JP6741448B2 - Power storage device measurement device - Google Patents

Power storage device measurement device Download PDF

Info

Publication number
JP6741448B2
JP6741448B2 JP2016056551A JP2016056551A JP6741448B2 JP 6741448 B2 JP6741448 B2 JP 6741448B2 JP 2016056551 A JP2016056551 A JP 2016056551A JP 2016056551 A JP2016056551 A JP 2016056551A JP 6741448 B2 JP6741448 B2 JP 6741448B2
Authority
JP
Japan
Prior art keywords
probe
voltage detection
storage battery
guide rail
battery group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016056551A
Other languages
Japanese (ja)
Other versions
JP2017173012A (en
Inventor
浩 山嵜
浩 山嵜
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hioki EE Corp
Original Assignee
Hioki EE Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hioki EE Corp filed Critical Hioki EE Corp
Priority to JP2016056551A priority Critical patent/JP6741448B2/en
Publication of JP2017173012A publication Critical patent/JP2017173012A/en
Application granted granted Critical
Publication of JP6741448B2 publication Critical patent/JP6741448B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Measuring Leads Or Probes (AREA)
  • Measurement Of Resistance Or Impedance (AREA)
  • Secondary Cells (AREA)

Description

本発明は、複数の蓄電池を含む蓄電装置の測定装置に関し、さらに詳しく言えば、個々の蓄電池の内部抵抗を測定する技術に関するものである。
The present invention relates to a measurement device of a power storage device including a plurality of storage batteries, and more particularly, to a technique for measuring the internal resistance of each battery.

一般的に言って、蓄電池(一次電池、二次電池を含む)の劣化状態は、その内部抵抗(等価直列抵抗)とその端子間直流電圧とにより判定することができる。すなわち、劣化が進むと内部抵抗が高くなる一方で、端子間直流電圧は小さくなる傾向を示す。 Generally speaking, the deterioration state of a storage battery (including a primary battery and a secondary battery) can be determined by its internal resistance (equivalent series resistance) and its DC voltage across its terminals. That is, as the deterioration progresses, the internal resistance increases, while the DC voltage between the terminals tends to decrease.

特許文献1には、蓄電池の内部抵抗と端子間直流電圧とを1回の操作で同時に測定できるようにした交流4端子法による電池測定装置が提案されており、その構成を図9により概略的に説明する。 Patent Document 1 proposes a battery measuring device by an AC 4-terminal method capable of simultaneously measuring the internal resistance of a storage battery and the DC voltage between terminals by one operation, and its configuration is schematically shown in FIG. Explained.

この電池測定装置は、被測定素子である電池BTにカップリングコンデンサ11を介して測定用の交流信号を印加する交流定電流源10と、その交流電流の印加時における電池BTの端子間に発生する交流電圧をカップリングコンデンサ23,24を介して検出する検波回路26を含む内部抵抗検出部(交流電圧計)20のほかに、電池BTの端子間直流電圧を検出する電圧検出部(直流電圧計)30を備えており、CPU(制御部)52は、検出された内部抵抗と端子間直流電圧とにより電池BTの劣化状態を判定する。 This battery measuring device is generated between an AC constant current source 10 for applying an AC signal for measurement to a battery BT which is an element to be measured via a coupling capacitor 11 and a terminal of the battery BT when the AC current is applied. In addition to the internal resistance detection unit (AC voltmeter) 20 that includes the detection circuit 26 that detects the AC voltage that is generated via the coupling capacitors 23 and 24, the voltage detection unit (DC voltmeter) that detects the DC voltage between the terminals of the battery BT. )30, the CPU (control unit) 52 determines the deterioration state of the battery BT based on the detected internal resistance and inter-terminal DC voltage.

なお、交流4端子法、直流4端子法のいずれの場合においても、通常、プローブには2本の導体を1対とするプローブが2対用いられ、各対のプローブのうちの一方の導体が電圧検出側として電圧計に接続され、他方の導体が電流供給側として測定信号源に接続される。一方の電圧検出側の導体は、交流電圧計と直流電圧計とに共用で、交流電圧計はカップリングコンデンサを介して電圧検出側の導体に接続され、直流電圧計は直接電圧検出側の導体に接続される(図9参照)。 In either case of the AC four-terminal method or the DC four-terminal method, two pairs of probes each having two conductors as a pair are usually used, and one conductor of each pair of probes is used. The voltage detection side is connected to the voltmeter and the other conductor is connected to the measurement signal source as the current supply side. One voltage detection side conductor is shared by the AC voltmeter and the DC voltmeter.The AC voltmeter is connected to the voltage detection side conductor via a coupling capacitor, and the DC voltmeter is directly connected to the voltage detection side conductor. (See FIG. 9).

このように、特許文献1に記載の電池測定装置によれば、電池BTの内部抵抗と端子間直流電圧とを1回の操作で同時に測定でき、しかもこれらの測定値に基づいて劣化判定までも行うことができる。 As described above, according to the battery measuring device described in Patent Document 1, the internal resistance of the battery BT and the DC voltage between the terminals can be simultaneously measured by one operation, and even the deterioration determination can be performed based on these measured values. It can be carried out.

しかしながら、実際の蓄電装置(蓄電池設備)等では、図10に例示するように、複数の蓄電池が所狭しと直並列に接続されているため、個々の蓄電池の内部抵抗等を測定するにあたって、その蓄電池ごとに2対のプローブを接触させることは煩雑な作業となる。 However, in an actual power storage device (storage battery equipment) or the like, as illustrated in FIG. 10, a plurality of storage batteries are confined and connected in series and parallel, so when measuring the internal resistance of each storage battery, etc. Contacting two pairs of probes for each storage battery is a complicated task.

