JP2772426B2 - Phase compensation method for zero-phase current transformer - Google Patents

Phase compensation method for zero-phase current transformer

Info

Publication number
JP2772426B2
JP2772426B2 JP1438589A JP1438589A JP2772426B2 JP 2772426 B2 JP2772426 B2 JP 2772426B2 JP 1438589 A JP1438589 A JP 1438589A JP 1438589 A JP1438589 A JP 1438589A JP 2772426 B2 JP2772426 B2 JP 2772426B2
Authority
JP
Japan
Prior art keywords
phase
zero
current transformer
output
low
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1438589A
Other languages
Japanese (ja)
Other versions
JPH02194366A (en
Inventor
辰治 松野
俊二 柏崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Tsushinki KK
Original Assignee
Toyo Tsushinki KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Tsushinki KK filed Critical Toyo Tsushinki KK
Priority to JP1438589A priority Critical patent/JP2772426B2/en
Publication of JPH02194366A publication Critical patent/JPH02194366A/en
Application granted granted Critical
Publication of JP2772426B2 publication Critical patent/JP2772426B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は零相変流器を用いて電路等の漏洩電流を検出
する場合の位相特性の変動を補償する方法に関する。
Description: BACKGROUND OF THE INVENTION The present invention relates to a method for compensating for variations in phase characteristics when detecting a leakage current in an electric circuit or the like using a zero-phase current transformer.

(従来技術) 従来,活線状態にて電路の絶縁抵抗を測定するために
例えば第5図に示すような絶縁測定装置が用いられてい
る。
(Prior Art) Conventionally, an insulation measuring device as shown in FIG. 5, for example, has been used to measure the insulation resistance of an electric circuit in a live state.

同図に於てTは受電トランス,1,2は該受電トランスT
の2次側電路,3は該2次側電路に接続した接地線であ
る。該接地線3には変流器ZCT及び注入トランスOTを設
け該変流器ZCTの出力には増幅器AMP,フィルタFIL,同期
検波器MULTが夫々直列に接続し,一方注入トランスには
測定用低周波信号発振器OSCが接続している。
In the figure, T is a power receiving transformer, and 1 and 2 are the power receiving transformers T.
Is a ground line connected to the secondary circuit. A current transformer ZCT and an injection transformer OT are provided on the ground line 3, and an amplifier AMP, a filter FIL, and a synchronous detector MULT are respectively connected in series to the output of the current transformer ZCT, while a low-voltage measuring device is connected to the injection transformer. Frequency signal oscillator OSC is connected.

このように構成した測定系に於て,前記注入トランス
OTを介して電路に測定用低周波信号を印加することによ
り,一般的に電路1,2ならびに負荷機器Zと大地間に存
在する対地静電容量Coおよび絶縁抵抗Roとを経て前記接
地線3に帰還する前記測定用低周波信号による漏洩電流
成分を接地線3に結合した零相変流器(以下ZCTと称
す)で検出した後,該成分を前記測定用低周波信号を用
いて同期検波を行うことにより電路の絶縁抵抗を算出す
るものである。
In the measuring system thus configured, the injection transformer is used.
By applying a measurement low-frequency signal to the electric circuit via the OT, the ground line 3 is generally passed through the electric circuits 1, 2 and the grounding capacitance Co and the insulation resistance Ro existing between the load device Z and the earth. After detecting a leakage current component due to the measurement low-frequency signal that is fed back to the ground line 3 with a zero-phase current transformer (hereinafter referred to as ZCT) coupled to the ground line 3, the component is synchronously detected using the measurement low-frequency signal. Is performed to calculate the insulation resistance of the electric circuit.

この場合前記ZCTにより検出した漏洩電流は増幅器7
及び前記測定用低周波信号成分のみを抽出するフィルタ
8を経て同期検波器9に入力され,同期検波器の基準信
号には前記測定用低周波信号発振器OSCの出力の一部を
利用する。
In this case, the leakage current detected by the ZCT
The signal is input to a synchronous detector 9 via a filter 8 for extracting only the low-frequency signal component for measurement, and a part of the output of the low-frequency signal oscillator OSC is used as a reference signal of the synchronous detector.

