JP2017173012A - Method and device for measuring electrical storage device - Google Patents

Method and device for measuring electrical storage device Download PDF

Info

Publication number
JP2017173012A
JP2017173012A JP2016056551A JP2016056551A JP2017173012A JP 2017173012 A JP2017173012 A JP 2017173012A JP 2016056551 A JP2016056551 A JP 2016056551A JP 2016056551 A JP2016056551 A JP 2016056551A JP 2017173012 A JP2017173012 A JP 2017173012A
Authority
JP
Japan
Prior art keywords
probe
voltage detection
storage battery
battery group
storage device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016056551A
Other languages
Japanese (ja)
Other versions
JP6741448B2 (en
Inventor
浩 山嵜
Hiroshi Yamazaki
浩 山嵜
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hioki EE Corp
Original Assignee
Hioki EE Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hioki EE Corp filed Critical Hioki EE Corp
Priority to JP2016056551A priority Critical patent/JP6741448B2/en
Publication of JP2017173012A publication Critical patent/JP2017173012A/en
Application granted granted Critical
Publication of JP6741448B2 publication Critical patent/JP6741448B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Measuring Leads Or Probes (AREA)
  • Measurement Of Resistance Or Impedance (AREA)
  • Secondary Cells (AREA)

Abstract

PROBLEM TO BE SOLVED: To allow internal resistance of individual storage batteries to be measured by facilitating probing the individual storage batteries in an electrical storage device including a plurality of storage batteries.SOLUTION: In a method for measuring an electrical storage device, an electrical storage device BT including a storage battery group G where a plurality of storage batteries B are connected in series is taken as a measurement object, and an AC current source 100, an AC voltmeter 200 and a DC voltmeter 300 are prepared. Current supply probes 110, 120 and DC voltage detection probes 310, 320 are respectively connected to one terminal electrode T1 and the other terminal electrode T2 of the storage battery group G, and an AC current for measurement is supplied from the AC current source 100 to the storage battery group G to measure a DC voltage of the entire storage battery group B by the DC voltmeter 300, and first voltage detection probes 210, 220 are successively alternately connected to terminals of individual storage batteries B in the storage battery group G to measure internal resistance of the individual storage batteries B.SELECTED DRAWING: Figure 2

Description

本発明は、複数の蓄電池を含む蓄電装置の測定方法および測定装置に関し、さらに詳しく言えば、個々の蓄電池の内部抵抗を測定する技術に関するものである。   The present invention relates to a measuring method and a measuring apparatus for a power storage device including a plurality of storage batteries, and more specifically to a technique for measuring the internal resistance of each storage battery.

一般的に言って、蓄電池(一次電池、二次電池を含む)の劣化状態は、その内部抵抗(等価直列抵抗)とその端子間直流電圧とにより判定することができる。すなわち、劣化が進むと内部抵抗が高くなる一方で、端子間直流電圧は小さくなる傾向を示す。   Generally speaking, the deterioration state of a storage battery (including a primary battery and a secondary battery) can be determined by its internal resistance (equivalent series resistance) and its DC voltage between terminals. That is, as the deterioration progresses, the internal resistance increases while the inter-terminal DC voltage tends to decrease.

特許文献1には、蓄電池の内部抵抗と端子間直流電圧とを1回の操作で同時に測定できるようにした交流4端子法による電池測定装置が提案されており、その構成を図9により概略的に説明する。   Patent Document 1 proposes a battery measuring apparatus based on an alternating current four-terminal method that can simultaneously measure the internal resistance of a storage battery and the inter-terminal DC voltage in one operation, and the configuration is schematically shown in FIG. Explained.

この電池測定装置は、被測定素子である電池BTにカップリングコンデンサ11を介して測定用の交流信号を印加する交流定電流源10と、その交流電流の印加時における電池BTの端子間に発生する交流電圧をカップリングコンデンサ23,24を介して検出する検波回路26を含む内部抵抗検出部(交流電圧計)20のほかに、電池BTの端子間直流電圧を検出する電圧検出部(直流電圧計)30を備えており、CPU(制御部)52は、検出された内部抵抗と端子間直流電圧とにより電池BTの劣化状態を判定する。   This battery measuring device is generated between an AC constant current source 10 that applies an AC signal for measurement to a battery BT as an element to be measured via a coupling capacitor 11, and a terminal of the battery BT when the AC current is applied. In addition to the internal resistance detector (AC voltmeter) 20 including the detection circuit 26 that detects the AC voltage to be detected via the coupling capacitors 23 and 24, the voltage detector (DC voltmeter) that detects the DC voltage between the terminals of the battery BT. ) 30, and the CPU (control unit) 52 determines the deterioration state of the battery BT based on the detected internal resistance and the DC voltage between the terminals.

なお、交流4端子法、直流4端子法のいずれの場合においても、通常、プローブには2本の導体を1対とするプローブが2対用いられ、各対のプローブのうちの一方の導体が電圧検出側として電圧計に接続され、他方の導体が電流供給側として測定信号源に接続される。一方の電圧検出側の導体は、交流電圧計と直流電圧計とに共用で、交流電圧計はカップリングコンデンサを介して電圧検出側の導体に接続され、直流電圧計は直接電圧検出側の導体に接続される(図9参照)。   In either case of the AC four-terminal method or the DC four-terminal method, normally, two pairs of probes having two conductors as one pair are used for the probe, and one conductor of each pair of probes is used. The voltage detection side is connected to the voltmeter, and the other conductor is connected to the measurement signal source as the current supply side. One conductor on the voltage detection side is shared by the AC voltmeter and the DC voltmeter. The AC voltmeter is connected to the conductor on the voltage detection side via a coupling capacitor, and the DC voltmeter is directly connected to the conductor on the voltage detection side. (See FIG. 9).

このように、特許文献1に記載の電池測定装置によれば、電池BTの内部抵抗と端子間直流電圧とを1回の操作で同時に測定でき、しかもこれらの測定値に基づいて劣化判定までも行うことができる。   Thus, according to the battery measuring apparatus described in Patent Document 1, the internal resistance of the battery BT and the DC voltage between the terminals can be measured at the same time by one operation, and even the deterioration determination is performed based on these measured values. It can be carried out.

しかしながら、実際の蓄電装置(蓄電池設備)等では、図10に例示するように、複数の蓄電池が所狭しと直並列に接続されているため、個々の蓄電池の内部抵抗等を測定するにあたって、その蓄電池ごとに2対のプローブを接触させることは煩雑な作業となる。   However, in an actual power storage device (storage battery facility) and the like, as illustrated in FIG. 10, a plurality of storage batteries are connected in series and in parallel, so when measuring the internal resistance and the like of each storage battery, Contacting two pairs of probes for each storage battery is a complicated operation.

