√2V 1 ω 1 (C 1 +C 2 ) cosω 1 t …… (5) Here, since a 0 ≈1 and the phase shift between the two is 1 to 2 degrees, it is possible to make the first and second terms of the above equation (5) small.

従つて、測定用低周波電圧を検出する回路の出
力には商用周波数成分が除去され又は極めて小さ
い値となるから以後の信号処理が容易となるばか
りか、比較的大電流である商用周波電流による変
流器の磁心インダクタンスの変動を除去せしめも
つて測定信号の位相量を正確に検出することがで
きる。
Therefore, the commercial frequency component is removed from the output of the circuit that detects the low frequency voltage for measurement, or becomes an extremely small value, which not only facilitates subsequent signal processing, but also makes it possible to reduce the amount of commercial frequency components caused by the comparatively large commercial frequency current. It is possible to accurately detect the phase amount of the measurement signal by removing fluctuations in the magnetic core inductance of the current transformer.

尚上述の同期検波器MUL出力には1/R10+1/R20 に比例した電圧を得ることができ、電路の絶縁抵
抗を測定することができる。これらの関係は例え
ば特願54−142465に詳述されているので、その説
明は省略する。
Note that a voltage proportional to 1/R 10 +1/R 20 can be obtained from the above-mentioned synchronous detector MUL output, and the insulation resistance of the electric circuit can be measured. These relationships are detailed in, for example, Japanese Patent Application No. 54-142465, so their explanation will be omitted.

第2図は本発明の他の実施例を示すブロツク図
であつて前記第1図と同一の記号は同一の意味を
もつものとする。この実施例に於いてはZCTを
1つ用いて前記の実施例と同等の機能を実現する
ものである。
FIG. 2 is a block diagram showing another embodiment of the present invention, and the same symbols as in FIG. 1 have the same meanings. In this embodiment, one ZCT is used to realize the same function as the previous embodiment.

即ち、接地線5を貫通せしめたZCT3出力は増
幅器AMP4で増幅され、その出力の一方は周波数
1成分を除去するフイルタBEF2に接続する。こ
のBEF2出力は増幅器AMP5にて増幅すると共に
抵抗R5,R6を介して前記接続線5に貫通せしめ
たZCT3に結合させる。かくして商用周波成分0
に対するフイードバツク回路を構成して、該接続
線に流れる商用周波成分は接地線5を流れる商用
周波成分と逆相となるようにすることにより
ZCT3の1次電流には商用周波成分が著しく小さ
くなるように作用せしめ、もつて増幅器AMP出
力の商用周波成分が小となるようにすることが可
能となる。前記増幅器AMP4の出力端には更に印
加測定用周波数1成分を検出するために該周波数
1のみを通過域とするフイルタBEFに加えその後
の構成は前記第1図に示した実施例と同じであり
かけ算器MUL出力10には絶縁抵抗に逆比例し
た電圧を得ることができる。
That is, the ZCT 3 output passed through the ground wire 5 is amplified by the amplifier AMP 4 , and one of its outputs is
Connect to filter BEF 2 which removes one component. This BEF 2 output is amplified by an amplifier AMP 5 and coupled to ZCT 3 passed through the connection line 5 via resistors R 5 and R 6 . Thus, the commercial frequency component is 0.
By configuring a feedback circuit for the connection line so that the commercial frequency component flowing through the connection line is in reverse phase with the commercial frequency component flowing through the grounding wire 5.
It is possible to act on the primary current of ZCT 3 so that the commercial frequency component becomes extremely small, thereby making it possible to reduce the commercial frequency component of the amplifier AMP output. The output terminal of the amplifier AMP 4 is further connected to one frequency component for application and measurement in order to detect the frequency component.
In addition to the filter BEF having a passband of only 1 , the subsequent configuration is the same as the embodiment shown in FIG. 1, and a voltage inversely proportional to the insulation resistance can be obtained at the multiplier MUL output 10.

尚本発明は以上示した実施例に限定する必然性
はなく、変流器を用いた電路の絶縁抵抗の状態測
定或は観測装置であればいづれのものにも適用し
得るものである、又本発明の実施方法に於いても
上記の実施例に限ることなく他の方法であつても
よいことは明らかであろう。
It should be noted that the present invention is not necessarily limited to the embodiments shown above, and can be applied to any device that uses a current transformer to measure or observe the insulation resistance of an electrical circuit. It will be obvious that the method of carrying out the invention is not limited to the above embodiments, and that other methods may be used.

