JP2942892B2 - Measurement method of insulation resistance of ungrounded circuit - Google Patents

Measurement method of insulation resistance of ungrounded circuit

Info

Publication number
JP2942892B2
JP2942892B2 JP26945089A JP26945089A JP2942892B2 JP 2942892 B2 JP2942892 B2 JP 2942892B2 JP 26945089 A JP26945089 A JP 26945089A JP 26945089 A JP26945089 A JP 26945089A JP 2942892 B2 JP2942892 B2 JP 2942892B2
Authority
JP
Japan
Prior art keywords
circuit
insulation resistance
voltage
capacitor
ungrounded
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP26945089A
Other languages
Japanese (ja)
Other versions
JPH03131774A (en
Inventor
辰治 松野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Tsushinki KK
Original Assignee
Toyo Tsushinki KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Tsushinki KK filed Critical Toyo Tsushinki KK
Priority to JP26945089A priority Critical patent/JP2942892B2/en
Publication of JPH03131774A publication Critical patent/JPH03131774A/en
Application granted granted Critical
Publication of JP2942892B2 publication Critical patent/JP2942892B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は電路の絶縁抵抗測定方法に関し、殊に非接地
電路の絶縁抵抗を測定する方法に関する。
Description: TECHNICAL FIELD The present invention relates to a method for measuring the insulation resistance of an electric circuit, and more particularly to a method for measuring the insulation resistance of an ungrounded electric circuit.

(従来技術) 非接地電路の電路の絶縁抵抗を測定または監視し、絶
縁抵抗が所定値以下となった際に警報を発生し危険を知
らせるために各種方法が提案されている。
(Prior Art) Various methods have been proposed for measuring or monitoring the insulation resistance of an electric circuit of an ungrounded electric circuit, generating an alarm when the insulation resistance becomes equal to or less than a predetermined value, and notifying a danger.

従来の非接地電路の絶縁抵抗を測定する方法として
は、電路の中性点若しくは電路間に高抵抗を介して直流
電源または低周波電源を印加し、該電源から絶縁抵抗を
介して帰還する電流を測定することにより絶縁抵抗を測
定する方法、或は電路に中性点を設け、該中性点を高抵
抗で接地すると共に絶縁抵抗を介して帰還する商用周波
の漏洩電流から絶縁抵抗を測定する方法等がある。
As a conventional method for measuring the insulation resistance of an ungrounded circuit, a DC power supply or a low-frequency power supply is applied through a neutral point or between the circuits via a high resistance, and a current is fed back from the power supply via the insulation resistance. A neutral point in the electrical circuit, ground the neutral point with a high resistance, and measure the insulation resistance from the leakage current of the commercial frequency that is fed back through the insulation resistance. There is a method to do.

しかしながら、前者の方法では測定のために直流若し
くは低周波の電源を必要とし、電路に地絡状態に近い絶
縁劣化が発生した場合には、電源が破損する等の事故が
生じる危険があり、また後者の方法では電路の対地静電
容量の影響を受け、正確な絶縁抵抗の測定が困難である
等の欠点を有し、簡易且つ正確な電路の絶縁抵抗を測定
する方法及び装置の開発が望まれていた。
However, the former method requires a DC or low-frequency power supply for measurement, and when insulation deterioration near the ground fault occurs on the electric circuit, there is a danger that the power supply will be damaged and other accidents will occur. The latter method has the drawback that it is difficult to measure the insulation resistance accurately due to the influence of the earth capacitance of the electric circuit, and it is desired to develop a simple and accurate method and apparatus for measuring the insulation resistance of the electric circuit. Was rare.

(発明の目的) 本発明は上述した如き従来の非接地電路の絶縁抵抗測
定方法の問題点を解決するためになされたものであっ
て、商用周波の漏洩電流を用いることにより電路に新た
に測定用の電源を必要とせず、且つ電路の対地浮遊容量
によって測定値が変動することのない正確な絶縁抵抗測
定方法を提供することを目的とする。
(Object of the Invention) The present invention has been made to solve the problems of the conventional method for measuring the insulation resistance of an ungrounded electric circuit as described above, and newly measures the electric circuit by using a leakage current of a commercial frequency. It is an object of the present invention to provide an accurate method for measuring insulation resistance which does not require a power supply for use and does not cause a measurement value to vary due to a stray capacitance of a circuit to ground.