特開平9−281202号公報JP-A-9-281202

したがって、本発明の課題は、複数の蓄電池を含む蓄電装置において、個々の蓄電池の内部抵抗を測定するにあたって、その個々の蓄電池へのプロービング作業を容易にするとともに、蓄電装置全体の直流電圧をも測定できるようにすることにある。   Accordingly, an object of the present invention is to facilitate probing work for each storage battery and measure the DC voltage of the entire storage apparatus in measuring the internal resistance of each storage battery in a storage apparatus including a plurality of storage batteries. It is to be able to measure.

上記課題を解決するため、本発明は、複数の蓄電池が直列に接続されている蓄電池群を含む蓄電装置を測定対象とする蓄電装置の測定方法において、
一対の電流供給プローブを有する交流電流源と、一対の第1電圧検出プローブを有する交流電圧計と、一対の第2電圧検出プローブを有する直流電圧計とを備え、
上記蓄電池群の一方の出力電極と他方の出力電極とに、それぞれ、上記電流供給プローブと上記第2電圧検出プローブとを接触させ、上記交流電流源より上記蓄電池群に対して測定用の交流電流を供給し、上記直流電圧計にて上記蓄電池群全体の直流電圧を測定するとともに、上記第1電圧検出プローブを上記蓄電池群内の個々の蓄電池の端子に順次交代的に接触させて、個々の蓄電池の内部抵抗測定を行うことを特徴としている。
In order to solve the above-described problem, the present invention provides a method for measuring a power storage device in which a power storage device includes a storage battery group in which a plurality of storage batteries are connected in series.
An AC current source having a pair of current supply probes, an AC voltmeter having a pair of first voltage detection probes, and a DC voltmeter having a pair of second voltage detection probes,
The current supply probe and the second voltage detection probe are brought into contact with one output electrode and the other output electrode of the storage battery group, respectively, and an AC current for measurement is applied to the storage battery group from the AC current source. And measuring the direct-current voltage of the entire storage battery group with the direct-current voltmeter, and alternately contacting the first voltage detection probe with the terminals of the individual storage batteries in the storage battery group in turn. It is characterized by measuring the internal resistance.

この蓄電装置の測定方法において、好ましくは上記電流供給プローブと上記第2電圧検出プローブには、クリップ式、ネジ式、クランプ式等のハンズフリー式のプローブが用いられる。   In this power storage device measuring method, a clip-free, screw-type, clamp-type or other hands-free type probe is preferably used for the current supply probe and the second voltage detection probe.

また、本発明には、複数の蓄電池が直列に接続されている蓄電池群を含む蓄電装置を測定対象とする蓄電装置の測定装置も含まれ、
この蓄電装置の測定装置は、一対の電流供給プローブを有する交流電流源と、一対の第1電圧検出プローブを有する交流電圧計と、一対の第2電圧検出プローブを有する直流電圧計とを備え、上記蓄電池群の一方の出力電極と他方の出力電極とに、それぞれ、上記電流供給プローブと上記第2電圧検出プローブとを接触させ、上記交流電流源より上記蓄電池群に対して測定用の交流電流を供給し、上記直流電圧計にて上記蓄電池群全体の直流電圧を測定するとともに、上記第1電圧検出プローブを上記蓄電池群内の個々の蓄電池の端子に順次交代的に接触させて、個々の蓄電池の内部抵抗測定を行うにあたって、
プローブ支持手段として、少なくとも上記蓄電池群の一方の出力電極と他方の出力電極とにかけて上記蓄電池群の上方に配置されるプローブ移動用のガイドレールを有し、上記ガイドレールに上記電流供給プローブ、上記第1電圧検出プローブおよび上記第2電圧検出プローブが移動可能に支持されていることを特徴としている。
Further, the present invention also includes a measuring device for a power storage device whose target is a power storage device including a storage battery group in which a plurality of storage batteries are connected in series.
The power storage device measuring apparatus includes an alternating current source having a pair of current supply probes, an alternating current voltmeter having a pair of first voltage detection probes, and a direct current voltmeter having a pair of second voltage detection probes. The current supply probe and the second voltage detection probe are brought into contact with one output electrode and the other output electrode of the storage battery group, respectively, and an alternating current for measurement is applied to the storage battery group from the alternating current source. And measuring the direct current voltage of the entire storage battery group with the direct current voltmeter, and alternately contacting the first voltage detection probe with the terminals of the individual storage batteries in the storage battery group in turn. When measuring internal resistance,
As a probe support means, it has a guide rail for moving the probe arranged above the storage battery group over at least one output electrode and the other output electrode of the storage battery group, and the current supply probe, The first voltage detection probe and the second voltage detection probe are movably supported.

この蓄電装置の測定装置の好ましい態様によると、上記プローブ支持手段は、上記ガイドレールを上記各プローブが上記蓄電池群から離れる上昇位置と上記蓄電池群に接触する下降位置とに移動させる昇降手段を備えている。   According to a preferred aspect of the measuring apparatus of the power storage device, the probe support means includes lifting / lowering means for moving the guide rail to an ascending position where the probes are separated from the storage battery group and a descending position where the probe contacts the storage battery group. ing.

また、より好ましい態様として、上記プローブ支持手段は、ともに一方の上記電流供給プローブと上記第2電圧検出プローブの2本のプローブを支持する第1プローブ支持部と、ともに他方の上記電流供給プローブと上記第2電圧検出プローブの2本のプローブを支持する第2プローブ支持部と、上記一方の第1電圧検出プローブを単独で支持する第3プローブ支持部と、上記他方の第1電圧検出プローブを単独で支持する第4プローブ支持部とをさらに備え、上記第1ないし第4の各プローブ支持部が上記ガイドレールに摺動可能に支持される。   As a more preferred aspect, the probe support means includes both the first current supply probe and the first probe support portion supporting the two probes of the second voltage detection probe, and the other current supply probe. A second probe support for supporting the two probes of the second voltage detection probe; a third probe support for supporting the one first voltage detection probe alone; and the other first voltage detection probe. A fourth probe support section that is supported alone, and the first to fourth probe support sections are slidably supported by the guide rail.

また、好ましくは、上記プローブ支持手段は、少なくとも上記第3プローブ支持部と上記第4プローブ支持部を上記ガイドレールに沿って個別に移動させるプローブ移動手段を備えている。   Preferably, the probe support means includes probe moving means for individually moving at least the third probe support part and the fourth probe support part along the guide rail.

上記プローブ移動手段として、上記ガイドレール側に形成されたラック歯と、上記プローブ支持部側に設けられたモータ駆動によるピニオン歯車とからなるピニオン・ラック機構が好ましい。   As the probe moving means, a pinion rack mechanism comprising rack teeth formed on the guide rail side and a motor driven pinion gear provided on the probe support part side is preferable.