(効 果) 上述の如く本発明はZCTの1次電流中の商用
周波成分の大小によりZCT出力中の印加低周波
成分の位相が変動することを抑圧するために変流
器の1次電流中の商用周波成分の漏洩電流を抑圧
する方法を提案するものであるから活線状態での
絶縁抵抗精度の向上に極めて効果大である。
(Effects) As described above, the present invention provides a method for suppressing fluctuations in the phase of the applied low frequency component in the ZCT output due to the magnitude of the commercial frequency component in the primary current of the current transformer. Since this method proposes a method for suppressing the leakage current of commercial frequency components, it is extremely effective in improving insulation resistance accuracy under live wire conditions.

また本方法は相殺処理により接地線に帰還する
漏洩電流中の雑音除去の効果も奏することは明ら
かである。
It is clear that this method also has the effect of eliminating noise in the leakage current that returns to the ground line through the cancellation process.

なお、漏洩電流中の印加低周波成分から絶縁抵
抗に逆比例した電圧を検出する方法については本
発明の実施例で説明した方法に限定されるもので
はなく、他の方法を適用することも可能であるこ
とは明らかである。
Note that the method for detecting a voltage that is inversely proportional to the insulation resistance from the applied low-frequency component in the leakage current is not limited to the method described in the embodiments of the present invention, and other methods can also be applied. It is clear that

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例を示すブロツク図、
第2図は本発明の他の実施例を示すブロツク図、
第3図はZCTの動作を説明する図、第4図は
ZCTの等価回路を示す図、第5図はZCTの1次
電流と位相ずれの測定結果の1例を示す図であ
る。 ZCT,ZCT1,ZCT2及びZCT3……変流器、R3
及びR4……絶縁抵抗、C1及びC2……対地静電容
量、L……インダクタンス、AMP,AMP1
AMP2,AMP4及びAMP5……増幅器、R0,R1
至R6……抵抗、OSC……発振器、1……接地線、
2……受電トランス、3及び4……電路、6……
測定用低周波電圧印加トランス、BPF……フイ
ルタ、BEF1及びBEF2……1成分除去フイルタ、
MUL……かけ算器(検波器)、5及び8……接続
線。
FIG. 1 is a block diagram showing one embodiment of the present invention;
FIG. 2 is a block diagram showing another embodiment of the present invention;
Figure 3 is a diagram explaining the operation of ZCT, Figure 4 is
FIG. 5 is a diagram showing an equivalent circuit of ZCT, and is a diagram showing an example of measurement results of the primary current and phase shift of ZCT. ZCT, ZCT 1 , ZCT 2 and ZCT 3 ...Current transformer, R 3
and R 4 ... insulation resistance, C 1 and C 2 ... ground capacitance, L ... inductance, AMP, AMP 1 ,
AMP 2 , AMP 4 and AMP 5 ...Amplifier, R0 , R1 to R6 ...Resistor, OSC...Oscillator, 1...Grounding wire,
2...Power receiving transformer, 3 and 4...Electric circuit, 6...
Low frequency voltage application transformer for measurement, BPF... filter, BEF 1 and BEF 2 ... 1 component removal filter,
MUL... Multiplier (detector), 5 and 8... Connection lines.

Claims (1)

