WO2023277178A1 - Impedance measurement system - Google Patents

Impedance measurement system Download PDF

Info

Publication number
WO2023277178A1
WO2023277178A1 PCT/JP2022/026460 JP2022026460W WO2023277178A1 WO 2023277178 A1 WO2023277178 A1 WO 2023277178A1 JP 2022026460 W JP2022026460 W JP 2022026460W WO 2023277178 A1 WO2023277178 A1 WO 2023277178A1
Authority
WO
WIPO (PCT)
Prior art keywords
measurement
impedance
internal resistance
current
measured
Prior art date
Application number
PCT/JP2022/026460
Other languages
French (fr)
Japanese (ja)
Inventor
淳司 飯島
Original Assignee
日置電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日置電機株式会社 filed Critical 日置電機株式会社
Priority to CN202290000503.7U priority Critical patent/CN221148794U/en
Publication of WO2023277178A1 publication Critical patent/WO2023277178A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R27/00Arrangements for measuring resistance, reactance, impedance, or electric characteristics derived therefrom
    • G01R27/02Measuring real or complex resistance, reactance, impedance, or other two-pole characteristics derived therefrom, e.g. time constant
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/389Measuring internal impedance, internal conductance or related variables

Definitions

  • the present invention relates to an impedance measurement system.
  • FIG. 5(a) is a configuration (left figure) of one impedance measuring device 101 and a graph (right figure) comparatively displaying measured impedances and true values
  • (b) is another impedance measuring device 201.
  • Fig. 3 is a graph (right) showing the configuration (left) and the measured impedance and true value in comparison.
  • a method for measuring the impedance of one sample and the impedance of another sample with the impedance measuring devices 101 and 201 will be specifically described below.
  • the measured alternating current i1 from the constant current source 102 is applied to the internal resistance r1, and the voltage v1 generated across the internal resistance r1 is detected and the impedance of one sample is measured.
  • the measured alternating current i2 from the constant current source 202 is applied to the internal resistance r2, and the voltage v2 generated across the internal resistance r2. is detected and the impedance of the other sample is measured.
  • r1 B and r2 B are measured values (resistance) caused by frequency errors when the frequencies of the measured alternating current i 1 and the measured alternating current i 2 are different, it can be seen that frequency undulation occurs. This undulation causes variations in measured values (measurement errors) and lowers the accuracy of impedance measurement.
  • an object of the present invention is to provide an impedance measurement system capable of improving the accuracy of impedance measurement in impedance measurement performed using a plurality of impedance measurement devices.
  • one aspect of the impedance measurement system includes a master-side impedance measuring device that supplies a measurement alternating current of a predetermined frequency to one measurement object to measure the impedance of the one measurement object.
  • a slave impedance measuring device for measuring the impedance of another measured object, the master impedance measuring device comprising a measuring alternating current source for supplying a measuring alternating current and a measuring alternating current generated across one measuring object. and a master-side voltage detection unit that detects the voltage and outputs the impedance of one object to be measured.
  • the impedance of another object to be measured is calculated based on the measured alternating current from the alternating current source and the voltage detected by the slave side voltage detection section constituting the slave side impedance measuring instrument.
  • Another aspect of the impedance measurement system of the present invention is that the internal resistance of one object to be measured and the internal resistance of another object to be measured are connected in series, and the directions of the currents flowing through the objects to be measured are opposite to each other.
  • a current path is formed between the measurement target and the measurement AC source, or between the measurement target, the measurement AC source, and the current detection unit, and the measurement AC current from the measurement AC source is It is characterized in that it is applied to the internal resistance and the internal resistance of other objects to be measured.
  • another aspect of the impedance measurement system of the present invention includes a first current measurement line that connects the measurement AC source and the internal resistance of the one measurement object, and the measurement AC source and the internal resistance of the other measurement object.
  • the second current measurement line to be connected is arranged close to each other, and the one measurement object and the other measurement object are arranged close to each other.
  • another aspect of the impedance measurement system of the present invention is that when the other measurement object is single, the second current measurement line connects the measurement alternating current source and the internal resistance of the other measurement object.
  • a first current measuring line and a second current measuring line are arranged close to each other, and one measuring object and a single other measuring object are arranged close to each other.
  • the second current measurement line is the measurement AC source and the other measurement object at the last stage among the plurality of other measurement objects.
  • a first current measurement line and a second current measurement line are arranged close to each other, and one measurement object and a plurality of other measurement objects are arranged close to each other. It is characterized by
  • an impedance measurement system capable of improving the accuracy of impedance measurement.
  • (a) is a configuration of one impedance measuring device (left figure) and a graph (right figure) comparatively displaying the measured impedance and the true value;
  • (b) is a configuration of another impedance measuring device (left figure); ), and a graph (right figure) comparatively displaying the measured impedance and the true value.
  • An impedance measurement system 1 according to a first embodiment of the present invention will be described below with reference to FIG. 1, taking a battery cell as an example of an object to be measured.
  • the electronic components to be measured by the impedance measuring device (hereafter referred to as "measurement targets") are battery cells and elements that make up electric circuits. Impedance is measured as an electrical parameter important for evaluation and the like.
  • FIG. 1 is a diagram showing the configuration of an impedance measurement system 1 according to the first embodiment of the invention.
  • FIG. 1 shows a master-side impedance measuring device (hereinafter referred to as “master-side measuring device") 10 for measuring alternating current generated by a slave-side impedance measuring device (hereinafter referred to as “slave-side measuring device”) 20.
  • master-side measuring device for measuring alternating current generated by a slave-side impedance measuring device
  • slave-side measuring device 20 a slave-side impedance measuring device for measuring alternating current generated by a slave-side impedance measuring device (hereinafter referred to as “slave-side measuring device”) 20.
  • a configuration is shown in which impedance measurement is performed by synchronizing and supplying the sample to be measured of the master side measuring device 10 and the slave side measuring device 20 in the same phase.
  • the impedance measurement system 1 is configured with a master side measuring device 10 and a slave side measuring device 20 .
  • the master-side measuring device 10 includes a constant-current source 11 that generates an alternating current to be measured, a voltmeter 13 as a voltage detector, and a synchronous signal Sd to generate a phase of the alternating current to be measured that is generated by the constant-current source 11 on the slave side. It includes a synchronization signal generator 15 for synchronizing the measuring device 20 .
  • the slave-side measuring device 20 includes a constant current source 21 that generates an alternating current to be measured, and a voltmeter 23 as a voltage detector.
  • the constant current source 11 corresponds to the measurement AC source in claim 1, and the constant current source 21 is indicated by a dotted line because it does not function as the measurement AC source in this embodiment as will be described later.
  • a measurement current loop (of the measurement AC current i1) passing through the constant current source 11 and the internal resistance r2 inside the second battery cell
  • a constant current source 11 and a second battery cell are connected via a current measurement line so as to constitute a path).
  • the voltmeter 13 and the first battery cell are connected via a voltage measurement line so that a voltage detection loop passing through the voltmeter 13 and the internal resistor r1 is configured.
  • the voltmeter 23 and the second battery cell are connected via a voltage measurement line so as to form a voltage detection loop passing through the voltmeter 23 and the internal resistor r2.
  • the internal resistance r1 of the first battery cell and the internal resistance r2 of the second battery cell are connected in series. By connecting the internal resistance r1 and the internal resistance r2 in series, the same phase measurement alternating current i1 flows through both the internal resistance r1 and the internal resistance r2 of the second battery cell.
  • the first battery cell and the second battery cell are arranged and connected at their ends so that the directions of the measured alternating current i1 flowing through the internal resistance r1 and the internal resistance r2 are opposite to each other. ing.
  • the impedance of the first battery cell is calculated based on the measured AC current i 1 and the voltage (r1 ⁇ i 1 ) detected by the voltmeter 13 .
  • the synchronous signal generator 15 outputs the synchronous signal Sd to the voltmeter 23 that detects the voltage (r2 ⁇ i 1 ) generated across r2, and synchronously detects the phase with the phase of the measured AC current i. .
  • the impedance of the second battery cell is calculated based on the measured AC current i 1 and the voltage (r2 ⁇ i 1 ) detected by the voltmeter 23 . Note that the measured alternating current i1 is a constant and known value.
  • the master-side measuring device 10 supplies the first battery cell with a measured AC current i1 of a predetermined frequency from the constant current source 11, and the voltage detector 13 detects the voltage of the first battery cell (the voltage generated across r1 ) to measure the impedance of the first battery cell.
  • the slave-side measuring device 20 supplies the second battery cell with the measured alternating current i1 of a predetermined frequency from the constant current source 11, and the voltage detector 23 detects the voltage of the second battery cell (r2 voltage) to measure the impedance of the second battery cell.
  • the master-side measuring device 10 and the slave-side measuring device 20 are connected for communication with each other, and the slave-side measuring device 20 also synchronously detects the phase of the AC current i1 measured on the master side to measure the impedance.
  • the measurement AC current flowing through the master-side measuring device 10 and the slave-side measuring device 20 is only i1, for example, two measurement AC currents with different phases and frequencies are supplied by a plurality of impedance measuring devices.
  • the problem of electromagnetic interference due to magnetic flux and frequency errors caused by each of the two different measured alternating currents does not occur. Therefore, measurement errors caused by electromagnetic interference can be suppressed.
  • the measured alternating current i1 flowing through the internal resistors r1 and r2 is in the opposite direction, it is possible to suppress the generation of magnetic flux in the battery cells.
  • the configuration example described above is an example using two impedance measuring instruments 10 and 20, but even if three or more impedance measuring instruments are used, one is used as a master impedance measuring instrument and the rest are slaves.
  • the same effects as described above can be obtained by adopting a configuration in which the internal resistances inside the battery cells corresponding to the respective impedance measuring devices are connected in series in the same manner as described above.
  • FIG. 2 is a diagram showing the configuration of an impedance measurement system 40 according to a second embodiment of the invention.
  • the slave side measuring device 60 is synchronized with the measured alternating current i1 generated in the master side measuring device 50, and the measured alternating current i1 of the same phase is generated by the master side measuring device 50 and the slave side measuring device 60 respectively. is applied to a battery cell to be measured to perform impedance measurement.
  • the impedance measurement system 40 is configured with a master side measuring device 50 and a slave side measuring device 60 .
  • the master-side measuring device 50 includes a constant current source 51 that generates a measured alternating current i1, a voltmeter 53 as a voltage detector, and a synchronizing signal Sd to generate the measured alternating current i1 generated by the constant current source 51. It includes a synchronization signal generator 55 for synchronizing the slave side measuring device 60 with the phase.
  • the slave-side measuring device 60 includes a constant current source 61 that generates an AC current to be measured, and a voltmeter 63 as a voltage detector. Note that the constant current source 61 corresponds to the measurement AC source in claim 1, and as will be described later, the constant current source 61 does not function as the measurement AC source in this embodiment, so it is indicated by a dotted line.
  • the internal resistance r1 inside the first battery cell (not shown) and the internal resistance r2 inside the second battery cell (not shown) are described below with the master side measuring device 50 and the slave side measuring device 60. will be described.
  • the measured alternating current i1 from the constant current source 51 passes through the internal resistance r2 inside the second battery cell after passing through the internal resistance r1.
  • a current loop (the path of the measured alternating current i1) is constructed.
  • the voltmeter 53 and the first battery cell are connected via a voltage measurement line so that a voltage detection loop passing through the voltmeter 53 and the internal resistor r1 is formed.
  • the voltmeter 63 and the second battery cell constitute a voltage detection loop passing through the voltmeter 63 and the internal resistor r2. are connected via voltage measurement lines.
  • a current measurement line (outgoing) connecting one end of the constant current source 51 and the internal resistance r1 and a current measurement line (returning) connecting the other end of the constant current source 51 and the internal resistance r2 are arranged close to each other. be.
  • the forward and return current measurement lines close to each other to cancel the magnetic flux generated by each other, the induced voltage generated in the voltmeters 53 and 63 due to the magnetic flux generated by the measured alternating current i1 can be suppressed. This is because the resulting measurement error can be reduced.
  • the forward and return current measurement lines are twisted to be close to each other, but the method of making them close is not limited to this. You may set it.
  • a pair of voltage measurement lines corresponding to the voltage detection loop passing through the voltmeter 53 and the internal resistance r1 and a pair of voltage measurement lines corresponding to the voltage detection loop passing through the voltmeter 63 and the internal resistance r2 It is desirable to place it so that it is not close to the current measurement line.
  • the same phase measurement AC current i1 flows through both the internal resistance r1 and the internal resistance r2 of the second battery cell.
  • the impedance of the first battery cell is calculated based on the measured AC current i 1 and the voltage (r1 ⁇ i 1 ) detected by the voltmeter 53 .