特開平9−281202号公報JP, 9-281202, A

したがって、本発明の課題は、複数の蓄電池を含む蓄電装置において、個々の蓄電池の内部抵抗を測定するにあたって、その個々の蓄電池へのプロービング作業を容易にするとともに、蓄電装置全体の直流電圧をも測定できるようにすることにある。 Therefore, an object of the present invention is, in a power storage device including a plurality of storage batteries, in measuring the internal resistance of each storage battery, facilitates probing work to each storage battery, and also determines the DC voltage of the entire storage device. To be able to measure.

上記課題を解決するため、本発明は、複数の蓄電池が直列に接続されている蓄電池群を含む蓄電装置を測定対象とする蓄電装置において、
対の電流供給プローブを有する交流電流源と、一対の第1電圧検出プローブを有する交流電圧計と、一対の第2電圧検出プローブを有する直流電圧計とを備え、上記蓄電池群の一方の出力電極と他方の出力電極とに、それぞれ、上記電流供給プローブと上記第2電圧検出プローブとを接触させ、上記交流電流源より上記蓄電池群に対して測定用の交流電流を供給し、上記直流電圧計にて上記蓄電池群全体の直流電圧を測定するとともに、上記第1電圧検出プローブを上記蓄電池群内の個々の蓄電池の端子に順次交代的に接触させて、個々の蓄電池の内部抵抗測定を行うにあたって、
プローブ支持手段として、少なくとも上記蓄電池群の一方の出力電極と他方の出力電極とにかけて上記蓄電池群の上方に配置されるプローブ移動用のガイドレールを有し、上記ガイドレールに上記電流供給プローブ、上記第1電圧検出プローブおよび上記第2電圧検出プローブが移動可能に支持されていることを特徴としている。
In order to solve the above problems, the present invention provides a power storage device that measures a power storage device including a storage battery group in which a plurality of storage batteries are connected in series ,
Includes an alternating current source having a current supply probe one pair, and the AC voltmeter having a pair of first voltage detection probe, a DC voltmeter having a pair of second voltage detection probe, one output electrode of the battery group The current supply probe and the second voltage detection probe are respectively brought into contact with the other output electrode, and an alternating current for measurement is supplied from the alternating current source to the storage battery group, and the direct current voltmeter is provided. While measuring the DC voltage of the entire storage battery group, the first voltage detection probe is sequentially and alternately contacted with the terminals of the individual storage batteries in the storage battery group, to measure the internal resistance of each storage battery,
As the probe support means, at least one output electrode of the storage battery group and the other output electrode, has a guide rail for probe movement arranged above the storage battery group, the current supply probe on the guide rail, the The first voltage detection probe and the second voltage detection probe are movably supported.

この蓄電装置の測定装置の好ましい態様によると、上記プローブ支持手段は、上記ガイドレールを上記各プローブが上記蓄電池群から離れる上昇位置と上記蓄電池群に接触する下降位置とに移動させる昇降手段を備えている。 According to a preferred aspect of the measuring device for the power storage device, the probe supporting means includes elevating means for moving the guide rail to an ascending position where the probes are separated from the storage battery group and a descending position where the probes are in contact with the storage battery group. ing.

また、より好ましい態様として、上記プローブ支持手段は、ともに一方の上記電流供給プローブと上記第2電圧検出プローブの2本のプローブを支持する第1プローブ支持部と、ともに他方の上記電流供給プローブと上記第2電圧検出プローブの2本のプローブを支持する第2プローブ支持部と、上記一方の第1電圧検出プローブを単独で支持する第3プローブ支持部と、上記他方の第1電圧検出プローブを単独で支持する第4プローブ支持部とをさらに備え、上記第1ないし第4の各プローブ支持部が上記ガイドレールに摺動可能に支持される。 Further, as a more preferable aspect, the probe supporting means includes a first probe supporting portion that supports two probes of one of the current supply probe and the second voltage detection probe, and both of the other current supply probes. A second probe support part for supporting the two probes of the second voltage detection probe, a third probe support part for independently supporting the one first voltage detection probe, and the other first voltage detection probe. A fourth probe supporting portion that is independently supported is further provided, and each of the first to fourth probe supporting portions is slidably supported by the guide rail.

また、好ましくは、上記プローブ支持手段は、少なくとも上記第3プローブ支持部と上記第4プローブ支持部を上記ガイドレールに沿って個別に移動させるプローブ移動手段を備えている。 Further, preferably, the probe supporting means includes probe moving means for individually moving at least the third probe supporting portion and the fourth probe supporting portion along the guide rail.

上記プローブ移動手段として、上記ガイドレール側に形成されたラック歯と、上記プローブ支持部側に設けられたモータ駆動によるピニオン歯車とからなるピニオン・ラック機構が好ましい。 As the probe moving means, a pinion rack mechanism including rack teeth formed on the guide rail side and a motor-driven pinion gear provided on the probe supporting portion side is preferable.

上記プローブ移動手段の別の態様として、上記ガイドレールの延在方向に沿って互いに平行となるように上記ガイドレールに配設された2つのボールねじからなり、上記第3プローブ支持部が上記一方のボールねじにより往復的に駆動され、上記第4プローブ支持部が上記他方のボールねじにより往復的に駆動されるようにしてもよい。 As another aspect of the probe moving means, the probe moving means comprises two ball screws arranged on the guide rail so as to be parallel to each other along the extending direction of the guide rail, and the third probe support portion is provided on the one side. Alternatively, the fourth probe support portion may be reciprocally driven by the other ball screw.

また、上記プローブ移動手段は、上記ガイドレールの延在方向に沿って上記ガイドレールに設けられた2つ移動テーブルを有するリニアモータテーブルからなり、上記一方の移動テーブルに上記第3プローブ支持部が搭載され、上記他方の移動テーブルに上記第4プローブ支持部が搭載される態様であってもよい。 Further, the probe moving means is composed of a linear motor table having two moving tables provided on the guide rail along the extending direction of the guide rail, and the third probe supporting portion is provided on the one moving table. It may be mounted and the fourth probe support may be mounted on the other moving table.