【特許請求の範囲】 1 変圧器の接地線等を介して電路に商用周波数
0と異なる周波数1なる測定用低周波電圧を電磁
誘動あるいは直列結合等によつて印加し、前記接
地線に還流する測定用低周波成分1の漏洩電流を
該接地線を貫通せしめた変流器によつて検出し、
もつて電路の絶縁抵抗等を測定する方法に於い
て、前記接地線に還流する測定用低周波成分1
外の電流成分を導出すると共に、前記変流器に新
たな接続線を貫通せしめ、前記導出した周波数1
以外の電流成分を前記接続線を介し前記接地線に
流れる測定用低周波成分1以外の電流成分に対し
逆相になる如く前記変流器に印加することによつ
て該変流器の2次巻線に生ずる測定用低周波信号
以外の電流を抑圧したことを特徴とする変流器の
位相誤差除去方法。 2 前記測定用低周波信号1以外の電圧を導出す
る手段が、前記接地線を貫通せしめた第2の変流
器を用いたものであることを特徴とする特許請求
の範囲1記載の変流器の位相誤差除去方法。 3 前記測定用低周波信号1以外の電圧を導出す
る手段が、前記接地線に結合した測定用低周波信
1を検出するために設けた変流器とこれに接続
した増幅器を共用し該増幅器の出力の一部から前
記測定用低周波のみを阻止するフイルタを介して
第2の増幅器に接続しこの出力を前記変流器に結
合した接続線に印加するようにしたものであるこ
とを特徴とする特許請求の範囲1記載の変流器の
位相誤差除去方法。
[Claims] 1. Commercial frequency is connected to the electric line via the grounding wire of the transformer, etc.
A current transformation in which a low frequency voltage for measurement with a frequency 1 different from 0 is applied by electromagnetic induction or series coupling, etc., and a leakage current of the low frequency component 1 for measurement flowing back to the ground wire is passed through the ground wire. Detected by a device,
In the method of measuring the insulation resistance, etc. of an electrical circuit, a current component other than the measurement low frequency component 1 flowing back into the ground wire is derived, and a new connection wire is passed through the current transformer, and the Derived frequency 1
By applying current components other than the measurement low frequency component 1 to the current transformer in reverse phase with respect to the current components other than the measurement low frequency component 1 flowing through the connection wire and the ground wire, the secondary current component of the current transformer is A method for removing a phase error in a current transformer, characterized in that current other than a low frequency signal for measurement generated in a winding is suppressed. 2. Current transformation according to claim 1, characterized in that the means for deriving the voltage other than the measurement low frequency signal 1 uses a second current transformer that passes through the grounding wire. A method for removing phase errors in the device. 3. The means for deriving a voltage other than the low frequency signal for measurement 1 shares the current transformer provided for detecting the low frequency signal for measurement 1 coupled to the ground wire and the amplifier connected to the current transformer, and the amplifier A part of the output of the current transformer is connected to a second amplifier via a filter that blocks only the low frequency wave for measurement, and this output is applied to a connecting line coupled to the current transformer. A method for removing a phase error in a current transformer according to claim 1.
JP17563284A 1984-08-23 1984-08-23 Method of removing phase error of zero phase current transformer Granted JPS6154815A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17563284A JPS6154815A (en) 1984-08-23 1984-08-23 Method of removing phase error of zero phase current transformer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17563284A JPS6154815A (en) 1984-08-23 1984-08-23 Method of removing phase error of zero phase current transformer

Publications (2)

Publication Number Publication Date
JPS6154815A JPS6154815A (en) 1986-03-19
JPH028529B2 true JPH028529B2 (en) 1990-02-26

Family

ID=15999475

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17563284A Granted JPS6154815A (en) 1984-08-23 1984-08-23 Method of removing phase error of zero phase current transformer

Country Status (1)

Country Link
JP (1) JPS6154815A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03142379A (en) * 1989-10-28 1991-06-18 Tenpaale Kogyo Kk Insulation resistance measuring method
JP5455430B2 (en) * 2009-05-12 2014-03-26 一般財団法人関東電気保安協会 Leakage prevention monitoring system
JP6056556B2 (en) * 2013-03-05 2017-01-11 オムロン株式会社 Electric leakage detection device and electric leakage detection method

Also Published As

Publication number Publication date
JPS6154815A (en) 1986-03-19

Similar Documents

Publication Publication Date Title
JP4245236B2 (en) Current detection circuit
SE515388C2 (en) Device for sensing electrical discharges in a sample object
US4200836A (en) Apparatus for measuring insulation resistance in an operating three-phase ungrounded transmission line system
JP2002311061A (en) Processor for electric power
JPH028529B2 (en)
US11650228B1 (en) Very-wide-bandwidth current sensor
US11415619B2 (en) Digital modulation/demodulation with active monitoring for measurement of power factor and capacitance in high-voltage bushings, transformers, reactors, and other electrical equipment with high-voltage insulation
JPH0552466B2 (en)
JPH0473553B2 (en)
JP2665912B2 (en) Insulation resistance measurement method that compensates for the effect of ground resistance
JP2617325B2 (en) Insulation resistance measurement method
JPH0428065Y2 (en)
JPH0366809B2 (en)
JPH0747741Y2 (en) Capacitive voltage transformer with terminals for harmonic measurement
JPH01114765A (en) Simplified measuring method for insulation resistance
JPH05142290A (en) Diagnosing method of insulation of cv cable
JP2750690B2 (en) Leakage current detection method
JP2614447B2 (en) Insulation resistance measurement method that compensates for the effect of ground resistance
JP2896572B2 (en) Simple insulation resistance measurement method
JP2681187B2 (en) Insulation fault location search method
JPS6319569A (en) Method for detecting leaked current
JPH0458581B2 (en)
JP2896574B2 (en) Compensation method for phase characteristics of zero-phase current transformer
JP2942901B2 (en) Measurement method of insulation resistance of electric circuit grounded by common grounding wire
JP2696513B2 (en) Electrical capacitance measurement method for ground