(発明の概要) この目的を達成するために本発明に係る非接地電路の
絶縁抵抗測定方法は、電路電圧Vの非接地電路の一方の
非接地電路を静電容量C0のコンデンサを介して接地した
ときに、該コンデンサC0に流れる電路電圧と同相の有効
分電流値a1と電路電圧と直交する無効分電流値b1とを検
出すると共に、他方の非接地電路を静電容量C0のコンデ
ンサを介して接地したときに該コンデンサに流れる電路
電圧と同相の有効分電流値a2と電路電圧と直交する無効
分電流値b2とを検出し、該有効分電流値a1とa2との和a
及び前記無効分電流値b1とb2との和bとを用いることに
より前記非接地電路の対地静電容量の影響を受けずに対
地絶縁抵抗のみによる漏洩電流iを次式 を用いて算出測定したことを特徴とする。
(Summary of the Invention) In order to achieve this object, a method for measuring the insulation resistance of an ungrounded electric circuit according to the present invention is to ground one of the ungrounded electric circuits of the electric circuit voltage V via a capacitor having a capacitance C0. Then, the active component current value a1 in phase with the circuit voltage flowing through the capacitor C0 and the reactive component current value b1 orthogonal to the circuit voltage are detected, and the other non-grounded circuit is connected via the capacitor having the capacitance C0. The active component current value a2 in phase with the circuit voltage flowing through the capacitor when grounded and the reactive component current value b2 orthogonal to the circuit voltage are detected, and the sum a of the valid component current values a1 and a2 is detected.
And using the sum b of the reactive current values b1 and b2 to calculate the leakage current i due to only the ground insulation resistance without being affected by the ground capacitance of the ungrounded circuit. Is characterized by being calculated and measured using

(実施例) 以下、図面に示した実施例に基づいて本発明を詳細に
説明する。
(Examples) Hereinafter, the present invention will be described in detail based on examples shown in the drawings.

第1図は非接地電路における絶縁抵抗測定方法の原理
を示す図であって、T1はトランス、1、2はトランスT1
の2次側に設けられた非接地電路、Zは非接地電路に接
続した負荷である。
FIG. 1 is a diagram showing the principle of an insulation resistance measuring method for an ungrounded electric circuit, where T1 is a transformer, and 1 and 2 are transformers T1.
And Z is a load connected to the non-grounded electric circuit.

負荷Z及び非接地電路1、2の絶縁抵抗をR1、R2、対
地静電容量をC1、C2、商用周波数をω/2πとすると共
に、電路1、2をスイッチSWを介してコンデンサC0が接
続した接地線3で接地すると、該スイッチSWが同図に示
すように非接地電路1側と接続している際の等価回路は
第2図に示すごとく表すことができる。
The insulation resistance of the load Z and the ungrounded electric circuits 1 and 2 are R1 and R2, the ground capacitance is C1 and C2, the commercial frequency is ω / 2π, and the electric circuits 1 and 2 are connected to a capacitor C0 via a switch SW. When the switch SW is connected to the ungrounded electric circuit 1 side as shown in FIG. 2, an equivalent circuit can be represented as shown in FIG.

このとき接地線3に設けたコンデンサC0を流れる電流
i1は となる。
At this time, the current flowing through the capacitor C0 provided on the ground line 3
i1 Becomes

(但し、電路電圧をVとする) また、スイッチSWが非接地電路2側と接続している場
合の等価回路は第3図に示す如く表すことができ、この
とき接地線3に設けたコンデンサC0を流れる電流i2は となる。
(However, the circuit voltage is assumed to be V.) An equivalent circuit when the switch SW is connected to the ungrounded circuit 2 side can be represented as shown in FIG. The current i2 flowing through C0 is Becomes

即ち、式及び式で示した電流a1、a2は印加電圧と
同相の成分(有効分)であり、一方、式及び式で示
した電流b1、b2は印加電圧と直交する成分(無効分)で
ある。
That is, the currents a1 and a2 represented by the formulas and the formulas are components (effective components) in phase with the applied voltage, while the currents b1 and b2 represented by the formulas and the formulas are components (ineffective components) orthogonal to the applied voltage. is there.

上記有効分電流a1、a2及び無効分電流b1、b2を単に検
出しても、これらの電流は対地絶縁抵抗R1、R2と対地静
電容量C1、C2が複雑に関係しあっているため、本来の対
地絶縁抵抗値を求めることができない。
Even if the active component currents a1 and a2 and the reactive component currents b1 and b2 are simply detected, these currents are inherently related to the ground insulation resistances R1 and R2 and the ground capacitances C1 and C2. Cannot be obtained.