本発明によれば、測定信号供給用の電流供給プローブと直流電圧検出用の第2電圧検出プローブとを好ましくはハンズフリー式として蓄電池群の一方の出力電極と他方の出力電極とに接触させておき、交流電圧検出用の第1電圧検出プローブのみを個々の蓄電池の端子に順次交代的に接触させればよいため、個々の蓄電池へのプロービング作業を容易に行うことができ、また、個々の蓄電池の内部抵抗測定と蓄電装置全体の直流電圧測定を一度に行え蓄電池劣化の点検工数を減らすことができる。 According to the present invention, the current supply probe for supplying the measurement signal and the second voltage detection probe for detecting the DC voltage are preferably hands-free and are brought into contact with one output electrode and the other output electrode of the storage battery group. Every time, only the first voltage detection probe for detecting the AC voltage needs to be alternately and alternately contacted with the terminals of the individual storage batteries, so that the probing work for the individual storage batteries can be easily performed, and the individual storage batteries can be easily probed. The internal resistance of the storage battery and the DC voltage of the entire power storage device can be measured at the same time, and the number of inspection steps for deterioration of the storage battery can be reduced.

本発明による蓄電装置の測定装置の構成を概略的に示す模式図。The schematic diagram which shows the structure of the measuring device of the electrical storage apparatus by this invention roughly. 上記測定装置による測定方法の第1例を示す模式図。The schematic diagram which shows the 1st example of the measuring method by the said measuring device. 上記測定装置による測定方法の第2例を示す模式図。The schematic diagram which shows the 2nd example of the measuring method by the said measuring device. 上記測定装置のプローブ支持手段を図解した模式図。The schematic diagram which illustrated the probe support means of the said measuring device. 図4のA−A線に沿った断面図。Sectional drawing which followed the AA line of FIG. 上記プローブ支持手段が備えるプローブ移動手段の一例を示す模式的な側面図。The typical side view which shows an example of the probe moving means with which the said probe support means is provided. 上記プローブ移動手段の別の例を示す模式的な平面図。FIG. 9 is a schematic plan view showing another example of the probe moving means. 上記プローブ移動手段のさらに別の例を示す模式的な平面図。The schematic top view which shows another example of the said probe moving means. 従来技術としての電池測定装置を示すブロック線図。The block diagram which shows the battery measuring device as a prior art. 複数の蓄電池を直並列に接続してなる蓄電装置の一例を示す模式図。The schematic diagram which shows an example of the electrical storage apparatus which connects a some storage battery in series and parallel.

次に、図1ないし図6により、本発明の実施形態について説明するが、本発明はこれに限定されるものではない。 Next, an embodiment of the present invention will be described with reference to FIGS. 1 to 6, but the present invention is not limited to this.

図1に示すように、この実施形態に係る蓄電装置の測定装置は、基本的な構成として、交流電流源100と、交流電圧計200と、直流電圧計300と、制御部400とを備えている。 As shown in FIG. 1, the power storage device measurement device according to this embodiment includes, as a basic configuration, an AC current source 100, an AC voltmeter 200, a DC voltmeter 300, and a control unit 400. ..

交流電流源100は、一対の電流供給プローブ110,120を有し、少なくともいずれか一方の電流供給経路内にはカップリングコンデンサ130が接続されている。 The alternating current source 100 has a pair of current supply probes 110 and 120, and a coupling capacitor 130 is connected in at least one of the current supply paths.

交流電圧計200は、一対の第1電圧検出プローブ210,220を有し、それら各電圧検出経路内にはカップリングコンデンサ231,232が接続されている。交流電圧計200には、先の図9に示した電池測定装置と同じく、交流電流源100の位相と同期がとられている検波回路が含まれてよい。なお、以下の説明において、第1電圧検出プローブを「交流電圧検出プローブ」と言うことがある。 The AC voltmeter 200 has a pair of first voltage detection probes 210 and 220, and coupling capacitors 231 and 232 are connected in the respective voltage detection paths. The AC voltmeter 200 may include a detection circuit that is synchronized with the phase of the AC current source 100, like the battery measuring device shown in FIG. 9 above. In the following description, the first voltage detection probe may be referred to as "AC voltage detection probe".

交流電流源100と交流電圧計200とにより交流4端子法の測定が行われるが、本発明において、交流電流源100の電流供給プローブ110,120と、交流電圧計200の交流電圧検出プローブ210,220は、後述するように、それぞれが単独のプローブ(接触子)として個別に移動可能である。 The AC four-terminal method is measured by the AC current source 100 and the AC voltmeter 200, but in the present invention, the current supply probes 110 and 120 of the AC current source 100 and the AC voltage detection probe 210 of the AC voltmeter 200, As will be described later, the 220 can be individually moved as individual probes (contacts).

また、直流電圧計300も交流電圧計200と同様に、一対の第2電圧検出プローブ310,320を備えている。以下の説明において、第2電圧検出プローブを「直流電圧検出プローブ」と言うことがある。 The DC voltmeter 300 also includes a pair of second voltage detection probes 310 and 320, like the AC voltmeter 200. In the following description, the second voltage detection probe may be referred to as “DC voltage detection probe”.

制御部400には、マイクロコンピュータもしくはCPU(中央演算処理ユニット)が用いられ、好ましくは先の図9に示した電池測定装置に設けられているデジタル処理部に相当する機能を備えている。 A microcomputer or a CPU (central processing unit) is used for the control unit 400, and preferably has a function corresponding to a digital processing unit provided in the battery measuring device shown in FIG.