しかしながら,ZCTの一時電流として比較的大電流が流
れる場合,この電流によってZCTの2次巻線電流の位相
が変動してしまい正確な絶縁抵抗の測定ができないとい
う欠点があった。
However, when a relatively large current flows as the temporary current of the ZCT, there is a disadvantage that the phase of the secondary winding current of the ZCT fluctuates due to this current, and the insulation resistance cannot be measured accurately.

即ち,前記接地線に帰還する漏洩電流中には商用周波
数の電流成分と印加した測定用低周波信号による電流成
分の両者が含まれている。一般に測定用低周波信号の電
圧は負荷機器への影響を考慮して電路の商用周波電圧
(例えば100Vまたは200V)に比べて充分低く設定するた
め1〜2V程度(周波数は10〜20Hz程度)を選ぶのが一般
的である。
That is, the leakage current that returns to the ground line contains both the current component of the commercial frequency and the current component due to the applied low-frequency signal for measurement. Generally, the voltage of the low-frequency signal for measurement should be set to a level sufficiently lower than the commercial frequency voltage of the electric circuit (for example, 100 V or 200 V) in consideration of the influence on the load equipment, and should be about 1-2 V (frequency is about 10-20 Hz). It is common to choose.

従って商用周波の漏洩電流は上記低周波の漏洩電流の
500〜1000倍程度となり,その為ZCTの出力中の低周波成
分の位相は商用周波成分の電流の増減にともなってZCT
の磁心の影響で大きく変動することが観測される。第4
図は第3図に示す如く絶縁抵抗Roに相当する抵抗R=1
3.33KΩと対地静電容量Coに相当するコンデンサC=8.5
μFを並列接続した回路に於て前述した測定手段を用い
た場合絶縁抵抗測定結果が商用周波の漏洩電流の変化に
より大きく変動することを表したものであって,同図か
らも明らかなように商用周波の漏洩電流の変化により測
定出力は非直線的に増加することが分かる。この増加は
ZCTの位相特性が変動しなければ発生しないものであ
り,低周波の漏洩電流中の印加低周波電圧と同相の成分
(有効分)を検出するに当たってはこのような位相変動
は結果的に絶縁抵抗の測定値に直接誤差として悪影響を
及ぼすことになると云う欠点があった。
Therefore, the leakage current of the commercial frequency is
The phase of the low-frequency component in the output of the ZCT is about 500 to 1000 times, so the ZCT
Is observed to fluctuate greatly under the influence of the magnetic core. 4th
The figure shows that the resistance R = 1, which corresponds to the insulation resistance Ro, as shown in FIG.
3.33KΩ and the capacitor C equivalent to the ground capacitance Co = 8.5
This figure shows that the insulation resistance measurement results fluctuate greatly due to changes in the leakage current at the commercial frequency when the above-described measuring means is used in a circuit in which μFs are connected in parallel. It can be seen that the measured output increases non-linearly due to changes in the leakage current of the commercial frequency. This increase is
This does not occur unless the phase characteristics of the ZCT fluctuate. When detecting a component (effective component) in phase with the applied low-frequency voltage in low-frequency leakage current, such phase fluctuation results in insulation resistance There is a drawback that the measured value directly has an adverse effect as an error.

(発明の目的) 本発明は上述したような従来の絶縁抵抗測定装置の欠
点に鑑みなされたものであって,商用周波の漏洩電流に
より変動する変流器の位相補償を簡単な方法にて補正す
る零相変流器の位相補償方法を提供することを目的とす
る。
(Object of the Invention) The present invention has been made in view of the above-mentioned drawbacks of the conventional insulation resistance measuring device, and corrects the phase compensation of a current transformer that fluctuates due to a leakage current of a commercial frequency by a simple method. It is an object of the present invention to provide a phase compensation method for a zero-phase current transformer.

(発明の概要) この目的を達成するために本発明の変流器の位相補償
方法は変流器ZCTの一次電流の増大にともない,該ZCTの
出力の2次側出力電流の位相が非直線的に進むことか
ら,ZCTの出力に含まれる商用周波の漏洩電流の大きさを
検出し,これを係数倍して従来の絶縁抵抗測定装置の出
力から引算することにより近似的に測定誤差を減少する
よう手段を講ずるものである。
(Summary of the Invention) In order to achieve this object, the phase compensation method of the current transformer according to the present invention is arranged such that, as the primary current of the current transformer ZCT increases, the phase of the secondary output current of the output of the ZCT becomes non-linear. , The magnitude of the leakage current of the commercial frequency contained in the output of the ZCT is detected, multiplied by a factor, and subtracted from the output of the conventional insulation resistance measurement device to approximately reduce the measurement error. We will take steps to reduce it.

(実施例) 以下,図面に示した実施例に基づいて本発明を詳細に
説明する。
(Examples) Hereinafter, the present invention will be described in detail based on examples shown in the drawings.

第1図は本発明の一実施例を示す図であって同図に於
てTは受電トランス,11及び12は該受電トランスTの2
次電路,13は該電路12に施した接地線,ZCTは接地線13に
結合した零相変流器,OTは接地線13に接合した注入トラ
ンスである。
FIG. 1 is a view showing an embodiment of the present invention, in which T is a power receiving transformer, and 11 and 12 are 2 of the power receiving transformer T.
A secondary line 13 is a ground line provided on the line 12, ZCT is a zero-phase current transformer coupled to the ground line 13, and OT is an injection transformer connected to the ground line 13.

零相変流器ZCTの出力は増幅器AMP,フィルタFILを経て
同期検波器MULTの一方の入力に加わり,前記同期検波器
MULTの他の入力には発振器OSCの出力が印加される。
The output of the zero-phase current transformer ZCT is applied to one input of a synchronous detector MULT via an amplifier AMP and a filter FIL.
The output of the oscillator OSC is applied to the other input of the MULT.

一方,増幅器AMPの出力を商用周波数成分検出用のフ
ィルタFIL2に加え,整流器DETで整流し,係数回路COFで
係数倍する。該係数回路COFの出力と同期検波回路MULT
の出力との差を引算回路でとる。
On the other hand, the output of the amplifier AMP is added to a filter FIL2 for detecting a commercial frequency component, rectified by a rectifier DET, and multiplied by a coefficient by a coefficient circuit COF. The output of the coefficient circuit COF and the synchronous detection circuit MULT
The difference with the output of is calculated by the subtraction circuit.

斯くして出力OUTには商用周波の漏洩電流の増加に伴
う零相変流器の位相進み分が近似的に補償して出力され
ることになる。
Thus, the output OUT is approximately compensated for by the phase lead of the zero-phase current transformer due to the increase in the leakage current of the commercial frequency, and is output.

これは前記第4図の関係から商用周波の漏洩電流の大
きさを知ることにより変流器に於ける位相の進み具合い
を判定するものであって,係数回路COFの出力,即ち商
用周波の漏洩電流の大きさに比例した出力で絶縁抵抗値
に逆比例した出力が得られ,該出力により前記同期検波
器MULTの出力を補正し,正確な絶縁抵抗値を求めること
ができる。
This is to determine the advance of the phase in the current transformer by knowing the magnitude of the leakage current of the commercial frequency from the relationship shown in FIG. 4 and to determine the output of the coefficient circuit COF, that is, the leakage of the commercial frequency. An output that is proportional to the magnitude of the current and that is inversely proportional to the insulation resistance value is obtained. With this output, the output of the synchronous detector MULT is corrected, and an accurate insulation resistance value can be obtained.