そこで対地静電容量に影響を受けずに対地絶縁抵抗を
測定するために本発明に係る絶縁抵抗測定方法は以下の
如き演算を行う。
In order to measure the insulation resistance to the ground without being affected by the capacitance to the ground, the insulation resistance measuring method according to the present invention performs the following calculation.

即ち、有効分電流a1及びa2の和をaとすると、、
式から と表すことができる。
That is, assuming that the sum of the effective component currents a1 and a2 is a,
From the formula It can be expressed as.

同様に無効分電流b1、b2の和をbとすると、、式
から、 となる。
Similarly, assuming that the sum of the reactive currents b1 and b2 is b, from the equation, Becomes

とすると、、式は と変換することができ、更に式より、 となり、式に式を代入し、整理すると となる。 Then the expression is Can be converted to Substituting expressions into expressions and rearranging Becomes

したがって、、式より対地静電容量に無関係とな
り次式が成立する。
Accordingly, the following equation is established, irrespective of the ground capacitance from the equation.

更に、式を整理すると、 となり、式より なるから測定した同相分電流a1、a2と直交分電流b1、b2
から、式の加算によりa、bを求め、既知のV、
ω、C0を用いて式の右辺の演算を行えば絶縁抵抗R1、
R2のみの並列合成値による漏洩電流を測定し得ることが
わかる。
Furthermore, when rearranging the formula, And from the formula In-phase currents a1 and a2 and quadrature currents b1 and b2
, A and b are obtained by adding the equations to obtain a known V,
If the calculation on the right side of the equation is performed using ω and C0, the insulation resistance R1,
It can be seen that the leakage current can be measured by the parallel combined value of only R2.

尚、同相分及び直交分の電流値は、式の漏洩電流
を電路電圧もしくは電路電圧より90゜位相推移した電圧
で同期検波すれば得ることができるし、また公知の技術
を用いて行うこともできる。
The in-phase and quadrature current values can be obtained by synchronously detecting the leakage current of the equation with the circuit voltage or a voltage shifted by 90 ° from the circuit voltage, or by using a known technique. it can.

また上記説明ではコンデンサC0に流れる電流を測定し
たが、コンデンサC0の両端電圧を測定してもよい。
In the above description, the current flowing through the capacitor C0 is measured, but the voltage across the capacitor C0 may be measured.

前記コンデンサC0の両端電圧を測定することは、電路
と対地間の電圧を測定するのと等価である。例えばスイ
ッチが電路1に接続しているときは電路1と対地間の電
圧を測定することになる。
Measuring the voltage across the capacitor C0 is equivalent to measuring the voltage between the electric circuit and the ground. For example, when the switch is connected to the electric circuit 1, the voltage between the electric circuit 1 and the ground is measured.

スイッチSWが電路1に接続しているときのコンデンサ
C0の両端電圧V1は式から またスイッチSWが電路2に接続しているときのコンデ
ンサC0の両端電圧V2は式から と表すことができる。
Capacitor when switch SW is connected to circuit 1
The voltage V1 across C0 is The voltage V2 across the capacitor C0 when the switch SW is connected to the circuit 2 is given by It can be expressed as.

同相分電圧Va1、Va2の和をVaとすれば、 Va=Va1+Va2 ・・・ となり、、式から となる。If the sum of the common mode voltage Va1, Va2 and Va, the Va = Va 1 + Va 2 ··· next ,, formula Becomes

同様に直交分電圧値Vb1、Vb2の和をVbとすれば、 Vb=Vb1+Vb2 ・・・ 、式から となり、更に、式の関係より式は 同様に式は となる。したがって、、より なる関係を得ることができ、、式より次式に示す如
く対地静電容量の影響をなくした演算を行うことができ
る。
If a and Vb sum of orthogonal partial voltage values Vb1, Vb2 Similarly, Vb = Vb 1 + Vb 2 ···, from equation And, furthermore, the equation is Similarly the formula is Becomes Therefore, more The following relationship can be obtained, and the calculation can be performed without the influence of the ground capacitance as shown in the following expression.