制御部400には、交流電圧計200と直流電圧計300とからそれぞれ測定電圧が与えられ、また、交流電流源100からは例えば測定用交流信号の電流値や位相等の情報が与えられる。 The control unit 400 is supplied with measurement voltages from the AC voltmeter 200 and the DC voltmeter 300, respectively, and the AC current source 100 is supplied with information such as the current value and phase of the measurement AC signal.

制御部400は、これらの情報に基づいて種々の演算を行うが、その一つとして、交流電圧計200にて検出される電圧vと、測定用交流信号(測定信号)の電流値iとから、v/iなる演算を行って蓄電池の内部抵抗rを算出する。また、制御部400は、算出された蓄電池の内部抵抗値等に基づいて蓄電池の劣化状態を判定し、その結果を表示部410に表示する。 The control unit 400 performs various calculations based on these pieces of information. As one of them, the voltage v detected by the AC voltmeter 200 and the current value i of the measurement AC signal (measurement signal) are used. , V/i is calculated to calculate the internal resistance r of the storage battery. Further, control unit 400 determines the deterioration state of the storage battery based on the calculated internal resistance value of the storage battery and the like, and displays the result on display unit 410.

次に、図2および図3を参照して、蓄電装置の測定方法について説明する。なお、ここでの測定対象は、例えば3つの蓄電池B1,B2,B3を直列に接続した蓄電池群Gであり、その両端からは出力電極T1,T2が引き出されている。 Next, a method for measuring the power storage device will be described with reference to FIGS. 2 and 3. The measurement target here is, for example, a storage battery group G in which three storage batteries B1, B2, B3 are connected in series, and output electrodes T1, T2 are drawn out from both ends thereof.

まず、交流電流源100の一方の電流供給プローブ110と直流電圧計300の一方の直流電圧検出プローブ310とを出力電極T1に接続し、交流電流源100の他方の電流供給プローブ120と直流電圧計300の他方の直流電圧検出プローブ320とを出力電極T2に接続し、交流電流源100から蓄電池群Gに測定用の交流信号を印加して、直流電圧計300にて蓄電池群Gの直流電圧を測定できるようにする。 First, one current supply probe 110 of the AC current source 100 and one DC voltage detection probe 310 of the DC voltmeter 300 are connected to the output electrode T1, and the other current supply probe 120 of the AC current source 100 and the DC voltmeter 300 are connected. The other DC voltage detection probe 320 is connected to the output electrode T2, and an AC signal for measurement is applied from the AC current source 100 to the storage battery group G so that the DC voltage of the storage battery group G can be measured by the DC voltmeter 300. To

そして、個々の蓄電池Bの内部抵抗を例えば順番に測定するとすれば、図2に示すように、まず、蓄電池B1の両端に交流電圧計200の交流電圧検出プローブ210,220を接触させて、測定用の交流信号により蓄電池B1に生じている電圧を測定し、交流信号の電流値iと測定された電圧vとから蓄電池B1の内部抵抗r1を算出する。 If the internal resistance of each storage battery B is measured in order, for example, first, as shown in FIG. 2, the AC voltage detection probes 210 and 220 of the AC voltmeter 200 are brought into contact with both ends of the storage battery B1 to measure the internal resistance. The voltage generated in the storage battery B1 is measured by the AC signal for use in the battery, and the internal resistance r1 of the storage battery B1 is calculated from the current value i of the AC signal and the measured voltage v.

蓄電池B1の内部抵抗の測定が終了したら、図3に示すように、次の蓄電池B2の両端に交流電圧計200の交流電圧検出プローブ210,220を接触させ、上記と同様にして、蓄電池B2の内部抵抗r2を算出する。この作業を蓄電池B3についても行ってその内部抵抗r3を算出する。 When the measurement of the internal resistance of the storage battery B1 is completed, as shown in FIG. 3, the AC voltage detection probes 210 and 220 of the AC voltmeter 200 are brought into contact with both ends of the next storage battery B2, and the storage battery B2 is charged in the same manner as above. The internal resistance r2 is calculated. This operation is also performed on the storage battery B3 to calculate its internal resistance r3.

なお、電流供給プローブ110,120、直流電圧検出プローブ310,320は、蓄電池Bの内部抵抗測定中は出力電極T1,T2に接続され続けるため、クリップ式、ネジ式、クランプ式等のハンズフリー式プローブであることが好ましい。 Since the current supply probes 110 and 120 and the DC voltage detection probes 310 and 320 are continuously connected to the output electrodes T1 and T2 during the internal resistance measurement of the storage battery B, a hands-free type such as a clip type, a screw type, or a clamp type. It is preferably a probe.

このように、本発明によれば、各蓄電池Bの内部抵抗rを測定するにあたって、交流電圧計200の交流電圧検出プローブ210,220のみを移動させればよいため、作業性がよく、確実なプロービングを容易に行うことができる。 As described above, according to the present invention, when measuring the internal resistance r of each storage battery B, only the AC voltage detection probes 210 and 220 of the AC voltmeter 200 need to be moved, so that workability is good and reliable. Probing can be done easily.

また、プローブの交換頻度を低く抑えることができる。また、個々の蓄電池Bの内部抵抗測定と、蓄電装置全体の直流電圧測定とを一度に行えるため、蓄電池劣化の点検工数を減らすことができる。 In addition, it is possible to reduce the frequency of probe replacement. Further, since the internal resistance of each storage battery B and the DC voltage of the entire power storage device can be measured at the same time, the number of inspection steps for deterioration of the storage battery can be reduced.