  • the synchronous signal generator 55 outputs the synchronous signal Sd to the voltmeter 63 that detects the voltage (r2 ⁇ i1) generated across r2, and measures the phase of the synchronous signal Sd. do.
  • the impedance of the second battery cell is calculated based on the measured AC current i 1 and the voltage (r2 ⁇ i 1 ) detected by the voltmeter 63 .
  • the first and second battery cells are arranged so as to be close to each other, and the forward current measurement line and the return current measurement line are arranged so as to be close to each other, the magnetic fluxes generated mutually cancel each other, Since the induced voltage generated in the voltmeters 53 and 63 can be suppressed, the occurrence of eddy current can be suppressed even if there is metal near the voltmeters 53 and 63 . Therefore, it is possible to suppress adverse effects on the voltmeters 53 and 63 due to electromagnetic induction caused by the eddy current.
  • the distance between both ends of ⁇ terminals is about 800 mm. 63 can be suppressed.
  • the master-side measuring device 50 supplies the first battery cell with a measured AC current i1 of a predetermined frequency from a constant current source 51, and the voltage detector 53 detects the voltage of the first battery cell (r1 voltage) to measure the impedance of the first battery cell.
  • the slave-side measuring device 60 supplies the second battery cell with the measured alternating current i1 of a predetermined frequency from the constant current source 11, and the voltage detector 63 detects the voltage of the second battery cell (r2 voltage) to measure the impedance of the second battery cell.
  • the master side measuring device 50 and the slave side measuring device 60 are connected for communication with each other, and the slave side measuring device 60 also synchronously detects the phase of the AC current i1 measured on the master side to measure the impedance.
  • Modification 1 The impedance measurement system 70 according to Modification 1 will be described below with reference to FIG. 3, taking a battery cell as an example to be measured.
  • FIG. 3 is a diagram showing the configuration of an impedance measurement system 70 according to Modification 1 of the present invention.
  • the measured alternating current i1 generated in the master side measuring device 71 is synchronized with the slave side measuring devices 72 and 73, and the measured alternating current i1 in the same phase is measured by the master side measuring device 71 and the slave side measuring device 72. , 73 to measure the impedance of each battery cell to be measured.
  • the impedance measurement system 70 is configured with a master side measuring device 71 and slave side measuring devices 72 and 73 .
  • the master-side measuring device 71 includes a constant current source 76 that generates a measuring alternating current i1, a voltmeter (V1) 77 as a voltage detector, and a synchronizing signal Sd to generate the measuring alternating current generated by the constant current source 76. It includes a synchronizing signal generator 75 for synchronizing the phase of i1 with the slave side measuring devices 72 and 73 .
  • the slave-side measuring instruments 72, 73 are configured including voltmeters 78, 79 (V2, V3) as voltage detectors. Note that the constant current source 76 corresponds to the measuring AC source of claim 1 .
  • the voltmeter 78 and the second battery cell When measuring the impedance of the second battery cell (not shown) with the slave-side measuring device 72, the voltmeter 78 and the second battery cell constitute a voltage detection loop passing through the voltmeter 78 and the internal resistor r2. are connected via voltage measurement lines. The voltmeter 79 and the third battery cell are connected via a voltage measurement line so as to form a voltage detection loop passing through the voltmeter 79 and the internal resistor r3.
  • the second battery cell and the third battery cell are brought close to each other, and the current measurement line (going) connecting one end of the constant current source 76 and the internal resistance r1 and the constant current source 76 are connected.
  • a current measurement line (return) connecting the other end and the internal resistance r3 is arranged so as to be close to each other.
  • the measurement alternating current i1 having the same phase flows through the internal resistors r1 to r3.
  • the impedance of the first battery cell is calculated based on the measured AC current i 1 and the voltage (r1 ⁇ i 1 ) detected by the voltmeter 77 .
  • Synchronization signal generator 75 includes voltmeter 78 that detects the voltage ( r2 ⁇ i 1 ) generated across r2 and voltmeter 78 that detects the voltage (r3 ⁇ i 1 ) generated across r3.
  • the voltages detected by the voltmeters 78 and 79 are synchronously detected in the same phase as the AC current i1.
  • the impedances of the second and third battery cells are calculated based on the measured alternating current i1 and the voltages detected by the voltmeters 78 and 79.
  • Modification 2 An impedance measurement system 80 according to Modification 2 will be described below with reference to FIG. 4, taking a battery cell as an example to be measured.
  • FIG. 4 is a diagram showing the configuration of an impedance measurement system 80 according to Modification 2 of the present invention.
  • slave side measuring instruments 82 to 84 are synchronized with the measured alternating current i1 generated in the master side measuring instrument 81, and the measured alternating current i1 of the same phase is measured by the master side measuring instrument 81 and the slave side measuring instrument 82.
  • 84 is applied to each battery cell to be measured to measure the impedance.
  • the impedance measurement system 80 is configured with a master side measuring device 81 and slave side measuring devices 82-84.
  • the master-side measuring device 81 includes a constant current source 86 that generates a measurement AC current i1, a voltmeter (V1) 87 as a voltage detector, and a synchronization signal Sd to generate a measurement AC current generated by the constant current source 86. It includes a synchronizing signal generator 85 for synchronizing the slave measuring instruments 82 to 84 with the phase of i1.
  • the slave-side measuring devices 82-84 include voltmeters (V2-V4) 88-90 as voltage detection units. Note that the constant current source 86 corresponds to the measurement alternating current source of claim 1 .
  • a current loop (the path of the measured alternating current i1) is constructed. Furthermore, the voltmeter 87 and the first battery cell are connected via a voltage measurement line so that a voltage detection loop passing through the voltmeter 87 and the internal resistor r1 is constructed.
  • the voltmeter 88 and the second battery cell When measuring the impedance of the second battery cell (not shown) with the slave side measuring device 82, the voltmeter 88 and the second battery cell form a voltage detection loop passing through the voltmeter 88 and the internal resistor r2. are connected via voltage measurement lines.
  • the voltmeter 89 and the third battery cell are connected via a voltage measurement line so as to form a voltage detection loop passing through the voltmeter 89 and the internal resistor r3.
  • the voltmeter 90 and the fourth battery cell are connected via a voltage measurement line so as to form a voltage detection loop passing through the voltmeter 90 and the internal resistor r4.
  • the first battery cell brings the second battery cell, the third battery cell, and the fourth battery cell close to each other, and connects one end of the constant current source 86 and the internal resistance r1 to a current measurement line (going). and the other end of the constant current source 86 and the internal resistor r4 are arranged so as to be close to each other.
  • the directions of the measured alternating currents flowing through the first battery cell and the second battery cell are reversed, and the directions of the measured alternating currents flowing through the second battery cell and the third battery cell are reversed,
  • the first battery cell, the second battery cell, the third battery cell, and the fourth battery cell are arranged such that the directions of the measured alternating currents flowing through the third battery cell and the fourth battery cell are opposite. are placed. As a result, it is possible to suppress the generation of magnetic flux in the battery cells.
  • the impedance of the first battery cell is calculated based on the measured AC current i 1 and the voltage (r1 ⁇ i 1 ) detected by the voltmeter 87 .
  • the synchronization signal generator 85 includes a voltmeter 88 that detects the voltage ( r2 ⁇ i 1 ) generated across r2, and a voltmeter that detects the voltage (r3 ⁇ i 1 ) generated across r3.
  • the voltage (r4 ⁇ i 1 ) generated across 89 and r4 is output to a voltmeter 90 to detect the phase, and the phase is the same as the phase of the alternating current i1. Synchronous detection of voltage.
  • the impedances of the second to fourth battery cells are calculated based on the measured AC current i1 and the voltages detected by the voltmeters 88-90. Moreover, since the outgoing current measuring line and the returning current measuring line are arranged so as to be close to each other, the magnetic flux generated mutually cancels each other, and the induced voltage generated in the voltmeters 87 to 90 can be suppressed. Even if there is metal in the vicinity of 87-90, the occurrence of eddy current can be suppressed. Therefore, it is possible to suppress adverse effects on the voltmeters 87 to 90 due to electromagnetic induction caused by the eddy current. In addition, since the direction of the measurement alternating current flowing through the battery cell is the opposite direction, it is possible to suppress the generation of magnetic flux, thereby suppressing measurement errors due to electromagnetic interference.
  • the impedance measuring system 1 of the present embodiment includes a master-side impedance measuring instrument 10 that supplies a measurement alternating current i1 of a predetermined frequency to one measurement object to measure the impedance of one measurement object, and An impedance measurement system 1 having a slave-side impedance measuring device 20 that measures impedance,
  • the master-side impedance measuring instrument 10 is a measuring alternating current source 11 supplying a measuring alternating current i1; a master-side voltage detection unit 13 that detects the voltage of the object to be measured and outputs the impedance of the sample, Synchronous detection is performed on the slave impedance measuring instrument 20 in the same phase as the measuring alternating current i1, and at least the measuring alternating current i1 from the measuring alternating current source 11 and the slave side constituting the slave impedance measuring instrument 20 are detected.
  • the impedance of the other measurement object is calculated. Therefore, according to the above configuration, since only the measurement AC current i1 flows through the master side measuring device 10 and the slave side measuring device 20, electromagnetic interference caused by the magnetic flux and frequency error caused by each of the two different measurement AC currents is prevented. No problem. Therefore, measurement errors caused by electromagnetic interference can be suppressed.
  • an internal resistance r1 to be measured and an internal resistance r2 to be measured are connected in series, and the internal resistance r1 and the internal resistance r2 are connected so that the directions of currents flowing are opposite to each other.
  • An internal resistance r2 to be measured is arranged, and a measuring alternating current i1 from a constant current source 11 is applied to the internal resistance r1 to be measured and to the internal resistance r2 to be measured. Therefore, according to the above configuration, the internal resistance r1 and the internal resistance r2 are connected in series, and the measured alternating current i1 from the constant current source 11 is applied to the internal resistance r1 of one object to be measured and the internal resistance r1 of another object to be measured. Since it is applied to r2, it is possible to solve the problem of electromagnetic interference caused by magnetic fluxes and frequency errors caused by two different measurement alternating currents with a simple configuration. Therefore, measurement errors caused by electromagnetic interference can be suppressed.
  • the first current measurement line connecting the constant current source 51 and the internal resistance r1 to be measured, the constant current source 51 and the internal resistance r2 to be measured are arranged close to each other, and one measurement object and another measurement object are arranged close to each other. Therefore, according to the above configuration, the object to be measured and the other object to be measured are arranged close to each other, and the outgoing current measurement line and the return current measurement line are arranged so as to be close to each other, so that the magnetic fluxes generated by each other are Induced voltages that are canceled and appear in the voltmeters 53 and 63 can be suppressed.
  • the second current measurement line connects the measurement AC source 51 and the internal resistance r2 to be measured, A first current-measuring line and a second current-measuring line are placed in close proximity to each other, and one measuring object and a single other measuring object are placed in close proximity. Therefore, according to the above configuration, when there is a single object to be measured on the slave side, the outgoing current measurement line and the return current measurement line are arranged so as to be close to each other, and the one object to be measured and the single other object are arranged.
  • the magnetic fluxes generated by each other are canceled, and the induced voltage generated in the voltmeters 53 and 63 can be suppressed. Therefore, even if there is metal in the vicinity of the voltmeters 53 and 63, the occurrence of eddy currents can be suppressed, so that the adverse effects of electromagnetic induction caused by the eddy currents on the voltmeters 53 and 63 can be suppressed. can.
  • the second current measurement line connects the measurement AC source 76 and the internal resistance r3 of the other measurement object at the last stage among the plurality of other measurement objects, A first current measurement line and a second current measurement line are arranged close to each other, and one measurement object and a plurality of other measurement objects are arranged close to each other. Therefore, according to the above configuration, even if there are a plurality of stages of measurement objects, one measurement object and a plurality of other measurement objects are arranged close to each other, and the outgoing current measurement line and the return current measurement line are connected to each other.
  • the constant current source 11 is used to apply a constant alternating current to the internal resistance of the battery cell to measure the impedance.
  • a current source may also be provided to apply a variable measuring alternating current to the battery cells to measure impedance.
  • an ammeter for detecting the current flowing through the battery cell is provided in addition to the voltmeter.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Measurement Of Resistance Or Impedance (AREA)

Abstract

The present invention provides an impedance measurement system that makes it possible to improve accuracy in impedance measurement. An impedance measurement system 1 comprises: a master-side measuring instrument 10 that supplies a measurement alternating current i1 to one measurement object and measures impedance; and a slave-side measuring instrument 20 that measures the impedance of an other measurement object. The master-side measuring instrument 10 has a constant current source 11 that supplies a measurement alternating current, and a voltage detection unit 13 that detects the voltage of said one measurement object and outputs the impedance of a sample. The slave-side measuring instrument 20 is caused to carry out synchronous detection in the same phase as the measurement alternating current, and the impedance of said other measurement object is calculated on the basis of a measurement alternating current i1 from the constant current source 11 and the voltage that has been detected by a slave-side voltmeter 23 which constitutes the slave-side measuring instrument 20.