上記プローブ移動手段の別の態様として、上記ガイドレールの延在方向に沿って互いに平行となるように上記ガイドレールに配設された2つのボールねじからなり、上記第3プローブ支持部が上記一方のボールねじにより往復的に駆動され、上記第4プローブ支持部が上記他方のボールねじにより往復的に駆動されるようにしてもよい。   As another aspect of the probe moving means, the probe moving means comprises two ball screws disposed on the guide rail so as to be parallel to each other along the extending direction of the guide rail, and the third probe support portion is the one of the ones. The fourth probe support portion may be reciprocally driven by the other ball screw.

また、上記プローブ移動手段は、上記ガイドレールの延在方向に沿って上記ガイドレールに設けられた2つ移動テーブルを有するリニアモータテーブルからなり、上記一方の移動テーブルに上記第3プローブ支持部が搭載され、上記他方の移動テーブルに上記第4プローブ支持部が搭載される態様であってもよい。   The probe moving means includes a linear motor table having two moving tables provided on the guide rail along the extending direction of the guide rail, and the third probe support portion is provided on the one moving table. The aspect which mounts and the said 4th probe support part is mounted in said other movement table may be sufficient.

本発明によれば、測定信号供給用の電流供給プローブと直流電圧検出用の第2電圧検出プローブとを好ましくはハンズフリー式として蓄電池群の一方の出力電極と他方の出力電極とに接触させておき、交流電圧検出用の第1電圧検出プローブのみを個々の蓄電池の端子に順次交代的に接触させればよいため、個々の蓄電池へのプロービング作業を容易に行うことができ、また、個々の蓄電池の内部抵抗測定と蓄電装置全体の直流電圧測定を一度に行え蓄電池劣化の点検工数を減らすことができる。   According to the present invention, the current supply probe for supplying the measurement signal and the second voltage detection probe for detecting the DC voltage are preferably brought into contact with one output electrode and the other output electrode of the storage battery group in a hands-free manner. In addition, since only the first voltage detection probe for AC voltage detection needs to be sequentially contacted with the terminals of the individual storage batteries, the probing work for the individual storage batteries can be easily performed. The internal resistance measurement of the storage battery and the DC voltage measurement of the entire power storage device can be performed at a time, and the inspection man-hours for storage battery deterioration can be reduced.

本発明による蓄電装置の測定装置の構成を概略的に示す模式図。The schematic diagram which shows schematically the structure of the measuring apparatus of the electrical storage apparatus by this invention. 上記測定装置による測定方法の第1例を示す模式図。The schematic diagram which shows the 1st example of the measuring method by the said measuring apparatus. 上記測定装置による測定方法の第2例を示す模式図。The schematic diagram which shows the 2nd example of the measuring method by the said measuring apparatus. 上記測定装置のプローブ支持手段を図解した模式図。The schematic diagram which illustrated the probe support means of the said measuring apparatus. 図4のA−A線に沿った断面図。Sectional drawing along the AA line of FIG. 上記プローブ支持手段が備えるプローブ移動手段の一例を示す模式的な側面図。The typical side view which shows an example of the probe moving means with which the said probe support means is provided. 上記プローブ移動手段の別の例を示す模式的な平面図。The typical top view which shows another example of the said probe moving means. 上記プローブ移動手段のさらに別の例を示す模式的な平面図。The typical top view which shows another example of the said probe moving means. 従来技術としての電池測定装置を示すブロック線図。The block diagram which shows the battery measuring apparatus as a prior art. 複数の蓄電池を直並列に接続してなる蓄電装置の一例を示す模式図。The schematic diagram which shows an example of the electrical storage apparatus formed by connecting a some storage battery in series and parallel.

次に、図1ないし図6により、本発明の実施形態について説明するが、本発明はこれに限定されるものではない。   Next, an embodiment of the present invention will be described with reference to FIGS. 1 to 6, but the present invention is not limited to this.

図1に示すように、この実施形態に係る蓄電装置の測定装置は、基本的な構成として、交流電流源100と、交流電圧計200と、直流電圧計300と、制御部400とを備えている。   As shown in FIG. 1, the measurement device for a power storage device according to this embodiment includes an alternating current source 100, an alternating current voltmeter 200, a direct current voltmeter 300, and a control unit 400 as a basic configuration. .

交流電流源100は、一対の電流供給プローブ110,120を有し、少なくともいずれか一方の電流供給経路内にはカップリングコンデンサ130が接続されている。   The alternating current source 100 includes a pair of current supply probes 110 and 120, and a coupling capacitor 130 is connected in at least one of the current supply paths.

交流電圧計200は、一対の第1電圧検出プローブ210,220を有し、それら各電圧検出経路内にはカップリングコンデンサ231,232が接続されている。交流電圧計200には、先の図9に示した電池測定装置と同じく、交流電流源100の位相と同期がとられている検波回路が含まれてよい。なお、以下の説明において、第1電圧検出プローブを「交流電圧検出プローブ」と言うことがある。   The AC voltmeter 200 includes a pair of first voltage detection probes 210 and 220, and coupling capacitors 231 and 232 are connected to the respective voltage detection paths. AC voltage meter 200 may include a detection circuit that is synchronized with the phase of AC current source 100, as in the battery measurement device shown in FIG. In the following description, the first voltage detection probe may be referred to as an “AC voltage detection probe”.

交流電流源100と交流電圧計200とにより交流4端子法の測定が行われるが、本発明において、交流電流源100の電流供給プローブ110,120と、交流電圧計200の交流電圧検出プローブ210,220は、後述するように、それぞれが単独のプローブ(接触子)として個別に移動可能である。   The AC four-terminal method is measured by the AC current source 100 and the AC voltmeter 200. In the present invention, the current supply probes 110 and 120 of the AC current source 100 and the AC voltage detection probe 210 of the AC voltmeter 200 are used. As will be described later, each of 220 can be individually moved as a single probe (contact).

また、直流電圧計300も交流電圧計200と同様に、一対の第2電圧検出プローブ310,320を備えている。以下の説明において、第2電圧検出プローブを「直流電圧検出プローブ」と言うことがある。   In addition, the DC voltmeter 300 includes a pair of second voltage detection probes 310 and 320 as in the AC voltmeter 200. In the following description, the second voltage detection probe may be referred to as a “DC voltage detection probe”.

制御部400には、マイクロコンピュータもしくはCPU(中央演算処理ユニット)が用いられ、好ましくは先の図9に示した電池測定装置に設けられているデジタル処理部に相当する機能を備えている。   The control unit 400 uses a microcomputer or a CPU (Central Processing Unit), and preferably has a function corresponding to the digital processing unit provided in the battery measuring apparatus shown in FIG.

制御部400には、交流電圧計200と直流電圧計300とからそれぞれ測定電圧が与えられ、また、交流電流源100からは例えば測定用交流信号の電流値や位相等の情報が与えられる。   The control unit 400 is provided with measurement voltages from the AC voltmeter 200 and the DC voltmeter 300, respectively, and the AC current source 100 is provided with information such as the current value and phase of the AC signal for measurement.

制御部400は、これらの情報に基づいて種々の演算を行うが、その一つとして、交流電圧計200にて検出される電圧vと、測定用交流信号(測定信号)の電流値iとから、v/iなる演算を行って蓄電池の内部抵抗rを算出する。また、制御部400は、算出された蓄電池の内部抵抗値等に基づいて蓄電池の劣化状態を判定し、その結果を表示部410に表示する。   The control unit 400 performs various calculations based on these pieces of information, and as one of them, from the voltage v detected by the AC voltmeter 200 and the current value i of the AC signal for measurement (measurement signal). , V / i is calculated to calculate the internal resistance r of the storage battery. Further, the control unit 400 determines the deterioration state of the storage battery based on the calculated internal resistance value of the storage battery and displays the result on the display unit 410.

次に、図2および図3を参照して、蓄電装置の測定方法について説明する。なお、ここでの測定対象は、例えば3つの蓄電池B1,B2,B3を直列に接続した蓄電池群Gであり、その両端からは出力電極T1,T2が引き出されている。   Next, a method for measuring the power storage device will be described with reference to FIGS. Note that the measurement target here is, for example, a storage battery group G in which three storage batteries B1, B2, and B3 are connected in series, and output electrodes T1 and T2 are drawn from both ends thereof.

まず、交流電流源100の一方の電流供給プローブ110と直流電圧計300の一方の直流電圧検出プローブ310とを出力電極T1に接続し、交流電流源100の他方の電流供給プローブ120と直流電圧計300の他方の直流電圧検出プローブ320とを出力電極T2に接続し、交流電流源100から蓄電池群Gに測定用の交流信号を印加して、直流電圧計300にて蓄電池群Gの直流電圧を測定できるようにする。   First, one current supply probe 110 of the AC current source 100 and one DC voltage detection probe 310 of the DC voltmeter 300 are connected to the output electrode T1, and the other current supply probe 120 of the AC current source 100 and the DC voltmeter 300 are connected. The other DC voltage detection probe 320 is connected to the output electrode T2, and an AC signal for measurement is applied from the AC current source 100 to the storage battery group G so that the DC voltage of the storage battery group G can be measured by the DC voltmeter 300. To.

そして、個々の蓄電池Bの内部抵抗を例えば順番に測定するとすれば、図2に示すように、まず、蓄電池B1の両端に交流電圧計200の交流電圧検出プローブ210,220を接触させて、測定用の交流信号により蓄電池B1に生じている電圧を測定し、交流信号の電流値iと測定された電圧vとから蓄電池B1の内部抵抗r1を算出する。   Then, if the internal resistance of each storage battery B is measured in order, for example, as shown in FIG. 2, first, the AC voltage detection probes 210 and 220 of the AC voltmeter 200 are brought into contact with both ends of the storage battery B1 and measured. The voltage generated in the storage battery B1 by the AC signal for use is measured, and the internal resistance r1 of the storage battery B1 is calculated from the current value i of the AC signal and the measured voltage v.

蓄電池B1の内部抵抗の測定が終了したら、図3に示すように、次の蓄電池B2の両端に交流電圧計200の交流電圧検出プローブ210,220を接触させ、上記と同様にして、蓄電池B2の内部抵抗r2を算出する。この作業を蓄電池B3についても行ってその内部抵抗r3を算出する。   When the measurement of the internal resistance of the storage battery B1 is completed, as shown in FIG. 3, the AC voltage detection probes 210 and 220 of the AC voltmeter 200 are brought into contact with both ends of the next storage battery B2, and the storage battery B2 The internal resistance r2 is calculated. This operation is also performed for the storage battery B3 to calculate its internal resistance r3.

なお、電流供給プローブ110,120、直流電圧検出プローブ310,320は、蓄電池Bの内部抵抗測定中は出力電極T1,T2に接続され続けるため、クリップ式、ネジ式、クランプ式等のハンズフリー式プローブであることが好ましい。   Since the current supply probes 110 and 120 and the DC voltage detection probes 310 and 320 are continuously connected to the output electrodes T1 and T2 during the measurement of the internal resistance of the storage battery B, the hands-free type such as clip type, screw type, clamp type, etc. A probe is preferred.

このように、本発明によれば、各蓄電池Bの内部抵抗rを測定するにあたって、交流電圧計200の交流電圧検出プローブ210,220のみを移動させればよいため、作業性がよく、確実なプロービングを容易に行うことができる。   As described above, according to the present invention, when measuring the internal resistance r of each storage battery B, only the AC voltage detection probes 210 and 220 of the AC voltmeter 200 need be moved. Probing can be performed easily.

また、プローブの交換頻度を低く抑えることができる。また、個々の蓄電池Bの内部抵抗測定と、蓄電装置全体の直流電圧測定とを一度に行えるため、蓄電池劣化の点検工数を減らすことができる。   Also, the probe replacement frequency can be kept low. Moreover, since the internal resistance measurement of each storage battery B and the DC voltage measurement of the entire power storage device can be performed at a time, the number of inspection steps for deterioration of the storage battery can be reduced.

次に、図4ないし図6を参照して、上記の内部抵抗測定作業を効率的に行う上で好ましいプローブ支持手段について説明する。なお、図4での蓄電池群Gには、複数の短絡板Sによって真っ直ぐな一列状態で直列に接続されているn個の蓄電池B1〜Bnが含まれており、この蓄電池群Gの設置面をXとする。また、出力電極T1,T2は電極引出板よりなる。   Next, with reference to FIG. 4 to FIG. 6, a probe support means preferable for efficiently performing the above internal resistance measurement work will be described. In addition, the storage battery group G in FIG. 4 includes n storage batteries B1 to Bn connected in series in a straight line by a plurality of short-circuit plates S. Let X be. The output electrodes T1 and T2 are made of an electrode extraction plate.

このプローブ支持手段は、蓄電池群Gの上方で蓄電池群Gの設置面Xと平行に配置されるガイドレール510を備えている。ガイドレール510は、出力電極T1,T2間の距離以上の長さを有し、この実施形態において、ガイドレール510は、その両端が当該プローブ支持手段の骨格をなす基枠500に昇降手段であるエアシリンダ540を介して支持されている。昇降手段として、エアシリンダに代えて油圧シリンダや送りネジ軸等が用いられてもよい。   The probe support means includes a guide rail 510 disposed above the storage battery group G and parallel to the installation surface X of the storage battery group G. The guide rail 510 has a length equal to or longer than the distance between the output electrodes T1 and T2. In this embodiment, the guide rail 510 is an elevating unit on the base frame 500 whose both ends form a skeleton of the probe support unit. It is supported via an air cylinder 540. As the elevating means, a hydraulic cylinder, a feed screw shaft or the like may be used instead of the air cylinder.

ガイドレール510には、4つのプローブ支持部521,522,531,532が摺動可能に取り付けられている。このうち、プローブ支持部521,522が支持本数が2本用で、プローブ支持部531,532が支持本数が1本用である。   Four probe support portions 521, 522, 531, and 532 are slidably attached to the guide rail 510. Among these, the probe support portions 521 and 522 are for two support, and the probe support portions 531 and 532 are for one support.

すなわち、プローブ支持部521に、交流電流源100の一方の電流供給プローブ110と、直流電圧計300の一方の直流電圧検出プローブ310の2本のプローブが支持され、同じく、プローブ支持部522に、交流電流源100の他方の電流供給プローブ120と、直流電圧計300の他方の直流電圧検出プローブ320の2本のプローブが支持される。   That is, two probes, one current supply probe 110 of the AC current source 100 and one DC voltage detection probe 310 of the DC voltmeter 300, are supported by the probe support unit 521. Similarly, the probe support unit 522 has an AC signal. Two probes, the other current supply probe 120 of the current source 100 and the other DC voltage detection probe 320 of the DC voltmeter 300 are supported.

これに対して、プローブ支持部531には、交流電圧計200の一方の交流電圧検出プローブ210が支持され、また、プローブ支持部532には、交流電圧計200の他方の交流電圧検出プローブ220が支持される。   On the other hand, one AC voltage detection probe 210 of the AC voltmeter 200 is supported by the probe support portion 531, and the other AC voltage detection probe 220 of the AC voltmeter 200 is supported by the probe support portion 532. Supported.

プローブ支持部521,522とプローブ支持部531,532は、プローブの支持本数は別として、基本的に同じ構成であり、その代表例として、図5にプローブ支持部531の断面を示す。   The probe support portions 521 and 522 and the probe support portions 531 and 532 have basically the same configuration except for the number of supported probes. As a typical example, a cross section of the probe support portion 531 is shown in FIG.

プローブ支持部531は、合成樹脂等の電気絶縁材からなり、ガイドレール510に沿って摺動する箱状の摺動体530を備えている。摺動体530の底部に交流電圧検出プローブ210が垂直として摺動可能に挿通されている。   The probe support 531 is made of an electrical insulating material such as synthetic resin, and includes a box-shaped sliding body 530 that slides along the guide rail 510. An AC voltage detection probe 210 is slidably inserted vertically into the bottom of the sliding body 530.

交流電圧検出プローブ210は、抜け止めとしての頭部210aを有するとともに、摺動体530内には、頭部210aに接触して交流電圧検出プローブ210を常時下方に向けて付勢する圧縮コイルバネCが収納されている。   The AC voltage detection probe 210 has a head portion 210a as a retaining member, and a compression coil spring C that contacts the head portion 210a and constantly urges the AC voltage detection probe 210 downward in the sliding body 530. It is stored.

交流電圧検出プローブ210は、圧縮コイルバネCおよびカップリングコンデンサ231を含むリード線を介して交流電流計200に接続される。他のプローブ支持部521,532,522もほぼ同様な構成である。   AC voltage detection probe 210 is connected to AC ammeter 200 via a lead wire including compression coil spring C and coupling capacitor 231. The other probe support portions 521, 532, and 522 have substantially the same configuration.

ガイドレール510上において、プローブ支持部521,522が両側、プローブ支持部531,532がそれらの間に配置される。例えば蓄電池B2の内部抵抗r2を測定するには、エアシリンダ540に上昇指令を与えて、ガイドレール510を各プローブが電池群Gから離れる高さ位置にまで上昇させる。   On the guide rail 510, the probe support portions 521 and 522 are disposed on both sides, and the probe support portions 531 and 532 are disposed therebetween. For example, in order to measure the internal resistance r2 of the storage battery B2, an ascent command is given to the air cylinder 540 to raise the guide rail 510 to a height position where each probe is separated from the battery group G.

そして、プローブ支持部521,531,532,522を手動で移動させて、一方の電流供給プローブ110と直流電圧検出プローブ310を出力電極T1の電極板上に、交流電圧検出プローブ210,220を蓄電池B2の両側にある短絡板S,S上に、他方の電流供給プローブ120と直流電圧検出プローブ320を出力電極T2の電極板上に位置させる。   Then, the probe support portions 521, 531, 532, and 522 are manually moved so that one current supply probe 110 and the DC voltage detection probe 310 are placed on the electrode plate of the output electrode T1, and the AC voltage detection probes 210 and 220 are stored in the storage battery. The other current supply probe 120 and the DC voltage detection probe 320 are positioned on the electrode plate of the output electrode T2 on the short-circuit plates S and S on both sides of B2.

しかる後、エアシリンダ540に下降指令を与えてガイドレール510を下降させ、プローブ110,310を出力電極T1に、プローブ210,220を蓄電池B2の短絡版S,Sに、プローブ320,120を出力電極T2にそれぞれ接触させ、交流電流源100より電池群Gに測定電流を供給し、交流電圧計200にて蓄電池B2の端子間電圧を測定し、測定電流iと端子間電圧vとから蓄電池B2の内部抵抗r2を算出するとともに、直流電圧計300にて電池群G自体の電圧を測定する。   Thereafter, a lowering command is given to the air cylinder 540 to lower the guide rail 510, and the probes 110 and 310 are output to the output electrode T1, the probes 210 and 220 are output to the short-circuited versions S and S of the storage battery B2, and the probes 320 and 120 are output. Each of the electrodes T2 is contacted, a measurement current is supplied from the alternating current source 100 to the battery group G, the voltage between the terminals of the storage battery B2 is measured by the alternating current voltmeter 200, and the storage battery B2 is obtained from the measurement current i and the voltage between the terminals v. And the DC voltage voltmeter 300 measures the voltage of the battery group G itself.

次に、例えば隣の蓄電池B3の内部抵抗r3を測定するには、上記と同じく、ガイドレール510を所定高さにまで上昇させ、両側のプローブ支持部521,522の位置はそのままとして、プローブ支持部531,532を図4において蓄電池1個分右側に移動させた後、ガイドレール510を下降させればよい。   Next, for example, in order to measure the internal resistance r3 of the adjacent storage battery B3, the guide rail 510 is raised to a predetermined height, and the positions of the probe support portions 521 and 522 on both sides are left as they are, as described above. After the parts 531 and 532 are moved to the right side by one storage battery in FIG. 4, the guide rail 510 may be lowered.

なお、プローブ支持部531,532を自動で移動させて各蓄電池Bの内部抵抗rを測定するには、図6に示すように、ガイドレール510にラック歯511を形成するとともに、プローブ支持部531,532側に図示しないモータにより駆動されラック歯511と噛み合うピニオン歯車512を設ける。   In order to automatically move the probe support portions 531 and 532 and measure the internal resistance r of each storage battery B, rack teeth 511 are formed on the guide rail 510 and the probe support portion 531 is formed as shown in FIG. , 532 is provided with a pinion gear 512 that is driven by a motor (not shown) and meshes with the rack teeth 511.

そして、制御部400(図1参照)より、ピニオン駆動用の上記モータとガイドレール昇降用のエアシリンダ540とに駆動用の制御信号を与え、ガイドレール510の上昇→プローブ支持部531,532の移動→ガイドレール510の下降→測定電流の供給・交流電圧測定→ガイドレール510の上昇の各ステップを行わせればよい。   Then, the control unit 400 (see FIG. 1) gives a driving control signal to the motor for pinion driving and the air cylinder 540 for raising and lowering the guide rail, and ascends the guide rail 510 → the probe support portions 531 and 532 The steps of movement → lowering of the guide rail 510 → supply of measurement current / AC voltage measurement → raising of the guide rail 510 may be performed.

なお、両側のプローブ支持部521,522にも、上記のピニオン・ラック機構を適用して自動で移動させることもできる。また、ピニオン・ラック機構に代えて、ねじ軸,ナットおよびボール等からなるボールねじや、リニアモータテーブルによるリニア移動機構が適用されてもよい。   The probe support portions 521 and 522 on both sides can be automatically moved by applying the above-described pinion / rack mechanism. In place of the pinion / rack mechanism, a ball screw including a screw shaft, a nut, a ball, or the like, or a linear moving mechanism using a linear motor table may be applied.

ボールねじによる場合には、図7に示すように、ガイドレール510にその延在方向に沿って2つのボールねじ611,612を互いに平行となるように架設し、その一方のボールねじ611により交流電圧検出プローブ210を有するプローブ支持部531を往復的に駆動し、他方のボールねじ612により交流電圧検出プローブ220を有するプローブ支持部532を往復的に駆動するようにすればよい。   In the case of using a ball screw, as shown in FIG. 7, two ball screws 611 and 612 are installed on the guide rail 510 so as to be parallel to each other along the extending direction, and one of the ball screws 611 is used for alternating current. The probe support 531 having the voltage detection probe 210 may be driven reciprocally, and the probe support 532 having the AC voltage detection probe 220 may be driven reciprocally by the other ball screw 612.

また、リニアモータテーブルによる場合には、図8に示すように、ガイドレール510にその延在方向に沿ってツインテーブル式のリニアモータテーブル、すなわち2つの移動テーブル621,622を有するリニアモータテーブル620を配設し、その一方の移動テーブル621に交流電圧検出プローブ210を有するプローブ支持部531を搭載し、他方の移動テーブル622に交流電圧検出プローブ220を有するプローブ支持部532を搭載すればよい。   In the case of using a linear motor table, as shown in FIG. 8, a twin table type linear motor table, that is, a linear motor table 620 having two moving tables 621 and 622 along the extending direction of the guide rail 510. The probe support portion 531 having the AC voltage detection probe 210 is mounted on one moving table 621, and the probe support portion 532 having the AC voltage detection probe 220 is mounted on the other moving table 622.

100 交流電流源
110,120 電流供給プローブ
200 交流電圧計
201,220 第1電圧検出プローブ(交流電圧検出プローブ)
300 直流電圧計
310,320 第2電圧検出プローブ(直流電圧検出プローブ)
400 制御部
500 プローブ支持手段の基枠
510 ガイドレール
521,522,531,532 プローブ支持部
540 エアシリンダ(昇降手段)
611,612 ボールねじ
620 リニアモータテーブル
621,622 移動テーブル
B(B1〜Bn) 蓄電池
S 短絡板
T1,T2 出力電極
DESCRIPTION OF SYMBOLS 100 AC current source 110,120 Current supply probe 200 AC voltmeter 201,220 1st voltage detection probe (AC voltage detection probe)
300 DC voltmeter 310, 320 Second voltage detection probe (DC voltage detection probe)
400 control unit 500 base frame of probe support means 510 guide rail 521, 522, 531, 532 probe support part 540 air cylinder (lifting means)
611,612 Ball screw 620 Linear motor table 621,622 Moving table B (B1-Bn) Storage battery S Short-circuit plate T1, T2 Output electrode

Claims (9)

複数の蓄電池が直列に接続されている蓄電池群を含む蓄電装置を測定対象とする蓄電装置の測定方法において、
一対の電流供給プローブを有する交流電流源と、一対の第1電圧検出プローブを有する交流電圧計と、一対の第2電圧検出プローブを有する直流電圧計とを備え、
上記蓄電池群の一方の出力電極と他方の出力電極とに、それぞれ、上記電流供給プローブと上記第2電圧検出プローブとを接触させ、上記交流電流源より上記蓄電池群に対して測定用の交流電流を供給し、上記直流電圧計にて上記蓄電池群全体の直流電圧を測定するとともに、上記第1電圧検出プローブを上記蓄電池群内の個々の蓄電池の端子に順次交代的に接触させて、個々の蓄電池の内部抵抗測定を行うことを特徴とする蓄電装置の測定方法。
In a method for measuring a power storage device having a power storage device including a storage battery group in which a plurality of storage batteries are connected in series as a measurement target,
An AC current source having a pair of current supply probes, an AC voltmeter having a pair of first voltage detection probes, and a DC voltmeter having a pair of second voltage detection probes,
The current supply probe and the second voltage detection probe are brought into contact with one output electrode and the other output electrode of the storage battery group, respectively, and an AC current for measurement is applied to the storage battery group from the AC current source. And measuring the direct-current voltage of the entire storage battery group with the direct-current voltmeter, and alternately contacting the first voltage detection probe with the terminals of the individual storage batteries in the storage battery group in turn. And measuring the internal resistance of the power storage device.
上記電流供給プローブと上記第2電圧検出プローブとに、手で保持して電極に接触させることを要しないハンズフリー式プローブを用いることを特徴とする請求項1に記載の蓄電装置の測定方法。   The method of measuring a power storage device according to claim 1, wherein a hands-free probe that is held by hand and does not need to be brought into contact with an electrode is used for the current supply probe and the second voltage detection probe. 複数の蓄電池が直列に接続されている蓄電池群を含む蓄電装置を測定対象とする蓄電装置の測定装置において、
一対の電流供給プローブを有する交流電流源と、一対の第1電圧検出プローブを有する交流電圧計と、一対の第2電圧検出プローブを有する直流電圧計とを備え、
上記蓄電池群の一方の出力電極と他方の出力電極とに、それぞれ、上記電流供給プローブと上記第2電圧検出プローブとを接触させ、上記交流電流源より上記蓄電池群に対して測定用の交流電流を供給し、上記直流電圧計にて上記蓄電池群全体の直流電圧を測定するとともに、上記第1電圧検出プローブを上記蓄電池群内の個々の蓄電池の端子に順次交代的に接触させて、個々の蓄電池の内部抵抗測定を行うにあたって、
プローブ支持手段として、少なくとも上記蓄電池群の一方の出力電極と他方の出力電極とにかけて上記蓄電池群の上方に配置されるプローブ移動用のガイドレールを有し、上記ガイドレールに上記電流供給プローブ、上記第1電圧検出プローブおよび上記第2電圧検出プローブが移動可能に支持されていることを特徴とする蓄電装置の測定装置。
In a measuring device for a power storage device whose target is a power storage device including a storage battery group in which a plurality of storage batteries are connected in series,
An AC current source having a pair of current supply probes, an AC voltmeter having a pair of first voltage detection probes, and a DC voltmeter having a pair of second voltage detection probes,
The current supply probe and the second voltage detection probe are brought into contact with one output electrode and the other output electrode of the storage battery group, respectively, and an AC current for measurement is applied to the storage battery group from the AC current source. And measuring the direct-current voltage of the entire storage battery group with the direct-current voltmeter, and alternately contacting the first voltage detection probe with the terminals of the individual storage batteries in the storage battery group in turn. When measuring the internal resistance of
As a probe support means, it has a guide rail for moving the probe arranged above the storage battery group over at least one output electrode and the other output electrode of the storage battery group, and the current supply probe, A power storage device measuring apparatus, wherein the first voltage detection probe and the second voltage detection probe are movably supported.
上記プローブ支持手段は、上記ガイドレールを上記各プローブが上記蓄電池群から離れる上昇位置と上記蓄電池群に接触する下降位置とに移動させる昇降手段を備えていることを特徴とする請求項3に記載の蓄電装置の測定装置。   The said probe support means is equipped with the raising / lowering means to which the said guide rail is moved to the raising position which each said probe leaves | separates from the said storage battery group, and the falling position which contacts the said storage battery group, The said 3rd aspect is characterized by the above-mentioned. Measuring device for power storage device. 上記プローブ支持手段は、ともに一方の上記電流供給プローブと上記第2電圧検出プローブの2本のプローブを支持する第1プローブ支持部と、ともに他方の上記電流供給プローブと上記第2電圧検出プローブの2本のプローブを支持する第2プローブ支持部と、上記一方の第1電圧検出プローブを単独で支持する第3プローブ支持部と、上記他方の第1電圧検出プローブを単独で支持する第4プローブ支持部とをさらに備え、上記第1ないし第4の各プローブ支持部が上記ガイドレールに摺動可能に支持されていることを特徴とする請求項3または4に記載の蓄電装置の測定装置。   The probe support means includes a first probe support portion for supporting two probes of the one current supply probe and the second voltage detection probe, and a pair of the current supply probe and the second voltage detection probe. A second probe supporting part for supporting two probes; a third probe supporting part for supporting the one first voltage detection probe alone; and a fourth probe for supporting the other first voltage detection probe alone. 5. The power storage device measuring apparatus according to claim 3, further comprising a support portion, wherein each of the first to fourth probe support portions is slidably supported by the guide rail. 6. 上記プローブ支持手段は、少なくとも上記第3プローブ支持部と上記第4プローブ支持部を上記ガイドレールに沿って個別に移動させるプローブ移動手段を備えていることを特徴とする請求項5に記載の蓄電装置の測定装置。   6. The electricity storage according to claim 5, wherein the probe support means includes probe moving means for individually moving at least the third probe support part and the fourth probe support part along the guide rail. Equipment measuring device. 上記プローブ移動手段が、上記ガイドレール側に形成されたラック歯と、上記プローブ支持部側に設けられたモータ駆動によるピニオン歯車とからなることを特徴とする請求項6に記載の蓄電装置の測定装置。   7. The power storage device measurement according to claim 6, wherein the probe moving means includes rack teeth formed on the guide rail side and a motor driven pinion gear provided on the probe support side. apparatus. 上記プローブ移動手段が、上記ガイドレールの延在方向に沿って互いに平行となるように上記ガイドレールに配設された2つのボールねじからなり、上記第3プローブ支持部が上記一方のボールねじにより往復的に駆動され、上記第4プローブ支持部が上記他方のボールねじにより往復的に駆動されることを特徴とする請求項6に記載の蓄電装置の測定装置。   The probe moving means comprises two ball screws arranged on the guide rail so as to be parallel to each other along the extending direction of the guide rail, and the third probe support portion is formed by the one ball screw. The power storage device measuring apparatus according to claim 6, wherein the power storage device is driven reciprocally and the fourth probe support portion is reciprocally driven by the other ball screw. 上記プローブ移動手段が、上記ガイドレールの延在方向に沿って上記ガイドレールに設けられた2つ移動テーブルを有するリニアモータテーブルからなり、上記一方の移動テーブルに上記第3プローブ支持部が搭載され、上記他方の移動テーブルに上記第4プローブ支持部が搭載されることを特徴とする請求項6に記載の蓄電装置の測定装置。   The probe moving means comprises a linear motor table having two moving tables provided on the guide rail along the extending direction of the guide rail, and the third probe support portion is mounted on the one moving table. The power storage device measuring apparatus according to claim 6, wherein the fourth probe support portion is mounted on the other moving table.
JP2016056551A 2016-03-22 2016-03-22 Power storage device measurement device Active JP6741448B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016056551A JP6741448B2 (en) 2016-03-22 2016-03-22 Power storage device measurement device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016056551A JP6741448B2 (en) 2016-03-22 2016-03-22 Power storage device measurement device

Publications (2)

Publication Number Publication Date
JP2017173012A true JP2017173012A (en) 2017-09-28
JP6741448B2 JP6741448B2 (en) 2020-08-19

Family

ID=59972949

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016056551A Active JP6741448B2 (en) 2016-03-22 2016-03-22 Power storage device measurement device

Country Status (1)

Country Link
JP (1) JP6741448B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019160775A (en) * 2018-03-09 2019-09-19 プライムアースEvエナジー株式会社 Electrode plate inspection equipment and electrode plate inspection method
WO2023277178A1 (en) * 2021-07-02 2023-01-05 日置電機株式会社 Impedance measurement system
CN116203319A (en) * 2023-05-04 2023-06-02 山东恒圣石墨科技有限公司 Graphite electrode resistivity detection device
JP7354356B1 (en) 2022-06-09 2023-10-02 日鉄テックスエンジ株式会社 Probe unit and charge/discharge inspection device
WO2024085158A1 (en) * 2022-10-18 2024-04-25 日置電機株式会社 Impedance measurement system and impedance measurement method

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09281202A (en) * 1996-02-16 1997-10-31 Hioki Ee Corp Battery measuring instrument
JP2000152515A (en) * 1998-11-10 2000-05-30 Central Res Inst Of Electric Power Ind Charging/discharging control of multistage connecting secondary battery and device therefor
JP2002134176A (en) * 2000-10-30 2002-05-10 Mikuni Kogyo:Kk Charge/discharge inspecting mechanism for lithium polymer battery
JP2003121516A (en) * 2001-10-09 2003-04-23 Furukawa Battery Co Ltd:The Measurement device for internal resistance of storage battery
JP2010078576A (en) * 2008-09-29 2010-04-08 Sumitomo Heavy Ind Ltd Inspection device of battery cell
JP2011038857A (en) * 2009-08-07 2011-02-24 Sanyo Electric Co Ltd Capacity maintenance ratio determination device, battery system and electric vehicle provided with the same
JP2013238404A (en) * 2012-05-11 2013-11-28 Calsonic Kansei Corp Apparatus for estimating state of cells of battery pack
CN103777149A (en) * 2014-01-25 2014-05-07 苏州菱欧自动化设备有限公司 Battery conduction inspection machine
CN105093120A (en) * 2015-06-18 2015-11-25 浙江时空能源技术有限公司 Apparatus for detecting resistance welding of battery pack and method thereof
JP2017150838A (en) * 2016-02-22 2017-08-31 日置電機株式会社 Storage battery measurement method and measurement device

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09281202A (en) * 1996-02-16 1997-10-31 Hioki Ee Corp Battery measuring instrument
JP2000152515A (en) * 1998-11-10 2000-05-30 Central Res Inst Of Electric Power Ind Charging/discharging control of multistage connecting secondary battery and device therefor
JP2002134176A (en) * 2000-10-30 2002-05-10 Mikuni Kogyo:Kk Charge/discharge inspecting mechanism for lithium polymer battery
JP2003121516A (en) * 2001-10-09 2003-04-23 Furukawa Battery Co Ltd:The Measurement device for internal resistance of storage battery
JP2010078576A (en) * 2008-09-29 2010-04-08 Sumitomo Heavy Ind Ltd Inspection device of battery cell
JP2011038857A (en) * 2009-08-07 2011-02-24 Sanyo Electric Co Ltd Capacity maintenance ratio determination device, battery system and electric vehicle provided with the same
JP2013238404A (en) * 2012-05-11 2013-11-28 Calsonic Kansei Corp Apparatus for estimating state of cells of battery pack
CN103777149A (en) * 2014-01-25 2014-05-07 苏州菱欧自动化设备有限公司 Battery conduction inspection machine
CN105093120A (en) * 2015-06-18 2015-11-25 浙江时空能源技术有限公司 Apparatus for detecting resistance welding of battery pack and method thereof
JP2017150838A (en) * 2016-02-22 2017-08-31 日置電機株式会社 Storage battery measurement method and measurement device

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019160775A (en) * 2018-03-09 2019-09-19 プライムアースEvエナジー株式会社 Electrode plate inspection equipment and electrode plate inspection method
JP7018374B2 (en) 2018-03-09 2022-02-10 プライムアースEvエナジー株式会社 Electrode plate inspection device and electrode plate inspection method
WO2023277178A1 (en) * 2021-07-02 2023-01-05 日置電機株式会社 Impedance measurement system
JP7354356B1 (en) 2022-06-09 2023-10-02 日鉄テックスエンジ株式会社 Probe unit and charge/discharge inspection device
WO2023238962A1 (en) * 2022-06-09 2023-12-14 日鉄テックスエンジ株式会社 Probe unit and charge/discharge inspection device
JP2023180517A (en) * 2022-06-09 2023-12-21 日鉄テックスエンジ株式会社 Probe unit and charge/discharge inspection apparatus
WO2024085158A1 (en) * 2022-10-18 2024-04-25 日置電機株式会社 Impedance measurement system and impedance measurement method
CN116203319A (en) * 2023-05-04 2023-06-02 山东恒圣石墨科技有限公司 Graphite electrode resistivity detection device
CN116203319B (en) * 2023-05-04 2023-08-08 山东恒圣石墨科技有限公司 Graphite electrode resistivity detection device

Also Published As

Publication number Publication date
JP6741448B2 (en) 2020-08-19

Similar Documents

Publication Publication Date Title
JP6741448B2 (en) Power storage device measurement device
CN104698390B (en) Battery device for fast detecting and battery rapid detection system
CN109298242A (en) A kind of direct current resistance m easurem ent device of cable
TW201534945A (en) Inspection system for device to be tested, and method for operating inspection system for device to be tested
CN209542792U (en) A kind of electric automatization detector
CN106226634B (en) Multi-path insulation automatic detection equipment of conductive slip ring and detection method thereof
CN109225929B (en) Inductor performance automatic tester
CN205301431U (en) Little resistance measurement equipment
CN203117290U (en) Resistance test tool
CN205656249U (en) Pad contact resistance and point contact aging testing device
JP3126051B2 (en) Test equipment that conducts continuity and insulation tests on multiple conductors that are part of wiring
CN209264912U (en) A kind of power supply printed board checking apparatus
CN108918972B (en) Carbon slide resistance detection device
CN208140799U (en) A kind of full-automatic machine vision copper bar volume resistivity detection device
CN112305449A (en) Light-emitting element defect detection jig and screen short circuit detection method
CN212160004U (en) Circuit board detection machine
CN109633347A (en) A kind of insulating tool defect detection platform and detection method
CN108957194A (en) A kind of the combined test stand structure and its test method of distribution transformer
CN205388626U (en) Test fixture of wrist strap class resistance
CN104392833B (en) A kind of voltage transformer automatic detection device
CN212514685U (en) Electronic product performance testing device
TW201525479A (en) Solar panel inspection machine table
CN209486219U (en) A kind of insulating tool defect detection platform
CN207281173U (en) A kind of battery pack pad test contacts internal resistance detection instrument with two-sided three axis
CN208383987U (en) A kind of test device of rapid survey conductor resistance

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191218

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20191218

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200114

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200624

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200727

R150 Certificate of patent or registration of utility model

Ref document number: 6741448

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250