次に、図4ないし図6を参照して、上記の内部抵抗測定作業を効率的に行う上で好ましいプローブ支持手段について説明する。なお、図4での蓄電池群Gには、複数の短絡板Sによって真っ直ぐな一列状態で直列に接続されているn個の蓄電池B1〜Bnが含まれており、この蓄電池群Gの設置面をXとする。また、出力電極T1,T2は電極引出板よりなる。 Next, with reference to FIG. 4 to FIG. 6, a preferable probe supporting means for efficiently performing the above internal resistance measuring operation will be described. It should be noted that the storage battery group G in FIG. 4 includes n storage batteries B1 to Bn connected in series in a straight, single-row state by a plurality of short-circuit plates S. Let be X. The output electrodes T1 and T2 are electrode lead plates.

このプローブ支持手段は、蓄電池群Gの上方で蓄電池群Gの設置面Xと平行に配置されるガイドレール510を備えている。ガイドレール510は、出力電極T1,T2間の距離以上の長さを有し、この実施形態において、ガイドレール510は、その両端が当該プローブ支持手段の骨格をなす基枠500に昇降手段であるエアシリンダ540を介して支持されている。昇降手段として、エアシリンダに代えて油圧シリンダや送りネジ軸等が用いられてもよい。 The probe supporting means includes a guide rail 510 arranged above the storage battery group G and in parallel with the installation surface X of the storage battery group G. The guide rail 510 has a length equal to or longer than the distance between the output electrodes T1 and T2. In this embodiment, the guide rail 510 is an elevating means on the base frame 500 whose both ends form the skeleton of the probe supporting means. It is supported via an air cylinder 540. A hydraulic cylinder, a feed screw shaft, or the like may be used as the lifting means instead of the air cylinder.

ガイドレール510には、4つのプローブ支持部521,522,531,532が摺動可能に取り付けられている。このうち、プローブ支持部521,522が支持本数が2本用で、プローブ支持部531,532が支持本数が1本用である。 Four guide support portions 521, 522, 531 and 532 are slidably attached to the guide rail 510. Of these, the probe supporting portions 521 and 522 are for supporting two, and the probe supporting portions 531 and 532 are for supporting one.

すなわち、プローブ支持部521に、交流電流源100の一方の電流供給プローブ110と、直流電圧計300の一方の直流電圧検出プローブ310の2本のプローブが支持され、同じく、プローブ支持部522に、交流電流源100の他方の電流供給プローブ120と、直流電圧計300の他方の直流電圧検出プローブ320の2本のプローブが支持される。 That is, the probe support portion 521 supports two probes, that is, one current supply probe 110 of the alternating current source 100 and one direct current voltage detection probe 310 of the direct current voltmeter 300. Similarly, the probe support portion 522 has an alternating current Two probes, that is, the other current supply probe 120 of the current source 100 and the other DC voltage detection probe 320 of the DC voltmeter 300 are supported.

これに対して、プローブ支持部531には、交流電圧計200の一方の交流電圧検出プローブ210が支持され、また、プローブ支持部532には、交流電圧計200の他方の交流電圧検出プローブ220が支持される。 On the other hand, the probe support portion 531 supports one of the AC voltage detection probes 210 of the AC voltmeter 200, and the probe support portion 532 includes the other AC voltage detection probe 220 of the AC voltmeter 200. Supported.

プローブ支持部521,522とプローブ支持部531,532は、プローブの支持本数は別として、基本的に同じ構成であり、その代表例として、図5にプローブ支持部531の断面を示す。 The probe support portions 521 and 522 and the probe support portions 531 and 532 have basically the same configuration except for the number of probes to be supported, and as a representative example thereof, FIG. 5 shows a cross section of the probe support portion 531.

プローブ支持部531は、合成樹脂等の電気絶縁材からなり、ガイドレール510に沿って摺動する箱状の摺動体530を備えている。摺動体530の底部に交流電圧検出プローブ210が垂直として摺動可能に挿通されている。 The probe support portion 531 is made of an electrically insulating material such as synthetic resin, and includes a box-shaped sliding body 530 that slides along the guide rail 510. The AC voltage detection probe 210 is vertically slidably inserted into the bottom of the sliding body 530.

交流電圧検出プローブ210は、抜け止めとしての頭部210aを有するとともに、摺動体530内には、頭部210aに接触して交流電圧検出プローブ210を常時下方に向けて付勢する圧縮コイルバネCが収納されている。 The AC voltage detection probe 210 has a head 210a as a retaining member, and a compression coil spring C that contacts the head 210a and always urges the AC voltage detection probe 210 downward in the sliding body 530. It is stored.

交流電圧検出プローブ210は、圧縮コイルバネCおよびカップリングコンデンサ231を含むリード線を介して交流電流計200に接続される。他のプローブ支持部521,532,522もほぼ同様な構成である。 The AC voltage detection probe 210 is connected to the AC ammeter 200 via a lead wire including a compression coil spring C and a coupling capacitor 231. The other probe supporting portions 521, 532, and 522 have substantially the same configuration.

ガイドレール510上において、プローブ支持部521,522が両側、プローブ支持部531,532がそれらの間に配置される。例えば蓄電池B2の内部抵抗r2を測定するには、エアシリンダ540に上昇指令を与えて、ガイドレール510を各プローブが電池群Gから離れる高さ位置にまで上昇させる。 On the guide rail 510, the probe support parts 521 and 522 are arranged on both sides, and the probe support parts 531 and 532 are arranged between them. For example, in order to measure the internal resistance r2 of the storage battery B2, a raising command is given to the air cylinder 540 to raise the guide rail 510 to a height position where each probe is separated from the battery group G.

そして、プローブ支持部521,531,532,522を手動で移動させて、一方の電流供給プローブ110と直流電圧検出プローブ310を出力電極T1の電極板上に、交流電圧検出プローブ210,220を蓄電池B2の両側にある短絡板S,S上に、他方の電流供給プローブ120と直流電圧検出プローブ320を出力電極T2の電極板上に位置させる。 Then, by manually moving the probe supporting portions 521, 531, 532, 522, one of the current supply probe 110 and the DC voltage detection probe 310 is placed on the electrode plate of the output electrode T1, and the AC voltage detection probes 210 and 220 are stored in the storage battery. On the short-circuit plates S, S on both sides of B2, the other current supply probe 120 and the DC voltage detection probe 320 are positioned on the electrode plate of the output electrode T2.