更に式を整理すると となる。 If you further organize the formula Becomes

したがって、コンデンサC0の両端電圧(電路と大地間
の電圧)の同相分、直交分電圧を電路1、2をそれぞれ
コンデンサC0で接地したときに測定し、式の演算を行
うことにより電路の絶縁抵抗を算出測定することができ
ることが分かる。
Therefore, the in-phase and quadrature voltages of the voltage across the capacitor C0 (the voltage between the circuit and the ground) are measured when the circuits 1 and 2 are grounded by the capacitor C0, respectively, and the equation is calculated to calculate the insulation resistance of the circuit. Can be calculated and measured.

尚、、式は変形が可能であり、演算を行い易いよ
う本発明の原理に基づいて各種工夫が可能であることは
明かである。
It should be noted that the formula can be modified, and various modifications can be made based on the principle of the present invention so that the calculation can be easily performed.

第4図は上述した絶縁抵抗測定方法を実施するための
装置構成を示す図であり、前記第1図と同一部には同一
の記号を附す。
FIG. 4 is a view showing the configuration of an apparatus for implementing the above-described insulation resistance measuring method, and the same parts as those in FIG. 1 are denoted by the same reference numerals.

電路電圧Vの非接地電路1、2の何れか一方をスイッ
チSWを切り換え、コンデンサC0を介して接地すると共に
該コンデンサC0の両端電圧を高入力インピーダンス増幅
器AMPにて増幅し、該コンデンサC0に流れる電流を測定
する。
One of the ungrounded circuits 1 and 2 of the circuit voltage V is switched by a switch SW, grounded via a capacitor C0, and the voltage across the capacitor C0 is amplified by a high input impedance amplifier AMP and flows to the capacitor C0. Measure the current.

増幅器AMPの出力は第1の同期検波器M1及び第2の同
期検波器M2のそれぞれ一方の入力端に入力すると共に前
記第1の同期検波器M1の他方の入力端には電路1、2に
接続したトランスT2の2次側出力を印加し、また前記第
2の同期検波器M2の他方の入力端には前記トランスT2の
2次側出力を90度移相器PSを介して入力する。
The output of the amplifier AMP is input to one input terminal of each of a first synchronous detector M1 and a second synchronous detector M2, and the other input terminal of the first synchronous detector M1 is connected to electric circuits 1 and 2. The secondary output of the connected transformer T2 is applied, and the secondary output of the transformer T2 is input to the other input terminal of the second synchronous detector M2 via a 90-degree phase shifter PS.

前記同期検波器M1、M2各々の出力は次段に設けられた
記憶回路を有す演算回路CPに供給される。
The output of each of the synchronous detectors M1 and M2 is supplied to an arithmetic circuit CP having a storage circuit provided in the next stage.

先ず、スイッチSWが図に示したように非接地電路1側
に接続されているとき、コンデンサC0の両端電圧である
増幅器AMPの出力には式に比例した出力となり、該増
幅器AMP出力を第1の同期検波器M1及び第2の同期検波
器M2に印加すると共に該第1の同期検波器M1の他の入力
端には電路電圧と同相の電圧がトランスT2を介して印加
されているため、同期検波器M1出力端には式に相当す
る有効分電圧値Va1が出力される。一方、第2の同期検
波器M2の他の入力端にはトランスT2より得た電路電圧を
90゜移相器PSを介すことにより90゜位相推移した電圧が
印加されているため、該同期検波器M2の出力端には式
に相当する無効分電圧値Vb1が出力される。前記同期検
波器M1、M2各々の出力は次段に設けられた演算回路CPに
印加され、該演算回路CP内に設けられた記憶回路(図示
せず)に記憶する。
First, when the switch SW is connected to the ungrounded electric circuit 1 side as shown in the figure, the output of the amplifier AMP, which is the voltage across the capacitor C0, is an output proportional to the equation, and the output of the amplifier AMP is the first. And the other input terminal of the first synchronous detector M1 is applied with a voltage having the same phase as the circuit voltage via the transformer T2, and thus is applied to the synchronous detector M1 and the second synchronous detector M2. An effective component voltage value Va1 corresponding to the equation is output to the output terminal of the synchronous detector M1. On the other hand, the circuit voltage obtained from the transformer T2 is applied to the other input terminal of the second synchronous detector M2.
Since a voltage shifted by 90 ° is applied through the 90 ° phase shifter PS, an invalid voltage value Vb1 corresponding to the equation is output to the output terminal of the synchronous detector M2. The output of each of the synchronous detectors M1 and M2 is applied to an arithmetic circuit CP provided in the next stage, and is stored in a storage circuit (not shown) provided in the arithmetic circuit CP.