本発明の実施例では単相2線式の場合を示したが単相
3線,3相3線電路にも適用することができる。また絶縁
抵抗不良箇所を探査するために測定用低周波電圧を注入
トランスOTを介して接地線若しくは電路に印加し,零相
変流器ZCTは測定用低周波電圧注入点より遠端にて端末
電路部の絶縁抵抗を測定する場合には第2図に示すよう
に同期検波用の基準信号を発振器OSCの出力の一部から
直接得るのは困難なため遠端部にて接地側電路(第1図
では12)と大地間に存在する測定用低周波信号電圧を高
入力インビーダンス増幅器AM1で検出しこれを基準信号
として用いてもよい。
In the embodiment of the present invention, the case of the single-phase two-wire system has been described, but the present invention can also be applied to a single-phase three-wire or three-phase three-wire circuit. In addition, a low-frequency voltage for measurement is applied to the ground wire or the electrical circuit via the injection transformer OT to search for a defective insulation resistance, and the zero-phase current transformer ZCT is connected to the terminal at the far end from the low-frequency voltage injection point for measurement. When measuring the insulation resistance of the circuit section, as shown in FIG. 2, it is difficult to obtain a reference signal for synchronous detection directly from a part of the output of the oscillator OSC. In FIG. 1, the low-frequency signal voltage for measurement existing between 12) and the ground may be detected by the high input impedance amplifier AM1 and used as a reference signal.

また,上記第1図の実施例では商用周波の漏洩電流を
検出するのに零相変流器ZCTの出力を用いたが,専用の
零相変流器を別途設けるか,地絡継電器用の零相変流器
(図示せず)の出力を用いてもよい。更に,変流器及び
注入トランスは電路11,12をともに貫通せしめるよう構
成しても同様に効果を得られることは明らかである。
Although the output of the zero-phase current transformer ZCT is used to detect the leakage current of the commercial frequency in the embodiment of FIG. 1, a dedicated zero-phase current transformer is separately provided or a ground-fault relay is used. The output of a zero-phase current transformer (not shown) may be used. Further, it is apparent that the same effect can be obtained even if the current transformer and the injection transformer are configured to penetrate the electric lines 11 and 12 together.

(発明の効果) 本発明は上述したように構成し且つ機能するものであ
るから零相変流器の位相誤差を簡易な方法で補償するこ
とができ従来の絶縁抵抗測定装置より測定誤差を少なく
するうえで著しく効果を発揮する。
(Effects of the Invention) Since the present invention is configured and functions as described above, the phase error of the zero-phase current transformer can be compensated by a simple method, and the measurement error is smaller than the conventional insulation resistance measuring device. It is extremely effective in doing

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明の実施例を示す図、第2図は本発明の変
形実施例を示す図、第3図は抵抗とコンデンサを並列に
接続した回路を示す図、第4図は第3図に示した回路に
於て従来の絶縁抵抗測定方法を用いた場合の商用周波電
流と測定出力との関係を示す図、第5図は従来の絶縁抵
抗測定方法を示すブロック図である。 T……受電トランス,ZCT……零相変流器,OT……注入ト
ランス,AMP,AM1……増幅器,FIL,FIL2……フィルタ,MULT
……同期検波器,OSC……発振器,DET……整流器,SUB……
引算器。
FIG. 1 is a diagram showing an embodiment of the present invention, FIG. 2 is a diagram showing a modified embodiment of the present invention, FIG. 3 is a diagram showing a circuit in which a resistor and a capacitor are connected in parallel, and FIG. FIG. 5 is a diagram showing a relationship between a commercial frequency current and a measurement output when a conventional insulation resistance measuring method is used in the circuit shown in FIG. 5, and FIG. 5 is a block diagram showing a conventional insulation resistance measuring method. T: Power receiving transformer, ZCT: Zero-phase current transformer, OT: Injection transformer, AMP, AM1 ... Amplifier, FIL, FIL2 ... Filter, MULT
…… Synchronous detector, OSC …… Oscillator, DET …… Rectifier, SUB ……
Subtractor.