しかる後、エアシリンダ540に下降指令を与えてガイドレール510を下降させ、プローブ110,310を出力電極T1に、プローブ210,220を蓄電池B2の短絡版S,Sに、プローブ320,120を出力電極T2にそれぞれ接触させ、交流電流源100より電池群Gに測定電流を供給し、交流電圧計200にて蓄電池B2の端子間電圧を測定し、測定電流iと端子間電圧vとから蓄電池B2の内部抵抗r2を算出するとともに、直流電圧計300にて電池群G自体の電圧を測定する。 Thereafter, a downward command is given to the air cylinder 540 to lower the guide rail 510 to output the probes 110 and 310 to the output electrode T1, the probes 210 and 220 to the short-circuit plates S and S of the storage battery B2, and the probes 320 and 120. The electrodes T2 are brought into contact with each other, a measurement current is supplied from the AC current source 100 to the battery group G, the terminal voltage of the storage battery B2 is measured by the AC voltmeter 200, and the storage battery B2 is calculated from the measurement current i and the terminal voltage v. The internal resistance r2 is calculated, and the voltage of the battery group G itself is measured by the DC voltmeter 300.

次に、例えば隣の蓄電池B3の内部抵抗r3を測定するには、上記と同じく、ガイドレール510を所定高さにまで上昇させ、両側のプローブ支持部521,522の位置はそのままとして、プローブ支持部531,532を図4において蓄電池1個分右側に移動させた後、ガイドレール510を下降させればよい。 Next, for example, in order to measure the internal resistance r3 of the adjacent storage battery B3, similarly to the above, the guide rail 510 is raised to a predetermined height, and the positions of the probe support portions 521 and 522 on both sides are left as they are. After moving the parts 531 and 532 to the right by one storage battery in FIG. 4, the guide rail 510 may be lowered.

なお、プローブ支持部531,532を自動で移動させて各蓄電池Bの内部抵抗rを測定するには、図6に示すように、ガイドレール510にラック歯511を形成するとともに、プローブ支持部531,532側に図示しないモータにより駆動されラック歯511と噛み合うピニオン歯車512を設ける。 In order to automatically move the probe supporting portions 531 and 532 and measure the internal resistance r of each storage battery B, as shown in FIG. 6, the rack teeth 511 are formed on the guide rail 510 and the probe supporting portion 531 is formed. , 532 side are provided with pinion gears 512 which are driven by a motor (not shown) and mesh with the rack teeth 511.

そして、制御部400(図1参照)より、ピニオン駆動用の上記モータとガイドレール昇降用のエアシリンダ540とに駆動用の制御信号を与え、ガイドレール510の上昇→プローブ支持部531,532の移動→ガイドレール510の下降→測定電流の供給・交流電圧測定→ガイドレール510の上昇の各ステップを行わせればよい。 Then, the control unit 400 (see FIG. 1) gives a drive control signal to the motor for driving the pinion and the air cylinder 540 for raising and lowering the guide rail, and raises the guide rail 510→the probe support portions 531 and 532. It suffices to perform the steps of moving, descending the guide rail 510, supplying a measurement current and measuring an AC voltage, and ascending the guide rail 510.

なお、両側のプローブ支持部521,522にも、上記のピニオン・ラック機構を適用して自動で移動させることもできる。また、ピニオン・ラック機構に代えて、ねじ軸,ナットおよびボール等からなるボールねじや、リニアモータテーブルによるリニア移動機構が適用されてもよい。 The above-mentioned pinion rack mechanism can also be applied to the probe supporting portions 521 and 522 on both sides to move them automatically. Further, instead of the pinion/rack mechanism, a ball screw including a screw shaft, a nut, a ball, or the like, or a linear moving mechanism using a linear motor table may be applied.

ボールねじによる場合には、図7に示すように、ガイドレール510にその延在方向に沿って2つのボールねじ611,612を互いに平行となるように架設し、その一方のボールねじ611により交流電圧検出プローブ210を有するプローブ支持部531を往復的に駆動し、他方のボールねじ612により交流電圧検出プローブ220を有するプローブ支持部532を往復的に駆動するようにすればよい。 In the case of using the ball screw, as shown in FIG. 7, two ball screws 611 and 612 are installed on the guide rail 510 along the extending direction so as to be parallel to each other. The probe support 531 having the voltage detection probe 210 may be reciprocally driven, and the other ball screw 612 may reciprocally drive the probe support 532 having the AC voltage detection probe 220.

また、リニアモータテーブルによる場合には、図8に示すように、ガイドレール510にその延在方向に沿ってツインテーブル式のリニアモータテーブル、すなわち2つの移動テーブル621,622を有するリニアモータテーブル620を配設し、その一方の移動テーブル621に交流電圧検出プローブ210を有するプローブ支持部531を搭載し、他方の移動テーブル622に交流電圧検出プローブ220を有するプローブ支持部532を搭載すればよい。 Further, in the case of using a linear motor table, as shown in FIG. 8, a twin table type linear motor table, that is, a linear motor table 620 having two moving tables 621 and 622 along the extending direction of the guide rail 510 is used. The probe support portion 531 having the AC voltage detection probe 210 may be mounted on one of the moving tables 621, and the probe support portion 532 having the AC voltage detection probe 220 may be mounted on the other moving table 622.

100 交流電流源
110,120 電流供給プローブ
200 交流電圧計
201,220 第1電圧検出プローブ(交流電圧検出プローブ)
300 直流電圧計
310,320 第2電圧検出プローブ(直流電圧検出プローブ)
400 制御部
500 プローブ支持手段の基枠
510 ガイドレール
521,522,531,532 プローブ支持部
540 エアシリンダ(昇降手段)
611,612 ボールねじ
620 リニアモータテーブル
621,622 移動テーブル
B(B1〜Bn) 蓄電池
S 短絡板
T1,T2 出力電極
100 AC current source 110, 120 Current supply probe 200 AC voltmeter 201, 220 1st voltage detection probe (AC voltage detection probe)
300 DC voltmeter 310, 320 Second voltage detection probe (DC voltage detection probe)
400 Control Unit 500 Base Frame of Probe Supporting Unit 510 Guide Rail 521, 522, 531, 532 Probe Supporting Unit 540 Air Cylinder (Elevating Unit)
611,612 Ball screw 620 Linear motor table 621,622 Moving table B (B1 to Bn) Storage battery S Short circuit plate T1, T2 Output electrode

Claims (7)

複数の蓄電池が直列に接続されている蓄電池群を含む蓄電装置を測定対象とする蓄電装置の測定装置において、
一対の電流供給プローブを有する交流電流源と、一対の第1電圧検出プローブを有する交流電圧計と、一対の第2電圧検出プローブを有する直流電圧計とを備え、
上記蓄電池群の一方の出力電極と他方の出力電極とに、それぞれ、上記電流供給プローブと上記第2電圧検出プローブとを接触させ、上記交流電流源より上記蓄電池群に対して測定用の交流電流を供給し、上記直流電圧計にて上記蓄電池群全体の直流電圧を測定するとともに、上記第1電圧検出プローブを上記蓄電池群内の個々の蓄電池の端子に順次交代的に接触させて、個々の蓄電池の内部抵抗測定を行うにあたって、
プローブ支持手段として、少なくとも上記蓄電池群の一方の出力電極と他方の出力電極とにかけて上記蓄電池群の上方に配置されるプローブ移動用のガイドレールを有し、上記ガイドレールに上記電流供給プローブ、上記第1電圧検出プローブおよび上記第2電圧検出プローブが移動可能に支持されていることを特徴とする蓄電装置の測定装置。
In a measuring device for a power storage device that measures a power storage device including a storage battery group in which a plurality of storage batteries are connected in series,
An AC current source having a pair of current supply probes, an AC voltmeter having a pair of first voltage detection probes, and a DC voltmeter having a pair of second voltage detection probes,
The one output electrode and the other output electrode of the storage battery group are brought into contact with the current supply probe and the second voltage detection probe, respectively, and the alternating current source supplies the alternating current for measurement to the storage battery group. And measuring the DC voltage of the entire storage battery group with the DC voltmeter, the first voltage detection probe is sequentially and alternately contacted with the terminals of the individual storage batteries in the storage battery group, and the individual storage batteries are When measuring the internal resistance of
As the probe support means, at least one output electrode of the storage battery group and the other output electrode, has a guide rail for probe movement arranged above the storage battery group, the current supply probe on the guide rail, the A measuring device for a power storage device, wherein the first voltage detection probe and the second voltage detection probe are movably supported.
上記プローブ支持手段は、上記ガイドレールを上記各プローブが上記蓄電池群から離れる上昇位置と上記蓄電池群に接触する下降位置とに移動させる昇降手段を備えていることを特徴とする請求項に記載の蓄電装置の測定装置。 The probe support means according to claim 1, characterized in that the guide rails each probe provided with a lifting means for moving to the lowered position in contact with the raised position and the storage battery group away from the storage battery group Power storage device measuring device. 上記プローブ支持手段は、ともに一方の上記電流供給プローブと上記第2電圧検出プローブの2本のプローブを支持する第1プローブ支持部と、ともに他方の上記電流供給プローブと上記第2電圧検出プローブの2本のプローブを支持する第2プローブ支持部と、上記一方の第1電圧検出プローブを単独で支持する第3プローブ支持部と、上記他方の第1電圧検出プローブを単独で支持する第4プローブ支持部とをさらに備え、上記第1ないし第4の各プローブ支持部が上記ガイドレールに摺動可能に支持されていることを特徴とする請求項またはに記載の蓄電装置の測定装置。 The probe support means includes a first probe support portion that supports two probes of the current supply probe and the second voltage detection probe on one side, and a current supply probe and a second voltage detection probe of the other on the other side. A second probe support portion that supports two probes, a third probe support portion that independently supports the one first voltage detection probe, and a fourth probe that individually supports the other first voltage detection probe. The power storage device measuring apparatus according to claim 1 or 2 , further comprising a support portion, wherein each of the first to fourth probe support portions is slidably supported by the guide rail. 上記プローブ支持手段は、少なくとも上記第3プローブ支持部と上記第4プローブ支持部を上記ガイドレールに沿って個別に移動させるプローブ移動手段を備えていることを特徴とする請求項に記載の蓄電装置の測定装置。 The electricity storage device according to claim 3 , wherein the probe supporting means includes probe moving means for individually moving at least the third probe supporting portion and the fourth probe supporting portion along the guide rail. Measuring device of equipment. 上記プローブ移動手段が、上記ガイドレール側に形成されたラック歯と、上記プローブ支持部側に設けられたモータ駆動によるピニオン歯車とからなることを特徴とする請求項に記載の蓄電装置の測定装置。 The measurement of the power storage device according to claim 4 , wherein the probe moving means includes rack teeth formed on the guide rail side and a motor-driven pinion gear provided on the probe supporting portion side. apparatus. 上記プローブ移動手段が、上記ガイドレールの延在方向に沿って互いに平行となるように上記ガイドレールに配設された2つのボールねじからなり、上記第3プローブ支持部が上記一方のボールねじにより往復的に駆動され、上記第4プローブ支持部が上記他方のボールねじにより往復的に駆動されることを特徴とする請求項に記載の蓄電装置の測定装置。 The probe moving means is composed of two ball screws arranged on the guide rail so as to be parallel to each other along the extending direction of the guide rail, and the third probe support portion is formed by the one ball screw. The device for measuring a power storage device according to claim 4 , wherein the device is reciprocally driven, and the fourth probe support part is reciprocally driven by the other ball screw. 上記プローブ移動手段が、上記ガイドレールの延在方向に沿って上記ガイドレールに設けられた2つ移動テーブルを有するリニアモータテーブルからなり、上記一方の移動テーブルに上記第3プローブ支持部が搭載され、上記他方の移動テーブルに上記第4プローブ支持部が搭載されることを特徴とする請求項に記載の蓄電装置の測定装置。 The probe moving means comprises a linear motor table having two moving tables provided on the guide rail along the extending direction of the guide rail, and the one moving table is provided with the third probe support portion. The measuring device for a power storage device according to claim 4 , wherein the fourth probe support portion is mounted on the other moving table.
JP2016056551A 2016-03-22 2016-03-22 Power storage device measurement device Active JP6741448B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016056551A JP6741448B2 (en) 2016-03-22 2016-03-22 Power storage device measurement device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016056551A JP6741448B2 (en) 2016-03-22 2016-03-22 Power storage device measurement device

Publications (2)

Publication Number Publication Date
JP2017173012A JP2017173012A (en) 2017-09-28
JP6741448B2 true JP6741448B2 (en) 2020-08-19

Family

ID=59972949

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016056551A Active JP6741448B2 (en) 2016-03-22 2016-03-22 Power storage device measurement device

Country Status (1)

Country Link
JP (1) JP6741448B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7018374B2 (en) * 2018-03-09 2022-02-10 プライムアースEvエナジー株式会社 Electrode plate inspection device and electrode plate inspection method
WO2023277178A1 (en) * 2021-07-02 2023-01-05 日置電機株式会社 Impedance measurement system
JP7354356B1 (en) 2022-06-09 2023-10-02 日鉄テックスエンジ株式会社 Probe unit and charge/discharge inspection device
JP2024059344A (en) * 2022-10-18 2024-05-01 日置電機株式会社 Impedance measurement system and impedance measurement method
CN116203319B (en) * 2023-05-04 2023-08-08 山东恒圣石墨科技有限公司 Graphite electrode resistivity detection device

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3787405B2 (en) * 1996-02-16 2006-06-21 日置電機株式会社 Battery measuring device
JP3583303B2 (en) * 1998-11-10 2004-11-04 財団法人電力中央研究所 Charge / discharge control method and device for multi-stage connected secondary battery
JP2002134176A (en) * 2000-10-30 2002-05-10 Mikuni Kogyo:Kk Charge/discharge inspecting mechanism for lithium polymer battery
JP2003121516A (en) * 2001-10-09 2003-04-23 Furukawa Battery Co Ltd:The Measurement device for internal resistance of storage battery
JP2010078576A (en) * 2008-09-29 2010-04-08 Sumitomo Heavy Ind Ltd Inspection device of battery cell
JP5378099B2 (en) * 2009-08-07 2013-12-25 三洋電機株式会社 Capacity maintenance rate determination device, battery system, and electric vehicle including the same
JP5393838B2 (en) * 2012-05-11 2014-01-22 カルソニックカンセイ株式会社 Apparatus for estimating cell state of battery pack
CN103777149B (en) * 2014-01-25 2016-08-17 苏州菱欧自动化设备有限公司 A kind of battery checking machine
CN105093120B (en) * 2015-06-18 2017-12-12 浙江时空能源技术有限公司 Battery bag electric resistance welding detection means and its detection method
JP2017150838A (en) * 2016-02-22 2017-08-31 日置電機株式会社 Storage battery measurement method and measurement device

Also Published As

Publication number Publication date
JP2017173012A (en) 2017-09-28

Similar Documents

Publication Publication Date Title
JP6741448B2 (en) Power storage device measurement device
KR101736137B1 (en) Insulation voltage measuring apparatus of secondary battery in pressure conditions
US9140725B2 (en) Resistivity-measuring device
JP6097678B2 (en) Charge / discharge test equipment for detecting poor contact
JP2009276215A5 (en)
CN102466737A (en) Auxiliary detection jig
CN113866460A (en) Automatic safety standard test equipment of new forms of energy machine controller
CN212904991U (en) High-frequency transformer's test fixture
CN104698390B (en) Battery device for fast detecting and battery rapid detection system
TW201534945A (en) Inspection system for device to be tested, and method for operating inspection system for device to be tested
CN209542792U (en) A kind of electric automatization detector
CN115326884A (en) Testing device and evaluation method for resistivity of semiconductive rubber and plastic material
CN109521313B (en) Automatic electronic component testing mechanism
CN112305449A (en) Light-emitting element defect detection jig and screen short circuit detection method
CN212160004U (en) Circuit board detection machine
EP3114491B1 (en) Method and device for testing the connections of batteries
TW201525479A (en) Solar panel inspection machine table
CN207281173U (en) A kind of battery pack pad test contacts internal resistance detection instrument with two-sided three axis
CN209486219U (en) A kind of insulating tool defect detection platform
CN104360220A (en) Traffic PCB control circuit board variable range online testing device
CN207440211U (en) A kind of transformer performance test device
CN111624387A (en) Online current detection device and method for elastic clamp of vertical continuous plating line
JP5356749B2 (en) Substrate inspection apparatus and probe Z-axis offset acquisition method
CN215575377U (en) Testing device capable of testing static and dynamic capacitance
TW201428305A (en) Inspection method for test jig

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191218

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20191218

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200114

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200624

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200727

R150 Certificate of patent or registration of utility model

Ref document number: 6741448

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250