次にスイッチSWを非接地電路2側に接続すると増幅器
AMPの出力端には式に相当する出力が現れる。
Next, when the switch SW is connected to the ungrounded circuit 2 side, the amplifier
An output corresponding to the expression appears at the output terminal of the AMP.

したがって、上述したように同期検波器M1の出力端に
は式に相当する有効分電圧値Va2が、また同期検波器M
2の出力端には式に相当する無効分電圧値Vb2が出力さ
れ、演算回路CPでは既に記憶している有効分電圧値Va1
と該検出した有効分電圧値V2aとを加算し有効分電圧値V
aを、また既に記憶している無効分電圧値Vb1と該検出し
た無効分電圧値Vb2とを加算し無効分電圧値Vbを算出す
る。
Therefore, as described above, an effective component voltage value Va2 corresponding to the equation is provided at the output end of the synchronous detector M1, and the synchronous detector M1
An invalid component voltage value Vb2 corresponding to the equation is output to the output terminal of No. 2 and the effective component voltage value Va1 already stored in the arithmetic circuit CP is stored.
And the detected effective component voltage value V2a are added to obtain an effective component voltage value V2a.
a is added to the previously stored invalid component voltage value Vb1 and the detected invalid component voltage value Vb2 to calculate the invalid component voltage value Vb.

次に前記算出した有効分電圧値Va及び無効分電圧値Vb
を用い、式の演算を行うことにより、演算回路CPの出
力端OUTには 即ち、電路1、2の絶縁抵抗のみによる漏洩電流が出力
される。
Next, the calculated effective component voltage value Va and the invalid component voltage value Vb
By performing the operation of the expression by using, the output terminal OUT of the operation circuit CP That is, a leakage current is output only from the insulation resistance of the electric circuits 1 and 2.

尚、本発明の実施例ではコンデンサC0の両端電圧を用
いたものを挙げて説明したがコンデンサC0に流れる電流
を電流検出器で検出し、上記実施例と同様な方法で式
の演算を行っても漏洩電流 を測定することができることは明かである。
In the embodiment of the present invention, an example using the voltage between both ends of the capacitor C0 has been described.However, a current flowing through the capacitor C0 is detected by a current detector, and an equation is calculated by the same method as in the above embodiment. Also leakage current It is clear that can be measured.

測定結果を電流値により求める方法について説明した
が、測定結果を電流値により表示するのではなく、直接
絶縁抵抗状態を表示するよう構成してもよい。
Although the method of obtaining the measurement result by the current value has been described, the measurement result may not be displayed by the current value, but may be directly displayed by the insulation resistance state.

(発明の効果) 本発明は上述した如く構成し且つ機能するものである
から非接地電路の絶縁抵抗を測定するにあたり、新たな
信号源を用いる必要がなく、また電路の対地静電容量に
よりその絶縁抵抗測定結果が変動することがないため、
高価な装置を用いることなく正確な電路の絶縁抵抗を測
定する上で著しい効果を発揮する。
(Effects of the Invention) Since the present invention is constructed and functions as described above, it is not necessary to use a new signal source in measuring the insulation resistance of the ungrounded electric circuit, and the measurement is performed by the capacitance of the electric circuit to ground. Because the insulation resistance measurement result does not change,
It has a remarkable effect in accurately measuring the insulation resistance of an electric circuit without using expensive equipment.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明に係る絶縁抵抗測定方法の原理を説明す
るための図、第2図及び第3図は第1図に示した回路の
等価回路図、第4図は本発明に係る非接地電路の絶縁抵
抗測定方法を実施するための一回路構成図である。 T1、T2……トランス 1、2……非接地電路 3……接続線 SW……スイッチ R1、R2……対地絶縁抵抗 C1、C2……対地静電容量 C0……コンデンサ Z……負荷 AMP……増幅器 M1、M2……同期検波器 PS……90゜移相器 CP……演算回路
FIG. 1 is a diagram for explaining the principle of the insulation resistance measuring method according to the present invention, FIGS. 2 and 3 are equivalent circuit diagrams of the circuit shown in FIG. 1, and FIG. FIG. 2 is a circuit configuration diagram for implementing a method of measuring insulation resistance of a ground circuit. T1, T2… Transformer 1, 2… Ungrounded electric circuit 3… Connection line SW… Switch R1, R2… Insulation resistance to ground C1, C2… Capacitance to ground C0… Capacitor Z… Load AMP… … Amplifier M1, M2 …… Synchronous detector PS …… 90 ° phase shifter CP …… Operation circuit