フロントページの続き (58)調査した分野(Int.Cl.6,DB名) G01R 27/18Continuation of the front page (58) Field surveyed (Int.Cl. 6 , DB name) G01R 27/18

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】電路に商用周波数とは異なる低周波電圧を
印加し,該電路の接地線もしくは該電路に結合せしめた
零相変流器出力中に含まれる前記低周波電圧による漏洩
電流を前記低周波電圧を基準信号とした同期検波して得
た出力値と,前記零相変流器出力中に含まれる商用周波
の漏洩電流を整流して得た整流値を係数倍した値との差
を取ることにより,前記零相変流器の測定電流の大きさ
による位相変動を補償して電路の絶縁抵抗を測定するこ
とを特徴とした絶縁抵抗測定等における零相変流器の位
相補償方法。
A low-frequency voltage different from a commercial frequency is applied to an electric circuit, and a leakage current due to the low-frequency voltage contained in a ground wire of the electric circuit or in an output of a zero-phase current transformer coupled to the electric circuit is reduced. The difference between the output value obtained by synchronous detection using the low-frequency voltage as a reference signal and the value obtained by multiplying the rectified value obtained by rectifying the leakage current of the commercial frequency contained in the output of the zero-phase current transformer by a factor. A phase compensation method for the zero-phase current transformer in insulation resistance measurement or the like, wherein the phase variation due to the magnitude of the measured current of the zero-phase current transformer is compensated to measure the insulation resistance of the electric circuit. .
【請求項2】前記基準信号として電路と大地間に存在す
る低周波電圧を検出して用いたことを特徴とする特許請
求の範囲第1項記載の絶縁抵抗測定等に於ける零相変流
器の位相補償方法。
2. A zero-phase current transformer in an insulation resistance measurement or the like according to claim 1, wherein a low-frequency voltage existing between an electric circuit and ground is detected and used as said reference signal. Phase compensation method of the detector.
JP1438589A 1989-01-24 1989-01-24 Phase compensation method for zero-phase current transformer Expired - Lifetime JP2772426B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1438589A JP2772426B2 (en) 1989-01-24 1989-01-24 Phase compensation method for zero-phase current transformer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1438589A JP2772426B2 (en) 1989-01-24 1989-01-24 Phase compensation method for zero-phase current transformer

Publications (2)

Publication Number Publication Date
JPH02194366A JPH02194366A (en) 1990-07-31
JP2772426B2 true JP2772426B2 (en) 1998-07-02

Family

ID=11859589

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1438589A Expired - Lifetime JP2772426B2 (en) 1989-01-24 1989-01-24 Phase compensation method for zero-phase current transformer

Country Status (1)

Country Link
JP (1) JP2772426B2 (en)

Also Published As

Publication number Publication date
JPH02194366A (en) 1990-07-31

Similar Documents

Publication Publication Date Title
JP2772426B2 (en) Phase compensation method for zero-phase current transformer
JP2896574B2 (en) Compensation method for phase characteristics of zero-phase current transformer
JP2578766B2 (en) Live tan δ measuring device
JPH1078461A (en) Measuring method for insulation resistance
JPS60186765A (en) Compensating method of measuring device for insulation resistance
JP2617324B2 (en) Insulation resistance measurement method
JPS61155869A (en) Measuring method of phase-compensated insulation resistance
JP3301627B2 (en) Apparatus and method for measuring insulation resistance of load equipment
JP2764582B2 (en) Simple insulation resistance measurement method
JP2750690B2 (en) Leakage current detection method
JP2750716B2 (en) Insulation resistance measurement method for low voltage wiring etc.
JPS5933233B2 (en) Grounding system insulation resistance measuring device
JP2750707B2 (en) Insulation resistance measurement method compensated for ground resistance
JP2750713B2 (en) Simple insulation resistance measurement method for low voltage wiring etc.
JP2802283B2 (en) Method and apparatus for detecting defective electrical insulation
JP2979226B2 (en) Measuring method of insulation resistance of load equipment
JPH0252829B2 (en)
JPH0640120B2 (en) Partial discharge measurement method
JP2612719B2 (en) Simple insulation resistance measurement method for electrical circuits
JP2556980B2 (en) Electric fault detection method
JPH0428065Y2 (en)
JP2665912B2 (en) Insulation resistance measurement method that compensates for the effect of ground resistance
JP2696513B2 (en) Electrical capacitance measurement method for ground
JP2614447B2 (en) Insulation resistance measurement method that compensates for the effect of ground resistance
JPS61129582A (en) Measuring method of mutual inductance