Description

インピーダンス測定システムImpedance measurement system
 本発明は、インピーダンス測定システムに関するものである。 The present invention relates to an impedance measurement system.
 電気回路を構成する素子がもつ内部インピーダンスを測定する方法として、測定対象である試料に交流信号を与えてその電気応答を測定する交流インピーダンス測定法(以下の特許文献1参照)がある。この方法では、試料がもつ抵抗成分、キャパシタンス成分、インダクタンス成分の大きさを調べることができる。また、それらの成分が試料内でどのような等価回路を構成しているか、あるいは、その等価回路のパラメータを求めることができる。 As a method for measuring the internal impedance of elements that make up an electric circuit, there is an AC impedance measurement method (see Patent Document 1 below) in which an AC signal is applied to a sample to be measured and the electrical response is measured. With this method, the magnitudes of the resistance, capacitance, and inductance components of the sample can be investigated. In addition, it is possible to determine what kind of equivalent circuit these components form in the sample, or the parameters of the equivalent circuit.
 図5(a),(b)を参照して、従来における複数のインピーダンス測定装置を有するインピーダンス測定システム100,200について説明する。図5(a)は、一のインピーダンス測定装置101の構成(左図)および測定されたインピーダンス及び真値を比較表示したグラフ(右図)であり、(b)は他のインピーダンス測定装置201の構成(左図)および測定されたインピーダンス及び真値を比較表示したグラフ(右図)である。 Conventional impedance measurement systems 100 and 200 having a plurality of impedance measurement devices will be described with reference to FIGS. 5(a) and 5(b). FIG. 5(a) is a configuration (left figure) of one impedance measuring device 101 and a graph (right figure) comparatively displaying measured impedances and true values, and (b) is another impedance measuring device 201. Fig. 3 is a graph (right) showing the configuration (left) and the measured impedance and true value in comparison.
 以下、具体的に、インピーダンス測定装置101,201で一の試料のインピーダンスと他の試料のインピーダンスを測定する方法を説明する。図5(a)の左図に示すように、インピーダンス測定装置101内では、定電流源102からの測定交流電流iが内部抵抗r1に印加され、内部抵抗r1の両端に発生する電圧v1が検出され、一の試料のインピーダンスが測定される。一方、図5(b)の左図に示すように、インピーダンス測定装置201では、定電流源202からの測定交流電流iが内部抵抗r2に印加され、内部抵抗r2の両端に発生する電圧v2が検出され、他の試料のインピーダンスが測定される。 A method for measuring the impedance of one sample and the impedance of another sample with the impedance measuring devices 101 and 201 will be specifically described below. As shown in the left diagram of FIG. 5(a), in the impedance measuring device 101, the measured alternating current i1 from the constant current source 102 is applied to the internal resistance r1, and the voltage v1 generated across the internal resistance r1 is detected and the impedance of one sample is measured. On the other hand, as shown in the left diagram of FIG. 5(b), in the impedance measuring device 201, the measured alternating current i2 from the constant current source 202 is applied to the internal resistance r2, and the voltage v2 generated across the internal resistance r2. is detected and the impedance of the other sample is measured.
特開2019-86474号JP 2019-86474 A
 ところで、図5(a)の右図に示すように、測定された内部抵抗r1と真値r1とを比較すると両者は一致せずに所定の誤差が生じていることがわかる。また、図5(b)の右図に示すように、測定された内部抵抗r2と真値r2とを比較すると両者は一致せずに所定の誤差が生じていることがわかる。 By the way, as shown in the right diagram of FIG. 5(a), when the measured internal resistance r1A is compared with the true value r1, it can be seen that the two do not match and a predetermined error has occurred. Also, as shown in the right diagram of FIG. 5(b), when the measured internal resistance r2A is compared with the true value r2, it can be seen that the two do not match and a predetermined error has occurred.
 また、インピーダンス測定装置101,201の定電流源からの測定交流電流により発生する磁束が電圧計の経路内に交差すると、電磁誘導により起電力が発生して測定誤差の要因となる。また、近傍に金属があるとインピーダンス測定装置101,201の電磁誘導によって生じる渦電流に起因する誘導電圧も発生して測定誤差の要因となる。解決手段のひとつとして、複数のインピーダンス測定器の測定電流の位相を逆位相にして同期をとる方法がある。この方法では、発生する磁束を互いに打ち消し合うことで電磁誘導の影響を低減させている。 Also, when the magnetic flux generated by the measurement alternating current from the constant current source of the impedance measuring devices 101 and 201 intersects the path of the voltmeter, electromotive force is generated due to electromagnetic induction, which causes measurement errors. Also, if there is metal nearby, an induced voltage is generated due to an eddy current caused by electromagnetic induction of the impedance measuring devices 101 and 201, which causes a measurement error. As one solution, there is a method of synchronizing by making the phases of the measurement currents of a plurality of impedance measuring instruments opposite to each other. This method reduces the influence of electromagnetic induction by mutually canceling the generated magnetic fluxes.
 しかし、r1、r2は測定交流電流iと測定交流電流iの周波数が異なる場合における周波数誤差に起因する測定値(抵抗)であるが、周波数のうねりが生じていることがわかる。このうねりは測定値の変動(測定誤差)を招き、インピーダンス測定の精度を低下させる。 However, although r1 B and r2 B are measured values (resistance) caused by frequency errors when the frequencies of the measured alternating current i 1 and the measured alternating current i 2 are different, it can be seen that frequency undulation occurs. This undulation causes variations in measured values (measurement errors) and lowers the accuracy of impedance measurement.
 そこで本発明の課題は、複数のインピーダンス測定装置を用いて行われるインピーダンス測定において、インピーダンス測定の精度の向上を図ることができるインピーダンス測定システムを提供することである。 Therefore, an object of the present invention is to provide an impedance measurement system capable of improving the accuracy of impedance measurement in impedance measurement performed using a plurality of impedance measurement devices.
 上記課題を解決するために、本発明に係るインピーダンス測定システムの一側面は、一測定対象に所定の周波数の測定交流電流を供給して前記一測定対象のインピーダンスを測定するマスター側インピーダンス測定器と、他の測定対象のインピーダンスを測定するスレーブ側インピーダンス測定器とを有するインピーダンス測定システムであって、マスター側インピーダンス測定器は、測定交流電流を供給する測定交流源と、一測定対象の両端に発生する電圧を検出して、一測定対象のインピーダンスを出力するマスター側電圧検出部とを有し、測定交流電流の位相と同位相で前記スレーブ側インピーダンス測定器に対して同期検波させて、少なくとも測定交流源からの測定交流電流と、スレーブ側インピーダンス測定器を構成するスレーブ側電圧検出部で検出された電圧とに基づいて、他の測定対象のインピーダンスが算出されることを特徴とする。 In order to solve the above problems, one aspect of the impedance measurement system according to the present invention includes a master-side impedance measuring device that supplies a measurement alternating current of a predetermined frequency to one measurement object to measure the impedance of the one measurement object. , a slave impedance measuring device for measuring the impedance of another measured object, the master impedance measuring device comprising a measuring alternating current source for supplying a measuring alternating current and a measuring alternating current generated across one measuring object. and a master-side voltage detection unit that detects the voltage and outputs the impedance of one object to be measured. The impedance of another object to be measured is calculated based on the measured alternating current from the alternating current source and the voltage detected by the slave side voltage detection section constituting the slave side impedance measuring instrument.
 また、本発明のインピーダンス測定システムの他の側面は、一測定対象の内部抵抗と他の測定対象の内部抵抗とが直列に接続され、また測定対象に流れる電流の向きが互いに逆方向になるように配置されて、測定対象と測定交流源との間、または測定対象と測定交流源と電流検出部との間で電流経路が形成され、測定交流源からの測定交流電流が、一測定対象の内部抵抗および他の測定対象の内部抵抗に印加されることを特徴とする。 Another aspect of the impedance measurement system of the present invention is that the internal resistance of one object to be measured and the internal resistance of another object to be measured are connected in series, and the directions of the currents flowing through the objects to be measured are opposite to each other. A current path is formed between the measurement target and the measurement AC source, or between the measurement target, the measurement AC source, and the current detection unit, and the measurement AC current from the measurement AC source is It is characterized in that it is applied to the internal resistance and the internal resistance of other objects to be measured.
 また、本発明のインピーダンス測定システムの他の側面は、測定交流源と前記一測定対象の内部抵抗とを接続する第1の電流計測線と、測定交流源と他の測定対象の内部抵抗とを接続する第2の電流計測線とが互いに近接して配置され、一測定対象と他の測定対象が近接して配置されていることを特徴とする。 In addition, another aspect of the impedance measurement system of the present invention includes a first current measurement line that connects the measurement AC source and the internal resistance of the one measurement object, and the measurement AC source and the internal resistance of the other measurement object. The second current measurement line to be connected is arranged close to each other, and the one measurement object and the other measurement object are arranged close to each other.
 また、本発明のインピーダンス測定システムの他の側面は、他の測定対象が単一であった場合に、第2の電流計測線は、測定交流源と他の測定対象の内部抵抗とを接続し、第1の電流計測線と第2の電流計測線とが互いに近接して配置され、一測定対象と単一の他の測定対象が近接して配置されていることを特徴とする。 In addition, another aspect of the impedance measurement system of the present invention is that when the other measurement object is single, the second current measurement line connects the measurement alternating current source and the internal resistance of the other measurement object. , a first current measuring line and a second current measuring line are arranged close to each other, and one measuring object and a single other measuring object are arranged close to each other.
 本発明のインピーダンス測定システムの他の側面は、他の測定対象が複数あった場合に、第2の電流計測線は、測定交流源と複数の他の測定対象の内の最後段にある他の測定対象の内部抵抗とを接続し、第1の電流計測線と第2の電流計測線とが互いに近接して配置され、一測定対象と複数の他の測定対象が互いに近接して配置されていることを特徴とする。 Another aspect of the impedance measurement system of the present invention is that when there are a plurality of other measurement objects, the second current measurement line is the measurement AC source and the other measurement object at the last stage among the plurality of other measurement objects. A first current measurement line and a second current measurement line are arranged close to each other, and one measurement object and a plurality of other measurement objects are arranged close to each other. It is characterized by
 本発明によれば、インピーダンス測定の精度の向上を図ることができるインピーダンス測定システムを提供することができる。 According to the present invention, it is possible to provide an impedance measurement system capable of improving the accuracy of impedance measurement.
本発明の第1の実施の形態に係るインピーダンス測定システムの構成を示した図である。BRIEF DESCRIPTION OF THE DRAWINGS It is the figure which showed the structure of the impedance measurement system based on the 1st Embodiment of this invention. 本発明の第2の実施の形態に係るインピーダンス測定システムの構成を示した図である。It is a diagram showing the configuration of an impedance measurement system according to a second embodiment of the present invention. 本発明の変形例1に係るインピーダンス測定システムの構成を示した図である。It is a figure showing the composition of the impedance measuring system concerning modification 1 of the present invention. 本発明の変形例2に係るインピーダンス測定システムの構成を示した図である。It is a figure showing the composition of the impedance measuring system concerning modification 2 of the present invention. (a)は、一のインピーダンス測定装置の構成(左図)および測定されたインピーダンス及び真値を比較表示したグラフ(右図)であり、(b)は他のインピーダンス測定装置の構成(左図)および測定されたインピーダンス及び真値を比較表示したグラフ(右図)である。(a) is a configuration of one impedance measuring device (left figure) and a graph (right figure) comparatively displaying the measured impedance and the true value; (b) is a configuration of another impedance measuring device (left figure); ), and a graph (right figure) comparatively displaying the measured impedance and the true value.
<第1の実施の形態>
 以下に、図1を参照して本発明の第1の実施の形態に係るインピーダンス測定システム1について、測定対象としてバッテリセルを例に挙げて説明する。なお、インピーダンス測定装置の測定対象電子部品(以下、「測定対象」と呼ぶ。)は、バッテリセル(電池セル)、電気回路を構成する素子であり、インピーダンスの測定は、バッテリセルや素子の特性評価等に重要な電気的パラメータとしてのインピーダンスを測定する。
<First embodiment>
An impedance measurement system 1 according to a first embodiment of the present invention will be described below with reference to FIG. 1, taking a battery cell as an example of an object to be measured. The electronic components to be measured by the impedance measuring device (hereafter referred to as "measurement targets") are battery cells and elements that make up electric circuits. Impedance is measured as an electrical parameter important for evaluation and the like.
 図1は、本発明の第1の実施の形態に係るインピーダンス測定システム1の構成を示す図である。図1は、マスター側インピーダンス測定器(以下、「マスター側測定器」と呼ぶ。)10において発生する測定交流電流にスレーブ側インピーダンス測定器(以下、「スレーブ側測定器」と呼ぶ。)20を同期させて、同一位相でマスター側測定器10およびスレーブ側測定器20のそれぞれの測定対象の試料に与えて、インピーダンス測定を行う構成を示している。 FIG. 1 is a diagram showing the configuration of an impedance measurement system 1 according to the first embodiment of the invention. FIG. 1 shows a master-side impedance measuring device (hereinafter referred to as "master-side measuring device") 10 for measuring alternating current generated by a slave-side impedance measuring device (hereinafter referred to as "slave-side measuring device") 20. A configuration is shown in which impedance measurement is performed by synchronizing and supplying the sample to be measured of the master side measuring device 10 and the slave side measuring device 20 in the same phase.
[インピーダンス測定システム1の構成]
 インピーダンス測定システム1は、マスター側測定器10およびスレーブ側測定器20を有して構成されている。マスター側測定器10は、測定交流電流を発生する定電流源11、電圧検出部としての電圧計13および同期信号Sを発生させて定電流源11が発生する測定交流電流の位相にスレーブ側測定器20を同期させる同期信号発生部15を含んで構成されている。スレーブ側測定器20は、測定交流電流を発生する定電流源21、電圧検出部としての電圧計23を含んで構成されている。なお、定電流源11は請求項1の測定交流源に相当し、定電流源21は後述するように本実施の形態では測定交流源として機能させていないため点線で記載している。
[Configuration of impedance measurement system 1]
The impedance measurement system 1 is configured with a master side measuring device 10 and a slave side measuring device 20 . The master-side measuring device 10 includes a constant-current source 11 that generates an alternating current to be measured, a voltmeter 13 as a voltage detector, and a synchronous signal Sd to generate a phase of the alternating current to be measured that is generated by the constant-current source 11 on the slave side. It includes a synchronization signal generator 15 for synchronizing the measuring device 20 . The slave-side measuring device 20 includes a constant current source 21 that generates an alternating current to be measured, and a voltmeter 23 as a voltage detector. The constant current source 11 corresponds to the measurement AC source in claim 1, and the constant current source 21 is indicated by a dotted line because it does not function as the measurement AC source in this embodiment as will be described later.
[測定器と測定対象の内部抵抗との接続態様]
 以下に、マスター側測定器10およびスレーブ側測定器20と測定対象であるバッテリセル内部の内部抵抗r1,r2との接続態様について説明する。図2に示すようにマスター側測定器10で第1のバッテリセル(図示せず)のインピーダンスを測定するにあたって、定電流源11と第1のバッテリセル内部の内部抵抗r1を通る測定電流ループ(測定交流電流iの経路)を構成するように、定電流源11と第1のバッテリセルが電流計測線を介して接続されている。スレーブ側測定器20で第2のバッテリセル(図示せず)のインピーダンスを測定するにあたって、定電流源11と第2のバッテリセル内部の内部抵抗r2を通る測定電流ループ(測定交流電流iの経路)を構成するように、定電流源11と第2のバッテリセルが電流計測線を介して接続されている。
[Mode of connection between measuring instrument and internal resistance to be measured]
The manner of connection between the master-side measuring device 10 and the slave-side measuring device 20 and the internal resistances r1 and r2 inside the battery cell to be measured will be described below. As shown in FIG. 2, when measuring the impedance of the first battery cell (not shown) with the master-side measuring device 10, a measurement current loop ( A constant current source 11 and a first battery cell are connected via a current measuring line so as to form a path of the measured alternating current i1). When measuring the impedance of the second battery cell (not shown) with the slave-side measuring device 20, a measurement current loop (of the measurement AC current i1) passing through the constant current source 11 and the internal resistance r2 inside the second battery cell A constant current source 11 and a second battery cell are connected via a current measurement line so as to constitute a path).
 また、電圧計13と第1のバッテリセルは、電圧計13と内部抵抗r1を通る電圧検出ループが構成されるように、電圧計測線を介して接続されている。電圧計23と第2のバッテリセルは、電圧計23と内部抵抗r2を通る電圧検出ループが構成されるように、電圧計測線を介して接続されている。 Also, the voltmeter 13 and the first battery cell are connected via a voltage measurement line so that a voltage detection loop passing through the voltmeter 13 and the internal resistor r1 is configured. The voltmeter 23 and the second battery cell are connected via a voltage measurement line so as to form a voltage detection loop passing through the voltmeter 23 and the internal resistor r2.
 第1のバッテリセルの内部抵抗r1と第2のバッテリセルの内部抵抗r2は、直列に接続されている。内部抵抗r1と内部抵抗r2を直列に接続することで、内部抵抗r1と第2のバッテリセルの内部抵抗r2にはどちらにも同位相の測定交流電流iが流れる。そして、内部抵抗r1と内部抵抗r2とを流れる測定交流電流iの向きは、互いに逆方向になるように、第1のバッテリセルと第2のバッテリセルが配置されてその端部が接続されている。第1のバッテリセルのインピーダンスは測定交流電流iと電圧計13で検出された電圧(r1×i)に基づいて算出される。同期信号発生部15は、同期信号Sをr2の両端に発生した電圧(r2×i)を検出する電圧計23に出力して位相を測定交流電流iの位相と同位相で同期検波する。その測定交流電流iと電圧計23で検出された電圧(r2×i)に基づいて第2のバッテリセルのインピーダンスが算出される。なお、測定交流電流iは、一定で既知の値である。 The internal resistance r1 of the first battery cell and the internal resistance r2 of the second battery cell are connected in series. By connecting the internal resistance r1 and the internal resistance r2 in series, the same phase measurement alternating current i1 flows through both the internal resistance r1 and the internal resistance r2 of the second battery cell. The first battery cell and the second battery cell are arranged and connected at their ends so that the directions of the measured alternating current i1 flowing through the internal resistance r1 and the internal resistance r2 are opposite to each other. ing. The impedance of the first battery cell is calculated based on the measured AC current i 1 and the voltage (r1×i 1 ) detected by the voltmeter 13 . The synchronous signal generator 15 outputs the synchronous signal Sd to the voltmeter 23 that detects the voltage (r2×i 1 ) generated across r2, and synchronously detects the phase with the phase of the measured AC current i. . The impedance of the second battery cell is calculated based on the measured AC current i 1 and the voltage (r2×i 1 ) detected by the voltmeter 23 . Note that the measured alternating current i1 is a constant and known value.
[インピーダンス測定システム1の動作]
 マスター側測定器10は、第1のバッテリセルに、定電流源11から所定周波数の測定交流電流i1を供給し、電圧検出部13で第1のバッテリセルの電圧(r1の両端に発生する電圧)を検出して、第1のバッテリセルのインピーダンスを測定する。スレーブ側測定器20は、第2のバッテリセルに、定電流源11から所定周波数の測定交流電流iを供給し、電圧検出部23で第2のバッテリセルの電圧(r2の両端に発生する電圧)を検出して、第2のバッテリセルのインピーダンスを測定する。なお、マスター側測定器10およびスレーブ側測定器20は、互いに通信接続されており、マスター側の測定交流電流iの位相でスレーブ側測定器20も同期検波してインピーダンスを測定している。
[Operation of impedance measurement system 1]
The master-side measuring device 10 supplies the first battery cell with a measured AC current i1 of a predetermined frequency from the constant current source 11, and the voltage detector 13 detects the voltage of the first battery cell (the voltage generated across r1 ) to measure the impedance of the first battery cell. The slave-side measuring device 20 supplies the second battery cell with the measured alternating current i1 of a predetermined frequency from the constant current source 11, and the voltage detector 23 detects the voltage of the second battery cell (r2 voltage) to measure the impedance of the second battery cell. The master-side measuring device 10 and the slave-side measuring device 20 are connected for communication with each other, and the slave-side measuring device 20 also synchronously detects the phase of the AC current i1 measured on the master side to measure the impedance.
 上記した構成によれば、マスター側測定器10およびスレーブ側測定器20に流れる測定交流電流はiのみなので、例えば複数のインピーダンス測定器によって位相や周波数が異なる2つの測定交流電流が供給される場合に、異なる2つの測定交流電流のそれぞれによって生ずる磁束や周波数誤差に起因する電磁干渉の問題も起きない。したがって、電磁干渉により生ずる測定誤差を抑制できる。また、内部抵抗r1、r2に流れる測定交流電流iは、逆方向であるので、バッテリセルにおいて磁束の発生を抑制できる。 According to the above-described configuration, since the measurement AC current flowing through the master-side measuring device 10 and the slave-side measuring device 20 is only i1, for example, two measurement AC currents with different phases and frequencies are supplied by a plurality of impedance measuring devices. In this case, the problem of electromagnetic interference due to magnetic flux and frequency errors caused by each of the two different measured alternating currents does not occur. Therefore, measurement errors caused by electromagnetic interference can be suppressed. Also, since the measured alternating current i1 flowing through the internal resistors r1 and r2 is in the opposite direction, it is possible to suppress the generation of magnetic flux in the battery cells.
 なお、上記した構成例は、2つのインピーダンス測定器10、20を用いた例であるが、3つ以上のインピーダンス測定器を用いた場合でも、一つをマスター側インピーダンス測定器とし、残りをスレーブ側測定器とし、上記同様に各インピーダンス測定器に対応するバッテリセル内部の内部抵抗を直列に接続する構成をとることにより、上記同様の効果が得られる。 The configuration example described above is an example using two impedance measuring instruments 10 and 20, but even if three or more impedance measuring instruments are used, one is used as a master impedance measuring instrument and the rest are slaves. The same effects as described above can be obtained by adopting a configuration in which the internal resistances inside the battery cells corresponding to the respective impedance measuring devices are connected in series in the same manner as described above.
<第2の実施の形態>
 以下に、図2を参照して本発明の第2の実施の形態に係るインピーダンス測定システム40について、測定対象としてバッテリセルを例に挙げて説明する。
<Second Embodiment>
An impedance measurement system 40 according to a second embodiment of the present invention will be described below with reference to FIG. 2, taking a battery cell as an example to be measured.
 図2は、本発明の第2の実施の形態に係るインピーダンス測定システム40の構成を示す図である。図2は、マスター側測定器50において発生する測定交流電流iにスレーブ側測定器60を同期させて、同一位相の測定交流電流iをマスター側測定器50およびスレーブ側測定器60のそれぞれの測定対象のバッテリセルに与えて、インピーダンス測定を行う構成を示している。 FIG. 2 is a diagram showing the configuration of an impedance measurement system 40 according to a second embodiment of the invention. In FIG. 2 , the slave side measuring device 60 is synchronized with the measured alternating current i1 generated in the master side measuring device 50, and the measured alternating current i1 of the same phase is generated by the master side measuring device 50 and the slave side measuring device 60 respectively. is applied to a battery cell to be measured to perform impedance measurement.
 [インピーダンス測定システム40の構成]
 インピーダンス測定システム40は、マスター側測定器50およびスレーブ側測定器60を有して構成されている。マスター側測定器50は、測定交流電流iを発生する定電流源51、電圧検出部としての電圧計53および同期信号Sを発生させて定電流源51が発生する測定交流電流iの位相にスレーブ側測定器60を同期させる同期信号発生部55を含んで構成されている。スレーブ側測定器60は、測定交流電流を発生する定電流源61、電圧検出部としての電圧計63を含んで構成されている。なお、定電流源61は請求項1の測定交流源に相当し、定電流源61は後述するように本実施の形態では測定交流源として機能させていないため点線で記載している。
[Configuration of impedance measurement system 40]
The impedance measurement system 40 is configured with a master side measuring device 50 and a slave side measuring device 60 . The master-side measuring device 50 includes a constant current source 51 that generates a measured alternating current i1, a voltmeter 53 as a voltage detector, and a synchronizing signal Sd to generate the measured alternating current i1 generated by the constant current source 51. It includes a synchronization signal generator 55 for synchronizing the slave side measuring device 60 with the phase. The slave-side measuring device 60 includes a constant current source 61 that generates an AC current to be measured, and a voltmeter 63 as a voltage detector. Note that the constant current source 61 corresponds to the measurement AC source in claim 1, and as will be described later, the constant current source 61 does not function as the measurement AC source in this embodiment, so it is indicated by a dotted line.
[測定器と測定対象の内部抵抗との接続態様]
 以下に、マスター側測定器50およびスレーブ側測定器60と測定対象である第1のバッテリセル(図示せず)内部の内部抵抗r1および第2のバッテリセル(図示せず)内部の内部抵抗r2との接続態様について説明する。マスター側測定器50で第1のバッテリセルのインピーダンスを測定するにあたって、定電流源51からの測定交流電流iが内部抵抗r1を通った後に第2のバッテリセル内部の内部抵抗r2を通る測定電流ループ(測定交流電流iの経路)が構成される。さらに、電圧計53と第1のバッテリセルは、電圧計53と内部抵抗r1を通る電圧検出ループが構成されるように、電圧計測線を介して接続されている。
[Mode of connection between measuring instrument and internal resistance to be measured]
The internal resistance r1 inside the first battery cell (not shown) and the internal resistance r2 inside the second battery cell (not shown) are described below with the master side measuring device 50 and the slave side measuring device 60. will be described. When measuring the impedance of the first battery cell with the master-side measuring device 50, the measured alternating current i1 from the constant current source 51 passes through the internal resistance r2 inside the second battery cell after passing through the internal resistance r1. A current loop (the path of the measured alternating current i1) is constructed. Furthermore, the voltmeter 53 and the first battery cell are connected via a voltage measurement line so that a voltage detection loop passing through the voltmeter 53 and the internal resistor r1 is formed.
 スレーブ側測定器60で第2のバッテリセル(図示せず)のインピーダンスを測定するにあたって、電圧計63と第2のバッテリセルは、電圧計63と内部抵抗r2を通る電圧検出ループが構成されるように、電圧計測線を介して接続されている。 When measuring the impedance of the second battery cell (not shown) with the slave-side measuring device 60, the voltmeter 63 and the second battery cell constitute a voltage detection loop passing through the voltmeter 63 and the internal resistor r2. are connected via voltage measurement lines.
 定電流源51の一端と内部抵抗r1とを接続する電流計測線(行き)と定電流源51の他端と内部抵抗r2とを接続する電流計測線(帰り)は互いに近接するように配置される。行きと帰りの電流計測線を近接させて互いに発生する磁束をキャンセルさせることにより、測定交流電流iにより発生する磁束を起因として電圧計53,63に生じる誘導電圧を抑制でき、この誘導電圧に起因する測定誤差を小さくすることができるからである。図2の例では、行きと帰りの電流計測線を捩って互いに近接させているが、近接のさせ方はこれに限定されず、例えばそれぞれの電流計測線同志を互いに距離を置かずに並設するようにしてもよい。また、電圧計53と内部抵抗r1を通る電圧検出ループに対応する一対の電圧計測線、および、電圧計63と内部抵抗r2を通る電圧検出ループに対応する一対の電圧計測線は、上記した一対の電流計測線に近接させないよう配置することが望ましい。 A current measurement line (outgoing) connecting one end of the constant current source 51 and the internal resistance r1 and a current measurement line (returning) connecting the other end of the constant current source 51 and the internal resistance r2 are arranged close to each other. be. By bringing the forward and return current measurement lines close to each other to cancel the magnetic flux generated by each other, the induced voltage generated in the voltmeters 53 and 63 due to the magnetic flux generated by the measured alternating current i1 can be suppressed. This is because the resulting measurement error can be reduced. In the example of FIG. 2, the forward and return current measurement lines are twisted to be close to each other, but the method of making them close is not limited to this. You may set it. A pair of voltage measurement lines corresponding to the voltage detection loop passing through the voltmeter 53 and the internal resistance r1 and a pair of voltage measurement lines corresponding to the voltage detection loop passing through the voltmeter 63 and the internal resistance r2 It is desirable to place it so that it is not close to the current measurement line.
 上記したように接続させることで、内部抵抗r1と第2のバッテリセルの内部抵抗r2にはどちらにも同位相の測定交流電流iが流れる。第1のバッテリセルのインピーダンスは測定交流電流iと電圧計53で検出された電圧(r1×i)に基づいて算出される。同期信号発生部55は、同期信号Sをr2の両端に発生した電圧(r2×i)を検出する電圧計63に出力して位相を測定交流電流iの位相と同位相で同期検波する。その測定交流電流iとその電圧計63で検出された電圧(r2×i)に基づいて第2のバッテリセルのインピーダンスが算出される。しかも、第1および第2のバッテリセルを互いに近接するように配置させ、行きの電流計測線と帰りの電流計測線を互いに近接するように配置させているので、互いに発生する磁束が打ち消しあい、電圧計53,63に生じる誘導電圧を抑制できるので、電圧計53,63の近傍に金属があった場合でも渦電流の発生を抑制することができる。したがって、その渦電流に起因する電磁誘導による電圧計53,63への悪影響を抑制することができる。 By connecting them as described above, the same phase measurement AC current i1 flows through both the internal resistance r1 and the internal resistance r2 of the second battery cell. The impedance of the first battery cell is calculated based on the measured AC current i 1 and the voltage (r1×i 1 ) detected by the voltmeter 53 . The synchronous signal generator 55 outputs the synchronous signal Sd to the voltmeter 63 that detects the voltage (r2 × i1) generated across r2, and measures the phase of the synchronous signal Sd. do. The impedance of the second battery cell is calculated based on the measured AC current i 1 and the voltage (r2×i 1 ) detected by the voltmeter 63 . Moreover, since the first and second battery cells are arranged so as to be close to each other, and the forward current measurement line and the return current measurement line are arranged so as to be close to each other, the magnetic fluxes generated mutually cancel each other, Since the induced voltage generated in the voltmeters 53 and 63 can be suppressed, the occurrence of eddy current can be suppressed even if there is metal near the voltmeters 53 and 63 . Therefore, it is possible to suppress adverse effects on the voltmeters 53 and 63 due to electromagnetic induction caused by the eddy current.
 なお、ラミネートタイプのバッテリセルでは、±端子の両端の距離が800mm程度のものもあるが、上記した構成によれば測定電流ループにおける磁束の抑制と、測定電圧ループにおける電磁誘導の電圧計53,63へ与える影響を抑制することができる。 In some laminate type battery cells, the distance between both ends of ± terminals is about 800 mm. 63 can be suppressed.
[インピーダンス測定システム40の動作]
 マスター側測定器50は、第1のバッテリセルに、定電流源51から所定周波数の測定交流電流iを供給し、電圧検出部53で第1のバッテリセルの電圧(r1の両端に発生する電圧)を検出して、第1のバッテリセルのインピーダンスを測定する。スレーブ側測定器60は、第2のバッテリセルに、定電流源11から所定周波数の測定交流電流iを供給し、電圧検出部63で第2のバッテリセルの電圧(r2の両端に発生する電圧)を検出して、第2のバッテリセルのインピーダンスを測定する。なお、マスター側測定器50およびスレーブ側測定器60は、互いに通信接続されており、マスター側の測定交流電流iの位相でスレーブ側測定器60も同期検波してインピーダンスを測定している。
[Operation of impedance measurement system 40]
The master-side measuring device 50 supplies the first battery cell with a measured AC current i1 of a predetermined frequency from a constant current source 51, and the voltage detector 53 detects the voltage of the first battery cell (r1 voltage) to measure the impedance of the first battery cell. The slave-side measuring device 60 supplies the second battery cell with the measured alternating current i1 of a predetermined frequency from the constant current source 11, and the voltage detector 63 detects the voltage of the second battery cell (r2 voltage) to measure the impedance of the second battery cell. The master side measuring device 50 and the slave side measuring device 60 are connected for communication with each other, and the slave side measuring device 60 also synchronously detects the phase of the AC current i1 measured on the master side to measure the impedance.
 [変形例1]
 以下に、図3を参照して変形例1に係るインピーダンス測定システム70について、測定対象としてバッテリセルを例に挙げて説明する。
[Modification 1]
The impedance measurement system 70 according to Modification 1 will be described below with reference to FIG. 3, taking a battery cell as an example to be measured.
 図3は、本発明の変形例1に係るインピーダンス測定システム70の構成を示す図である。図3は、マスター側測定器71において発生する測定交流電流iをスレーブ側測定器72,73に同期させて、同一位相の測定交流電流iをマスター側測定器71およびスレーブ側測定器72,73のそれぞれの測定対象のバッテリセルに与えて、インピーダンス測定を行う構成を示している。 FIG. 3 is a diagram showing the configuration of an impedance measurement system 70 according to Modification 1 of the present invention. In FIG. 3, the measured alternating current i1 generated in the master side measuring device 71 is synchronized with the slave side measuring devices 72 and 73, and the measured alternating current i1 in the same phase is measured by the master side measuring device 71 and the slave side measuring device 72. , 73 to measure the impedance of each battery cell to be measured.
 [インピーダンス測定システム70の構成]
 インピーダンス測定システム70は、マスター側測定器71およびスレーブ側測定器72,73を有して構成されている。マスター側測定器71は、測定交流電流iを発生する定電流源76、電圧検出部としての電圧計(V1)77および同期信号Sを発生させて定電流源76が発生する測定交流電流iの位相をスレーブ側測定器72,73に同期させる同期信号発生部75を含んで構成されている。スレーブ側測定器72,73は、電圧検出部としての電圧計78,79(V2,V3)を含んで構成されている。なお、定電流源76は請求項1の測定交流源に相当する。
[Configuration of impedance measurement system 70]
The impedance measurement system 70 is configured with a master side measuring device 71 and slave side measuring devices 72 and 73 . The master-side measuring device 71 includes a constant current source 76 that generates a measuring alternating current i1, a voltmeter (V1) 77 as a voltage detector, and a synchronizing signal Sd to generate the measuring alternating current generated by the constant current source 76. It includes a synchronizing signal generator 75 for synchronizing the phase of i1 with the slave side measuring devices 72 and 73 . The slave- side measuring instruments 72, 73 are configured including voltmeters 78, 79 (V2, V3) as voltage detectors. Note that the constant current source 76 corresponds to the measuring AC source of claim 1 .
[測定器と測定対象の内部抵抗との接続態様]
 以下に、マスター側測定器71およびスレーブ側測定器72,73と、測定対象である第1のバッテリセル(図示せず)内部の内部抵抗r1、第2のバッテリセル(図示せず)内部の内部抵抗r2および第3のバッテリセル(図示せず)内部の内部抵抗r3との接続態様について説明する。マスター側測定器71で第1のバッテリセルのインピーダンスを測定するにあたって、定電流源76からの測定交流電流iが内部抵抗r1を通った後に内部抵抗r2を通り、その後内部抵抗r3を通る測定電流ループ(測定交流電流iの経路)が構成される。さらに、電圧計77と第1のバッテリセルは、電圧計77と内部抵抗r1を通る電圧検出ループが構成されるように、電圧計測線を介して接続されている。
[Mode of connection between measuring instrument and internal resistance to be measured]
Below, the master side measuring device 71 and the slave side measuring devices 72 and 73, the internal resistance r1 inside the first battery cell (not shown) to be measured, and the internal resistance r1 inside the second battery cell (not shown) A connection mode between the internal resistance r2 and the internal resistance r3 inside the third battery cell (not shown) will be described. When measuring the impedance of the first battery cell with the master-side measuring device 71, the measured AC current i1 from the constant current source 76 passes through the internal resistance r1, then through the internal resistance r2, and then through the internal resistance r3. A current loop (the path of the measured alternating current i1) is constructed. Furthermore, the voltmeter 77 and the first battery cell are connected via a voltage measurement line so as to form a voltage detection loop passing through the voltmeter 77 and the internal resistor r1.
 スレーブ側測定器72で第2のバッテリセル(図示せず)のインピーダンスを測定するにあたって、電圧計78と第2のバッテリセルは、電圧計78と内部抵抗r2を通る電圧検出ループが構成されるように、電圧計測線を介して接続されている。電圧計79と第3のバッテリセルは、電圧計79と内部抵抗r3を通る電圧検出ループが構成されるように、電圧計測線を介して接続されている。 When measuring the impedance of the second battery cell (not shown) with the slave-side measuring device 72, the voltmeter 78 and the second battery cell constitute a voltage detection loop passing through the voltmeter 78 and the internal resistor r2. are connected via voltage measurement lines. The voltmeter 79 and the third battery cell are connected via a voltage measurement line so as to form a voltage detection loop passing through the voltmeter 79 and the internal resistor r3.
 第1のバッテリセルは、第2のバッテリセルおよび第3のバッテリセルを互いに近接させて、定電流源76の一端と内部抵抗r1とを接続する電流計測線(行き)と定電流源76の他端と内部抵抗r3とを接続する電流計測線(帰り)は互いに近接するように配置される。行きと帰りの電流計測線を近接させて互いに発生する磁束をキャンセルさせることにより、測定交流電流iにより発生する磁束を起因として電圧計77~79に生じる誘導電圧を抑制でき、この誘導電圧に起因する測定誤差を小さくすることができるからである。なお、図3の例では、行きと帰りの電流計測線を捩って互いに近接させている。 In the first battery cell, the second battery cell and the third battery cell are brought close to each other, and the current measurement line (going) connecting one end of the constant current source 76 and the internal resistance r1 and the constant current source 76 are connected. A current measurement line (return) connecting the other end and the internal resistance r3 is arranged so as to be close to each other. By bringing the forward and return current measurement lines close to each other to cancel the magnetic flux generated by each other, the induced voltage generated in the voltmeters 77 to 79 due to the magnetic flux generated by the measured AC current i1 can be suppressed. This is because the resulting measurement error can be reduced. In the example of FIG. 3, the forward and return current measurement lines are twisted to be close to each other.
 上記したように接続させることで、内部抵抗r1~r3には、いずれも同位相の測定交流電流iが流れる。第1のバッテリセルのインピーダンスは測定交流電流iと電圧計77で検出された電圧(r1×i)に基づいて算出される。同期信号発生部75は、同期信号Sをr2の両端に発生した電圧(r2×i)を検出する電圧計78およびr3の両端に発生した電圧(r3×i)を検出する電圧計79に出力して位相を測定交流電流iの位相と同位相で、電圧計78、79で検出された各検出電圧を同期検波する。そして測定交流電流iと電圧計78、79で検出された検出電圧に基づいて第2および第3のバッテリセルのインピーダンスが算出される。しかも、行きの電流計測線と帰りの電流計測線を互いに近接するように配置させているので、互いに発生する磁束が打ち消しあい、電圧計77~79に生じる誘導電圧を抑制できるので、電圧計77~79の近傍に金属があった場合でも渦電流の発生を抑制することができる。したがって、その渦電流に起因する電磁誘導による電圧計77~79への悪影響を抑制することができる。 By connecting them as described above, the measurement alternating current i1 having the same phase flows through the internal resistors r1 to r3. The impedance of the first battery cell is calculated based on the measured AC current i 1 and the voltage (r1×i 1 ) detected by the voltmeter 77 . Synchronization signal generator 75 includes voltmeter 78 that detects the voltage ( r2 ×i 1 ) generated across r2 and voltmeter 78 that detects the voltage (r3×i 1 ) generated across r3. The voltages detected by the voltmeters 78 and 79 are synchronously detected in the same phase as the AC current i1. Then, the impedances of the second and third battery cells are calculated based on the measured alternating current i1 and the voltages detected by the voltmeters 78 and 79. FIG. Moreover, since the outgoing current measuring line and the returning current measuring line are arranged so as to be close to each other, the magnetic fluxes generated mutually cancel each other, and the induced voltage generated in the voltmeters 77 to 79 can be suppressed. The generation of eddy currents can be suppressed even when there is metal in the vicinity of .about.79. Therefore, it is possible to suppress adverse effects on the voltmeters 77 to 79 due to electromagnetic induction caused by the eddy current.
 [変形例2]
 以下に、図4を参照して変形例2に係るインピーダンス測定システム80について、測定対象としてバッテリセルを例に挙げて説明する。
[Modification 2]
An impedance measurement system 80 according to Modification 2 will be described below with reference to FIG. 4, taking a battery cell as an example to be measured.
 図4は、本発明の変形例2に係るインピーダンス測定システム80の構成を示す図である。図4は、マスター側測定器81において発生する測定交流電流iにスレーブ側測定器82~84を同期させて、同一位相の測定交流電流iをマスター側測定器81およびスレーブ側測定器82~84のそれぞれの測定対象のバッテリセルに与えて、インピーダンス測定を行う構成を示している。 FIG. 4 is a diagram showing the configuration of an impedance measurement system 80 according to Modification 2 of the present invention. In FIG. 4 , slave side measuring instruments 82 to 84 are synchronized with the measured alternating current i1 generated in the master side measuring instrument 81, and the measured alternating current i1 of the same phase is measured by the master side measuring instrument 81 and the slave side measuring instrument 82. 84 is applied to each battery cell to be measured to measure the impedance.
 [インピーダンス測定システム80の構成]
 インピーダンス測定システム80は、マスター側測定器81およびスレーブ側測定器82~84を有して構成されている。マスター側測定器81は、測定交流電流iを発生する定電流源86、電圧検出部としての電圧計(V1)87および同期信号Sを発生させて定電流源86が発生する測定交流電流iの位相にスレーブ側測定器82~84を同期させる同期信号発生部85を含んで構成されている。スレーブ側測定器82~84は、電圧検出部としての電圧計(V2~V4)88~90を含んで構成されている。なお、定電流源86は請求項1の測定交流源に相当する。
[Configuration of impedance measurement system 80]
The impedance measurement system 80 is configured with a master side measuring device 81 and slave side measuring devices 82-84. The master-side measuring device 81 includes a constant current source 86 that generates a measurement AC current i1, a voltmeter (V1) 87 as a voltage detector, and a synchronization signal Sd to generate a measurement AC current generated by the constant current source 86. It includes a synchronizing signal generator 85 for synchronizing the slave measuring instruments 82 to 84 with the phase of i1. The slave-side measuring devices 82-84 include voltmeters (V2-V4) 88-90 as voltage detection units. Note that the constant current source 86 corresponds to the measurement alternating current source of claim 1 .
[測定器と測定対象の内部抵抗との接続態様]
 以下に、マスター側測定器81およびスレーブ側測定器82~84と、測定対象である第1のバッテリセル(図示せず)内部の内部抵抗r1、第2のバッテリセル(図示せず)内部の内部抵抗r2、第3のバッテリセル(図示せず)内部の内部抵抗r3および第4のバッテリセル(図示せず)内部の内部抵抗r4との接続態様について説明する。マスター側測定器81で第1のバッテリセルのインピーダンスを測定するにあたって、定電流源86からの測定交流電流iが内部抵抗r1を通った後に内部抵抗r2を通り、その後内部抵抗r3を通る測定電流ループ(測定交流電流iの経路)が構成される。さらに、電圧計87と第1のバッテリセルは、電圧計87と内部抵抗r1を通る電圧検出ループが構成されるように、電圧計測線を介して接続されている。
[Mode of connection between measuring instrument and internal resistance to be measured]
Below, the master side measuring device 81 and the slave side measuring devices 82 to 84, the internal resistance r1 inside the first battery cell (not shown) to be measured, and the internal resistance r1 inside the second battery cell (not shown) A mode of connection with the internal resistance r2, the internal resistance r3 inside the third battery cell (not shown), and the internal resistance r4 inside the fourth battery cell (not shown) will be described. When measuring the impedance of the first battery cell with the master-side measuring device 81, the measured alternating current i1 from the constant current source 86 passes through the internal resistance r1, then through the internal resistance r2, and then through the internal resistance r3. A current loop (the path of the measured alternating current i1) is constructed. Furthermore, the voltmeter 87 and the first battery cell are connected via a voltage measurement line so that a voltage detection loop passing through the voltmeter 87 and the internal resistor r1 is constructed.
 スレーブ側測定器82で第2のバッテリセル(図示せず)のインピーダンスを測定するにあたって、電圧計88と第2のバッテリセルは、電圧計88と内部抵抗r2を通る電圧検出ループが構成されるように、電圧計測線を介して接続されている。電圧計89と第3のバッテリセルは、電圧計89と内部抵抗r3を通る電圧検出ループが構成されるように、電圧計測線を介して接続されている。電圧計90と第4のバッテリセルは、電圧計90と内部抵抗r4を通る電圧検出ループが構成されるように、電圧計測線を介して接続されている。 When measuring the impedance of the second battery cell (not shown) with the slave side measuring device 82, the voltmeter 88 and the second battery cell form a voltage detection loop passing through the voltmeter 88 and the internal resistor r2. are connected via voltage measurement lines. The voltmeter 89 and the third battery cell are connected via a voltage measurement line so as to form a voltage detection loop passing through the voltmeter 89 and the internal resistor r3. The voltmeter 90 and the fourth battery cell are connected via a voltage measurement line so as to form a voltage detection loop passing through the voltmeter 90 and the internal resistor r4.
 第1のバッテリセルは、第2のバッテリセル、第3のバッテリセルおよび第4のバッテリセルを互いに近接させて、定電流源86の一端と内部抵抗r1とを接続する電流計測線(行き)と定電流源86の他端と内部抵抗r4とを接続する電流計測線(帰り)は互いに近接するように配置される。行きと帰りの電流計測線を近接させて互いに発生する磁束をキャンセルさせることにより、測定交流電流iにより発生する磁束を起因として電圧計87~90に生じる誘導電圧を抑制でき、この誘導電圧に起因する測定誤差を小さくすることができるからである。なお、図4の例では、行きと帰りの電流計測線を捩って互いに近接させている。また、第1のバッテリセルと第2のバッテリセルに流れる測定交流電流の向きが逆方向になり、第2のバッテリセルと第3のバッテリセルに流れる測定交流電流の向きが逆方向になり、第3のバッテリセルおよび第4のバッテリセルに流れる測定交流電流の向きが逆方向となるように、第1のバッテリセル、第2のバッテリセル、第3のバッテリセル、第4のバッテリセルが配置されている。これにより、バッテリセルにおいて磁束の発生を抑制できる。 The first battery cell brings the second battery cell, the third battery cell, and the fourth battery cell close to each other, and connects one end of the constant current source 86 and the internal resistance r1 to a current measurement line (going). and the other end of the constant current source 86 and the internal resistor r4 are arranged so as to be close to each other. By bringing the forward and return current measurement lines close to each other to cancel the magnetic flux generated by each other, the induced voltage generated in the voltmeters 87 to 90 due to the magnetic flux generated by the measured alternating current i1 can be suppressed. This is because the resulting measurement error can be reduced. In the example of FIG. 4, the forward and return current measurement lines are twisted to be close to each other. Also, the directions of the measured alternating currents flowing through the first battery cell and the second battery cell are reversed, and the directions of the measured alternating currents flowing through the second battery cell and the third battery cell are reversed, The first battery cell, the second battery cell, the third battery cell, and the fourth battery cell are arranged such that the directions of the measured alternating currents flowing through the third battery cell and the fourth battery cell are opposite. are placed. As a result, it is possible to suppress the generation of magnetic flux in the battery cells.
 上記したように接続させることで、内部抵抗r1~r4には、いずれも同位相の測定交流電流iが流れる。第1のバッテリセルのインピーダンスは測定交流電流iと電圧計87で検出された電圧(r1×i)に基づいて算出される。同期信号発生部85は、同期信号Sをr2の両端に発生した電圧(r2×i)を検出する電圧計88、r3の両端に発生した電圧(r3×i)を検出する電圧計89およびr4の両端に発生した電圧(r4×i)を検出する電圧計90に出力して位相を測定交流電流iの位相と同位相で、電圧計88~90で検出された各検出電圧を同期検波する。そして測定交流電流iと電圧計88~90で検出された検出電圧に基づいて第2~第4のバッテリセルのインピーダンスが算出される。しかも、行きの電流計測線と帰りの電流計測線を互いに近接するように配置させているので、互いに発生する磁束が打ち消しあって、電圧計87~90に生じる誘導電圧を抑制できるので、電圧計87~90の近傍に金属があった場合でも渦電流の発生を抑制することができる。したがって、その渦電流に起因する電磁誘導による電圧計87~90への悪影響を抑制することができる。また、バッテリセルを流れる測定交流の向きが逆方向であって、磁束の発生を抑制できるので、電磁干渉による測定誤差を抑制できる。 By connecting them as described above, the measurement alternating current i1 having the same phase flows through the internal resistors r1 to r4. The impedance of the first battery cell is calculated based on the measured AC current i 1 and the voltage (r1×i 1 ) detected by the voltmeter 87 . The synchronization signal generator 85 includes a voltmeter 88 that detects the voltage ( r2 ×i 1 ) generated across r2, and a voltmeter that detects the voltage (r3×i 1 ) generated across r3. The voltage (r4×i 1 ) generated across 89 and r4 is output to a voltmeter 90 to detect the phase, and the phase is the same as the phase of the alternating current i1. Synchronous detection of voltage. Then, the impedances of the second to fourth battery cells are calculated based on the measured AC current i1 and the voltages detected by the voltmeters 88-90. Moreover, since the outgoing current measuring line and the returning current measuring line are arranged so as to be close to each other, the magnetic flux generated mutually cancels each other, and the induced voltage generated in the voltmeters 87 to 90 can be suppressed. Even if there is metal in the vicinity of 87-90, the occurrence of eddy current can be suppressed. Therefore, it is possible to suppress adverse effects on the voltmeters 87 to 90 due to electromagnetic induction caused by the eddy current. In addition, since the direction of the measurement alternating current flowing through the battery cell is the opposite direction, it is possible to suppress the generation of magnetic flux, thereby suppressing measurement errors due to electromagnetic interference.
 [効果のまとめ]
 本実施の形態のインピーダンス測定システム1は、一測定対象に所定の周波数の測定交流電流iを供給して一測定対象のインピーダンスを測定するするマスター側インピーダンス測定器10と、他の測定対象のインピーダンスを測定するスレーブ側インピーダンス測定器20とを有するインピーダンス測定システム1であって、
 マスター側インピーダンス測定器10は、
 測定交流電流iを供給する測定交流源11と、
 一測定対象の電圧を検出して、試料のインピーダンスを出力するマスター側電圧検出部13とを有し、
 測定交流電流iの位相と同位相でスレーブ側インピーダンス測定器20に対して同期検波させて、少なくとも測定交流源11からの測定交流電流iと、スレーブ側インピーダンス測定器20を構成するスレーブ側電圧検出部23で検出された電圧(i×r2))とに基づいて、他の測定対象のインピーダンスが算出される。
 したがって、上記構成によれば、マスター側測定器10およびスレーブ側測定器20に流れる測定交流電流はiのみなので、異なる2つの測定交流電流のそれぞれによって生ずる磁束や周波数誤差に起因する電磁干渉の問題は起きない。したがって、電磁干渉により生ずる測定誤差を抑制できる。
[Summary of effects]
The impedance measuring system 1 of the present embodiment includes a master-side impedance measuring instrument 10 that supplies a measurement alternating current i1 of a predetermined frequency to one measurement object to measure the impedance of one measurement object, and An impedance measurement system 1 having a slave-side impedance measuring device 20 that measures impedance,
The master-side impedance measuring instrument 10 is
a measuring alternating current source 11 supplying a measuring alternating current i1;
a master-side voltage detection unit 13 that detects the voltage of the object to be measured and outputs the impedance of the sample,
Synchronous detection is performed on the slave impedance measuring instrument 20 in the same phase as the measuring alternating current i1, and at least the measuring alternating current i1 from the measuring alternating current source 11 and the slave side constituting the slave impedance measuring instrument 20 are detected. Based on the voltage (i 1 ×r2)) detected by the voltage detection unit 23, the impedance of the other measurement object is calculated.
Therefore, according to the above configuration, since only the measurement AC current i1 flows through the master side measuring device 10 and the slave side measuring device 20, electromagnetic interference caused by the magnetic flux and frequency error caused by each of the two different measurement AC currents is prevented. No problem. Therefore, measurement errors caused by electromagnetic interference can be suppressed.
 本実施の形態のインピーダンス測定システム1は、一測定対象の内部抵抗r1と他の測定対象の内部抵抗r2とが直列に接続され、流れる電流の向きが互いに逆方向となるように内部抵抗r1と他の測定対象の内部抵抗r2が配置されて、定電流源11からの測定交流電流iが、一測定対象の内部抵抗r1および他の測定対象の内部抵抗r2に印加される。
 したがって、上記構成によれば、内部抵抗r1と内部抵抗r2とを直列接続させて、定電流源11からの測定交流電流iが、一測定対象の内部抵抗r1および他の測定対象の内部抵抗r2に印加されるので、簡単な構成で異なる2つの測定交流電流のそれぞれによって生ずる磁束や周波数誤差に起因する電磁干渉の問題を解消できる。したがって、電磁干渉により生ずる測定誤差を抑制できる。
In the impedance measurement system 1 of the present embodiment, an internal resistance r1 to be measured and an internal resistance r2 to be measured are connected in series, and the internal resistance r1 and the internal resistance r2 are connected so that the directions of currents flowing are opposite to each other. An internal resistance r2 to be measured is arranged, and a measuring alternating current i1 from a constant current source 11 is applied to the internal resistance r1 to be measured and to the internal resistance r2 to be measured.
Therefore, according to the above configuration, the internal resistance r1 and the internal resistance r2 are connected in series, and the measured alternating current i1 from the constant current source 11 is applied to the internal resistance r1 of one object to be measured and the internal resistance r1 of another object to be measured. Since it is applied to r2, it is possible to solve the problem of electromagnetic interference caused by magnetic fluxes and frequency errors caused by two different measurement alternating currents with a simple configuration. Therefore, measurement errors caused by electromagnetic interference can be suppressed.
 本実施の形態のインピーダンス測定システム40においては、定電流源51と一測定対象の内部抵抗r1とを接続する第1の電流計測線と、定電流源51と他の測定対象の内部抵抗r2とを接続する第2の電流計測線とが互いに近接して配置され、一測定対象と他の測定対象が近接して配置されている。
 したがって、上記構成によれば、測定対象と他の測定対象を近接して配置させ、行きの電流計測線と帰りの電流計測線を互いに近接するように配置させているので、互いに発生する磁束がキャンセルされ、電圧計53、63に生じる誘導電圧を抑制できる。したがって、電圧計53、63の近傍に金属があった場合でも渦電流の発生を抑制することができるため、その渦電流に起因する電磁誘導による電圧計53、63への悪影響を抑制することができる。
In the impedance measurement system 40 of the present embodiment, the first current measurement line connecting the constant current source 51 and the internal resistance r1 to be measured, the constant current source 51 and the internal resistance r2 to be measured are arranged close to each other, and one measurement object and another measurement object are arranged close to each other.
Therefore, according to the above configuration, the object to be measured and the other object to be measured are arranged close to each other, and the outgoing current measurement line and the return current measurement line are arranged so as to be close to each other, so that the magnetic fluxes generated by each other are Induced voltages that are canceled and appear in the voltmeters 53 and 63 can be suppressed. Therefore, even if there is metal in the vicinity of the voltmeters 53 and 63, the occurrence of eddy currents can be suppressed, so that the adverse effects of electromagnetic induction caused by the eddy currents on the voltmeters 53 and 63 can be suppressed. can.
 本実施の形態のインピーダンス測定システム40においては、
 他の測定対象が単一であった場合に、
 第2の電流計測線は、測定交流源51と他の測定対象の内部抵抗r2とを接続し、
 第1の電流計測線と第2の電流計測線とが互いに近接して配置され、一測定対象と単一の他の測定対象が近接して配置されている。
 したがって、上記構成によれば、スレーブ側の測定対象が単一であった場合に、行きの電流計測線と帰りの電流計測線を互いに近接するように配置させ、一測定対象と単一の他の測定対象を近接して配置させているので、互いに発生する磁束がキャンセルされ、電圧計53、63に生じる誘導電圧を抑制できる。したがって、電圧計53、63の近傍に金属があった場合でも渦電流の発生を抑制することができるため、その渦電流に起因する電磁誘導による電圧計53、63への悪影響を抑制することができる。
In the impedance measurement system 40 of this embodiment,
When the other measurement object is single,
The second current measurement line connects the measurement AC source 51 and the internal resistance r2 to be measured,
A first current-measuring line and a second current-measuring line are placed in close proximity to each other, and one measuring object and a single other measuring object are placed in close proximity.
Therefore, according to the above configuration, when there is a single object to be measured on the slave side, the outgoing current measurement line and the return current measurement line are arranged so as to be close to each other, and the one object to be measured and the single other object are arranged. are arranged close to each other, the magnetic fluxes generated by each other are canceled, and the induced voltage generated in the voltmeters 53 and 63 can be suppressed. Therefore, even if there is metal in the vicinity of the voltmeters 53 and 63, the occurrence of eddy currents can be suppressed, so that the adverse effects of electromagnetic induction caused by the eddy currents on the voltmeters 53 and 63 can be suppressed. can.
 本実施の形態のインピーダンス測定システム70においては、
 他の測定対象が複数あった場合に、
 第2の電流計測線は、測定交流源76と複数の他の測定対象の内の最後段にある他の測定対象の内部抵抗r3とを接続し、
 第1の電流計測線と第2の電流計測線とが互いに近接して配置され、一測定対象と複数の他の測定対象が互いに近接して配置されている。
 したがって、上記構成によれば、複数段の測定対象があったとしても、一測定対象と複数の他の測定対象を互いに近接して配置させ、行きの電流計測線と帰りの電流計測線を互いに近接するように配置させているので、互いに発生する磁束がキャンセルされ、電圧計77~79に生じる誘導電圧を抑制できる。したがって、電圧計77~79の近傍に金属があった場合でも渦電流の発生を抑制することができるため、その渦電流に起因する電磁誘導による電圧計77~79への悪影響を抑制することができる。
In the impedance measurement system 70 of this embodiment,
When there are multiple other measurement targets,
The second current measurement line connects the measurement AC source 76 and the internal resistance r3 of the other measurement object at the last stage among the plurality of other measurement objects,
A first current measurement line and a second current measurement line are arranged close to each other, and one measurement object and a plurality of other measurement objects are arranged close to each other.
Therefore, according to the above configuration, even if there are a plurality of stages of measurement objects, one measurement object and a plurality of other measurement objects are arranged close to each other, and the outgoing current measurement line and the return current measurement line are connected to each other. Since they are arranged close to each other, the magnetic fluxes generated with each other are cancelled, and the induced voltage generated in the voltmeters 77-79 can be suppressed. Therefore, even if there is metal in the vicinity of the voltmeters 77 to 79, it is possible to suppress the generation of eddy currents, so it is possible to suppress adverse effects on the voltmeters 77 to 79 due to electromagnetic induction caused by the eddy currents. can.
 なお、上記の実施の形態は、定電流源11を用いて、定電流の測定交流電流をバッテリセルの内部抵抗に印加して、インピーダンスを測定する例で説明したが、定電流ではない、可変電流源を設けて可変測定交流電流をバッテリセルに印加して、インピーダンスを測定することもできる。この場合には、電圧計とは別にバッテリセルを流れる電流を検出する電流計を備える。可変測定電流を被計測物のバッテリセルに印加してインピーダンスを測定する場合も、定電流を与えるのと同様にインピーダンスを測定できる。 In the above embodiment, the constant current source 11 is used to apply a constant alternating current to the internal resistance of the battery cell to measure the impedance. A current source may also be provided to apply a variable measuring alternating current to the battery cells to measure impedance. In this case, an ammeter for detecting the current flowing through the battery cell is provided in addition to the voltmeter. When measuring impedance by applying a variable measurement current to the battery cell of the object to be measured, impedance can be measured in the same manner as applying a constant current.
 1,49,70,80 インピーダンス測定システム
 10,50,71,81 マスター側測定器(マスター側インピーダンス測定器)
 11,51,76,86 定電流源(測定交流源)
 13,53,77,87 電圧計(マスター側電圧検出部)
 23,63,78,79,88,89,90 電圧計(スレーブ側電圧検出部)
 15,55,75,85 同期信号発生部
 20,60,72,73,82,83,84 スレーブ側測定器(スレーブ側インピーダンス測定器)

 
1, 49, 70, 80 impedance measurement system 10, 50, 71, 81 master side measuring device (master side impedance measuring device)
11, 51, 76, 86 constant current source (measurement AC source)
13, 53, 77, 87 voltmeter (master side voltage detector)
23, 63, 78, 79, 88, 89, 90 voltmeter (slave side voltage detector)
15, 55, 75, 85 Synchronization signal generator 20, 60, 72, 73, 82, 83, 84 Slave side measuring device (slave side impedance measuring device)

Claims (7)

  1.  一測定対象に所定の周波数の測定交流電流を供給して前記一測定対象のインピーダンスを測定するマスター側インピーダンス測定器と、他の測定対象のインピーダンスを測定するスレーブ側インピーダンス測定器とを有するインピーダンス測定システムであって、
     前記マスター側インピーダンス測定器は、
     前記測定交流電流を供給する測定交流源と、
     前記一測定対象の両端に発生する電圧を検出して、前記一測定対象のインピーダンスを出力するマスター側電圧検出部と
     を有し、
     前記測定交流電流の位相と同位相で前記スレーブ側インピーダンス測定器に対して同期検波させて、少なくとも前記測定交流源からの測定交流電流と、前記スレーブ側インピーダンス測定器を構成するスレーブ側電圧検出部で検出された電圧とに基づいて、前記他の測定対象のインピーダンスが算出される、
     ことを特徴とするインピーダンス測定システム。
    Impedance measurement comprising a master-side impedance measuring device for supplying a measuring alternating current of a predetermined frequency to one measuring object and measuring the impedance of the one measuring object, and a slave-side impedance measuring device for measuring the impedance of another measuring object a system,
    The master-side impedance measuring instrument,
    a measuring alternating current source that supplies the measuring alternating current;
    a master-side voltage detection unit that detects the voltage generated across the one measurement object and outputs the impedance of the one measurement object,
    Synchronous detection is performed on the slave impedance measuring instrument in the same phase as the measuring alternating current, so that at least the measuring alternating current from the measuring alternating current source and the slave side voltage detecting section constituting the slave impedance measuring instrument are detected. The impedance of the other measurement object is calculated based on the voltage detected in
    An impedance measurement system characterized by:
  2.  前記一測定対象の内部抵抗と前記他の測定対象の内部抵抗とが直列に接続され、前記測定交流源からの前記測定交流電流が、前記一測定対象の内部抵抗および前記他の測定対象の内部抵抗に印加される、
     ことを特徴とする請求項1に記載のインピーダンス測定システム。
    The internal resistance of the one measurement object and the internal resistance of the other measurement object are connected in series, and the measurement alternating current from the measurement alternating current source is the internal resistance of the one measurement object and the internal resistance of the other measurement object. applied to the resistor,
    The impedance measurement system according to claim 1, characterized in that:
  3.  前記一測定対象の内部抵抗と前記他の測定対象の内部抵抗とは、流れる電流の向きが互いに逆方向になるように、前記一測定対象の内部抵抗と前記他の測定対象の内部抵抗とが配置されている、
     ことを特徴とする請求項2に記載のインピーダンス測定システム。
    The internal resistance of the one object to be measured and the internal resistance of the other object to be measured are arranged such that the directions of currents flowing in the internal resistance of the one object to be measured and the internal resistance of the other object to be measured are opposite to each other. placed,
    3. The impedance measurement system according to claim 2, characterized in that:
  4.  前記測定交流源と前記一測定対象の内部抵抗とを接続する第1の電流計測線と、前記測定交流源と前記他の測定対象の内部抵抗とを接続する第2の電流計測線とが互いに近接して配置され、前記一測定対象と前記他の測定対象が近接して配置されている、
     ことを特徴とする請求項2又は3に記載のインピーダンス測定システム。
    A first current measurement line connecting the measurement AC source and the internal resistance of the one measurement target, and a second current measurement line connecting the measurement AC source and the internal resistance of the other measurement target, are arranged in close proximity, and the one measurement object and the other measurement object are arranged in close proximity;
    4. The impedance measurement system according to claim 2 or 3, characterized in that:
  5.  前記他の測定対象が単一であった場合に、
     前記第2の電流計測線は、前記測定交流源と前記他の測定対象の内部抵抗とを接続し、
     前記第1の電流計測線と前記第2の電流計測線とが互いに近接して配置され、前記一測定対象と単一の前記他の測定対象が近接して配置されている、
     ことを特徴とする請求項4に記載のインピーダンス測定システム。
    When the other measurement object is single,
    The second current measurement line connects the measurement AC source and the internal resistance of the other measurement target,
    The first current measurement line and the second current measurement line are arranged close to each other, and the one measurement object and the single other measurement object are arranged close to each other,
    5. The impedance measurement system according to claim 4, characterized in that:
  6.  前記他の測定対象が複数あった場合に、
     前記第2の電流計測線は、前記測定交流源と複数の前記他の測定対象の内の最後段にある前記他の測定対象の内部抵抗とを接続し、
     前記第1の電流計測線と前記第2の電流計測線とが互いに近接して配置され、前記一測定対象と複数の前記他の測定対象が互いに近接して配置されている、
     ことを特徴とする請求項4に記載のインピーダンス測定システム。
    When there are multiple other measurement targets,
    The second current measurement line connects the measurement alternating current source and the internal resistance of the other measurement object at the last stage among the plurality of the other measurement objects,
    The first current measurement line and the second current measurement line are arranged close to each other, and the one measurement object and the plurality of other measurement objects are arranged close to each other,
    5. The impedance measurement system according to claim 4, characterized in that:
  7.  前記測定交流電流が可変電流の場合、前記一測定対象の内部抵抗と前記他の測定対象の内部抵抗とに流れる電流を測定する電流検出部を備える、
     ことを特徴とする請求項2又は3に記載のインピーダンス測定システム。
    A current detection unit that measures a current flowing through the internal resistance of the one measurement object and the internal resistance of the other measurement object when the measured alternating current is a variable current,
    4. The impedance measurement system according to claim 2 or 3, characterized in that:
PCT/JP2022/026460 2021-07-02 2022-07-01 Impedance measurement system WO2023277178A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202290000503.7U CN221148794U (en) 2021-07-02 2022-07-01 Impedance measuring system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021110643 2021-07-02
JP2021-110643 2021-07-02

Publications (1)

Publication Number Publication Date
WO2023277178A1 true WO2023277178A1 (en) 2023-01-05

Family

ID=84692785

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/026460 WO2023277178A1 (en) 2021-07-02 2022-07-01 Impedance measurement system

Country Status (3)

Country Link
JP (1) JP2023008978A (en)
CN (1) CN221148794U (en)
WO (1) WO2023277178A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080303528A1 (en) * 2005-12-08 2008-12-11 Kim Deuk Soo Method and Device for Measuring Internal Impedance of Stationary Battery
JP2017173012A (en) * 2016-03-22 2017-09-28 日置電機株式会社 Method and device for measuring electrical storage device
JP2017203726A (en) * 2016-05-12 2017-11-16 日置電機株式会社 Impedance measurement device and impedance measurement method
WO2018078790A1 (en) * 2016-10-28 2018-05-03 三菱電機株式会社 Inspection device, control system, and inspection method
JP3217195U (en) * 2018-05-11 2018-07-26 株式会社東陽テクニカ 4-wire measurement cable and impedance measurement system
JP2019086474A (en) * 2017-11-09 2019-06-06 日置電機株式会社 System and method for measuring impedance
JP2020186946A (en) * 2019-05-10 2020-11-19 日置電機株式会社 Impedance measuring system and impedance measuring system method

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080303528A1 (en) * 2005-12-08 2008-12-11 Kim Deuk Soo Method and Device for Measuring Internal Impedance of Stationary Battery
JP2017173012A (en) * 2016-03-22 2017-09-28 日置電機株式会社 Method and device for measuring electrical storage device
JP2017203726A (en) * 2016-05-12 2017-11-16 日置電機株式会社 Impedance measurement device and impedance measurement method
WO2018078790A1 (en) * 2016-10-28 2018-05-03 三菱電機株式会社 Inspection device, control system, and inspection method
JP2019086474A (en) * 2017-11-09 2019-06-06 日置電機株式会社 System and method for measuring impedance
JP3217195U (en) * 2018-05-11 2018-07-26 株式会社東陽テクニカ 4-wire measurement cable and impedance measurement system
JP2020186946A (en) * 2019-05-10 2020-11-19 日置電機株式会社 Impedance measuring system and impedance measuring system method

Also Published As

Publication number Publication date
JP2023008978A (en) 2023-01-19
CN221148794U (en) 2024-06-14

Similar Documents

Publication Publication Date Title
RU2573610C2 (en) Method and system to detect short circuit influencing sensor
US20150145500A1 (en) A.c. power measuring apparatus and a.c. power measuring method
JP2019086474A (en) System and method for measuring impedance
US11268832B2 (en) Coil assembly and corresponding measuring assembly
WO2023277178A1 (en) Impedance measurement system
JP3402274B2 (en) Electronic component impedance measuring device
JP4399084B2 (en) Impedance measurement method by the four probe method
JP2021081240A (en) Electric signal detector
JP4208560B2 (en) Impedance measuring device
JP2024507215A (en) Method and device for measuring the insulation resistance of a DC voltage source connected to a divided intermediate circuit in mains parallel operation
JPH04269660A (en) Electric measuring apparatus
JP3283986B2 (en) Impedance measuring device
JP2573789B2 (en) Insulation resistance measuring device
JP2942892B2 (en) Measurement method of insulation resistance of ungrounded circuit
JPH03115870A (en) Current sensor
JP7364434B2 (en) Zero adjustment correction method and impedance measurement method
JP2860803B2 (en) Measurement method of insulation resistance of ungrounded circuit
JP2002098729A (en) Leak current probing device
JP2023009618A (en) Current sensor and wattmeter
WO2023210250A1 (en) Contact resistance measurement device and impedance measurement device
KR20190099201A (en) Vehicle battery current sensing system
Slomovitz et al. Two-stage current transformer with electronic compensation
CN112505421A (en) Measuring circuit for direct current resistance of dry-type air-core reactor
JP2764582B2 (en) Simple insulation resistance measurement method
JP2023010033A (en) Current sensor and watt-hour meter

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22833323

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202290000503.7

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22833323

Country of ref document: EP

Kind code of ref document: A1