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】電路電圧Vの非接地電路の一方の非接地電
路を静電容量C0のコンデンサを介して接地したときに、
該コンデンサC0に流れる電路電圧と同相の有効分電流値
a1と電路電圧と直交する無効分電流値b1とを検出すると
共に、他方の非接地電路を静電容量C0のコンデンサを介
して接地したときに該コンデンサに流れる電路電圧と同
相の有効分電流値a2と電路電圧と直交する無効分電流値
b2とを検出し、該有効分電流値a1とa2との和a及び前記
無効分電流値b1とb2との和bとを用いることにより前記
非接地電路の対地静電容量の影響を受けずに対地絶縁抵
抗のみによる漏洩電流iを測定したことを特徴とする非
接地電路の絶縁抵抗測定方法。
When one of the non-grounded circuits of the circuit voltage V is grounded via a capacitor having a capacitance C0,
Effective component current value in phase with circuit voltage flowing through capacitor C0
a1 and the reactive component current value b1 orthogonal to the circuit voltage are detected, and the active component current value in phase with the circuit voltage flowing through the other ungrounded circuit when the other non-grounded circuit is grounded via a capacitor having a capacitance C0. Reactive component current value orthogonal to a2 and circuit voltage
b2, and by using the sum a of the effective component current values a1 and a2 and the sum b of the reactive component current values b1 and b2, without being affected by the ground capacitance of the ungrounded electric circuit. 3. A method for measuring insulation resistance of an ungrounded electric circuit, wherein a leakage current i is measured only by a ground insulation resistance.
JP26945089A 1989-10-17 1989-10-17 Measurement method of insulation resistance of ungrounded circuit Expired - Fee Related JP2942892B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26945089A JP2942892B2 (en) 1989-10-17 1989-10-17 Measurement method of insulation resistance of ungrounded circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26945089A JP2942892B2 (en) 1989-10-17 1989-10-17 Measurement method of insulation resistance of ungrounded circuit

Publications (2)

Publication Number Publication Date
JPH03131774A JPH03131774A (en) 1991-06-05
JP2942892B2 true JP2942892B2 (en) 1999-08-30

Family

ID=17472602

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26945089A Expired - Fee Related JP2942892B2 (en) 1989-10-17 1989-10-17 Measurement method of insulation resistance of ungrounded circuit

Country Status (1)

Country Link
JP (1) JP2942892B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114563674B (en) * 2022-04-24 2022-07-22 杭州华塑科技股份有限公司 Insulation detection device and method applied to energy storage system

Also Published As

Publication number Publication date
JPH03131774A (en) 1991-06-05

Similar Documents

Publication Publication Date Title
JPS6238930B2 (en)
US4011503A (en) Apparatus for measuring the phase relation of two alternating current signals
JP2942892B2 (en) Measurement method of insulation resistance of ungrounded circuit
CA2376732C (en) A current-comparator-based four-terminal resistance bridge for power frequencies
JP2860803B2 (en) Measurement method of insulation resistance of ungrounded circuit
US3842344A (en) Bridge circuit for measuring dielectric properties of insulation
US4022990A (en) Technique and apparatus for measuring the value of a capacitance in an electrical circuit such as a telephone communication line
JPS60186765A (en) Compensating method of measuring device for insulation resistance
JP2020176982A (en) Voltage measuring device
WO2023277178A1 (en) Impedance measurement system
JPH0351748Y2 (en)
JPH07234102A (en) Displacement measuring apparatus
RU2029965C1 (en) Capacitive sensor dielectric loss measuring device
JP2942894B2 (en) Measurement method of insulation resistance of three-phase three-wire circuit
JP2942893B2 (en) Method for measuring insulation resistance of single-phase three-wire circuit
JP3313200B2 (en) Zero-phase current transformer primary current measuring device
JP2764582B2 (en) Simple insulation resistance measurement method
JPS637349B2 (en)
JPS5933233B2 (en) Grounding system insulation resistance measuring device
JP2665912B2 (en) Insulation resistance measurement method that compensates for the effect of ground resistance
JP2750690B2 (en) Leakage current detection method
JP3091005B2 (en) Method and apparatus for measuring capacitance to ground of one-wire grounded three-phase three-wire circuit
SU1026100A2 (en) Hall emf meter
JP3326763B2 (en) How to measure complex power
Castelli The potential transformer bridge with current comparator for measuring the voltage dependence of compressed-gas capacitors

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees