WO2018078790A1 - Inspection device, control system, and inspection method - Google Patents

Inspection device, control system, and inspection method Download PDF

Info

Publication number
WO2018078790A1
WO2018078790A1 PCT/JP2016/082040 JP2016082040W WO2018078790A1 WO 2018078790 A1 WO2018078790 A1 WO 2018078790A1 JP 2016082040 W JP2016082040 W JP 2016082040W WO 2018078790 A1 WO2018078790 A1 WO 2018078790A1
Authority
WO
WIPO (PCT)
Prior art keywords
communication line
unit
master device
signal
electrical characteristics
Prior art date
Application number
PCT/JP2016/082040
Other languages
French (fr)
Japanese (ja)
Inventor
利康 樋熊
幹滋 水野
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2018547023A priority Critical patent/JP6641502B2/en
Priority to PCT/JP2016/082040 priority patent/WO2018078790A1/en
Publication of WO2018078790A1 publication Critical patent/WO2018078790A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/50Testing of electric apparatus, lines, cables or components for short-circuits, continuity, leakage current or incorrect line connections
    • G01R31/54Testing for continuity

Definitions

  • the present invention relates to an inspection apparatus, a control system, and an inspection method.
  • an illumination system illumination control system
  • a master device as an example, a central control device
  • a slave device as an example, a wall switch or a relay terminal
  • the master device supplies a transmission signal that also serves as power supply to the communication line
  • the slave device for example, a wall switch
  • the master device supplies a transmission signal that also serves as power supply to the communication line
  • the slave device for example, a wall switch
  • there are a plurality of systems in an illumination system and one system is composed of one master device and a plurality of slave devices. Different systems operate in an electrically disconnected state.
  • Patent Document 1 discloses an invention of a circuit breaker inserted in a power supply path between a DC power source and a load.
  • Patent Document 1 The invention of Patent Document 1 is intended for short circuit protection due to erroneous connection, and an erroneous connection is detected after operation (energization).
  • the present invention has been made to solve the above-described problems, and provides an inspection apparatus, a control system, and an inspection method capable of appropriately inspecting whether or not there is a misconnection before operation. With the goal.
  • an inspection apparatus comprises: An inspection apparatus in a control system that should operate in a state where the first system and the second system are electrically disconnected from each other, A master device and a slave device are connected to each of the first and second systems via a communication line, and when the power is turned on, the master device supplies a transmission signal that also serves as power supply to the communication line, The slave device operates by receiving the transmission signal through the communication line, A measurement unit that measures electrical characteristics of the communication line in the first system in a state where the power is not turned on to the control system; In accordance with the electrical characteristics, a display unit that displays presence / absence of erroneous connection between the first system and the second system; Is provided.
  • the electrical characteristic for example, AC impedance
  • the first characteristic is determined according to the electrical characteristic. Whether or not there is a misconnection between the second system and the second system is displayed. As a result, it is possible to appropriately inspect for erroneous connection before operation.
  • the schematic diagram which shows an example of the whole structure of the illumination system which concerns on Embodiment 1 of this invention.
  • Schematic diagram for explaining an example of a transmission signal in a communication line 1 is a block diagram illustrating an example of a configuration of an inspection apparatus according to a first embodiment.
  • FIG. 1 is a schematic diagram illustrating an example of the overall configuration of a lighting system 1 according to Embodiment 1 of the present invention.
  • This lighting system 1 is divided into a plurality of systems (for example, A system and B system), and one master device 10 and a plurality of slave devices 20 are connected via a communication line 30 for each system. Yes.
  • the inspection device 40 is connected to the communication line 30 of one system (for example, the B system).
  • the A-system communication line 30 and the B-system communication line 30 should be operated in an electrically disconnected state, but as shown by the dotted line L, the systems are misconnected (incorrect wiring). It can happen.
  • lighting devices are connected to some slave devices 20 (relay terminals as an example).
  • the master device 10 is, for example, a central control device that stores the address of each slave device 20, and controls the slave device 20 via the communication line 30.
  • a transmission signal as shown in FIG. 2 flows through the communication line 30, and data is exchanged between the master device 10 and the slave device 20.
  • the master device 10 simultaneously performs power supply and signal transmission to the slave device 20 (for example, a wall switch) in a voltage mode of ⁇ 24V. That is, the master device 10 supplies a transmission signal that also serves as power supply to the communication line 30.
  • the transmission signal includes an address and control data (in the control mode), and the slave device 20 at the address destination operates according to the received control data.
  • the slave device 20 is, for example, a wall switch or a relay terminal, and operates by receiving the transmission signal of FIG. 2 sent from the master device 10 via the communication line 30. As described above, when the slave device 20 is a wall switch, power is supplied by this transmission signal. Further, when the slave device 20 is a relay terminal, the connection between a lighting device (not shown) and a power source is turned on / off according to the control data in the received transmission signal.
  • the communication line 30 is, for example, a two-wire transmission line, and a transmission signal as shown in FIG. Specifically, power supply and signal transmission are simultaneously performed from the master device 10 to the slave device 20 (for example, a wall switch) in the voltage mode. In addition, a reply is made from the slave device 20 to the master device 10 in the current mode.
  • the slave device 20 for example, a wall switch
  • the inspection device 40 inspects whether there is an erroneous connection between systems before the lighting system 1 is turned on (before operation). For example, an operator may mistakenly connect the A-system communication line 30 and the B-system communication line 30 as indicated by a dotted line L during construction of the lighting system 1. If the lighting system 1 is turned on in this state, the power supply of both master devices 10 is short-circuited, and the device in the output part is destroyed or is subjected to electrical stress and fails after operation. As a result, communication failure occurs.
  • the inspection apparatus 40 measures the electrical characteristics (for example, AC impedance) of the communication line 30 for the connected system (for example, the B system) before turning on the power in the illumination system 1, and uses the measured value as the measured value. Check for incorrect connections accordingly.
  • electrical characteristics for example, AC impedance
  • FIG. 3 is a block diagram showing an example of the configuration of the inspection apparatus 40 according to Embodiment 1 of the present invention.
  • the inspection device 40 includes an input unit 41, a threshold generation unit 42, a measurement unit 43, a determination unit 44, and a display unit 45.
  • the threshold generation unit 42 and the determination unit 44 are realized by, for example, a microcomputer including a CPU (Central Processing Unit), a ROM (Read Only Memory), and a RAM (Random Access Memory). That is, the functions of the threshold generation unit 42 and the determination unit 44 are realized by the CPU using the RAM as a work memory and appropriately executing various programs stored in the ROM.
  • a microcomputer including a CPU (Central Processing Unit), a ROM (Read Only Memory), and a RAM (Random Access Memory). That is, the functions of the threshold generation unit 42 and the determination unit 44 are realized by the CPU using the RAM as a work memory and appropriately executing various programs stored in the ROM.
  • the input unit 41 is, for example, a switch or an operation key, and the types of devices (models) that configure a system (for example, system B) connected to the inspection apparatus 40 by a user (for example, an operator or an inspector). ) And device information such as the number of devices. Instead of the model, the input unit 41 may input information that defines the physical layer, such as the RS485 standard. In addition, the input unit 41 may input start information for instructing the start of the inspection. In this case, in response to the input start information, the measurement unit 43 starts measuring electrical characteristics. In response to the device information being input to the input unit 41, the measurement unit 43 may start measuring the electrical characteristics.
  • the threshold value generation unit 42 generates a threshold value for determining whether or not there is a misconnection according to the device information input from the input unit 41. Specifically, the threshold value generation unit 42 stores in advance information obtained by measuring impedances of devices (master device 10 and slave device 20) of each model (model F and model M as an example) as illustrated in FIG. is doing.
  • the impedance of each device shown in FIG. 4 is a value measured by flowing an AC signal of 10 KHz as an example.
  • the impedance is not limited to 10 KHz and may be measured by generating an AC signal of another frequency, but considering the influence on the transmission characteristics of the communication line 30, a range of about 1 to 10 KHz is desirable.
  • the threshold generation unit 42 generates a parallel circuit model as shown in FIG. 5 based on the impedance of each device. Specifically, the threshold value generation unit 42 obtains a composite impedance according to device information (for example, model and number of units) constituting one system by the following Expression 1.
  • Zc (Zs ⁇ Zp / N) / (Zs + (Zp / N)) (Formula 1)
  • Zc synthetic impedance
  • Zs impedance of master device
  • Zp impedance of slave device N: number of slave devices
  • FIG. 6 is a graph showing, as an example, the characteristics of the synthetic impedance in a system (a normal system and an erroneous connection system) composed of model F equipment.
  • a curve C ⁇ b> 1 indicates a change in synthetic impedance (change according to the number) in a normal system.
  • other curves in FIG. 6 indicate changes in the combined impedance in the erroneous connection system.
  • the curve C1 is far from the maximum value (about 1080 ⁇ ) of the combined impedance in the erroneous connection system, even if the number increases to 50, the combined impedance does not fall below 1500 ⁇ .
  • the threshold value generation unit 42 stores 1200 ⁇ as a threshold value in association with the model F.
  • FIG. 7 is a graph showing the characteristics of the composite impedance in a system (a normal system and an erroneous connection system) composed of model M devices as an example.
  • a curve C ⁇ b> 2 indicates a change in synthetic impedance (change according to the number) in a normal system.
  • the other curves in FIG. 7 indicate changes in the combined impedance in the erroneous connection system.
  • the number of curves C2 increases, the combined impedance falls below the maximum value of the combined impedance in the erroneously connected system. Therefore, unlike the model F, a threshold value depending on the number is required. Therefore, as shown in FIG.
  • the threshold value generator 42 obtains a curve C3 (approximate curve) that approximates the curve C2, adjusts the offset value of the curve C3, and thus combines the normal system impedance (that is, the curve).
  • a curve C4 between C2) and the combined impedance of the misconnected system is obtained.
  • the curve C3 is represented by the following formula 2
  • the curve C4 is represented by the following formula 3.
  • the threshold value generation unit 42 stores Equation 3 in association with the model M in order to generate a threshold value.
  • the threshold value generating unit 42 that stores the threshold values and Equation 3 as described above is a threshold value for determining the presence / absence of an erroneous connection according to the device information (for example, the model and the number of units) input from the input unit 41. Is generated. For example, when the model F is input from the input unit 41, the threshold value generation unit 42 generates 1200 ⁇ as the threshold value regardless of the number (the input of the number may be omitted). In addition, when the model M is input from the input unit 41 and 30 units are input, the threshold value generation unit 42 generates 12060 ⁇ as the threshold value from Equation 3.
  • the measurement unit 43 measures the electrical characteristics of the communication line 30 for the connected system (for example, the B system).
  • the measurement unit 43 includes a signal generation unit 431, a voltage measurement unit 432, and a current measurement unit 433.
  • the signal generator 431 generates an AC signal of 10 KHz as an example.
  • the AC signal to be generated is not limited to 10 KHz, but as described above, the range of about 1 to 10 KHz is desirable in consideration of the influence on the transmission characteristics of the communication line 30.
  • the generated AC signal is supplied to the B-system communication line 30 through the terminal T.
  • the voltage measurement unit 432 measures the voltage of the communication line 30 in a state where the signal generation unit 431 generates an AC signal.
  • the current measuring unit 433 measures the current of the communication line 30 through the current transformer CT in a state where the signal generating unit 431 generates an AC signal.
  • the measurement unit 43 having such a configuration measures the AC impedance of the communication line 30 from the voltage measured by the voltage measurement unit 432 and the current measured by the current measurement unit 433. In this way, when the measurement of the AC impedance is finished, the signal generation unit 431 stops the generation of the AC signal, and the voltage measurement unit 432 and the current measurement unit 433 end the measurement.
  • the determination unit 44 determines whether or not there is a misconnection based on the AC impedance measured by the measurement unit 43 and the threshold value generated by the threshold value generation unit 42. That is, if the measured AC impedance is equal to or greater than the threshold value, the determination unit 44 determines that there is no erroneous connection. On the other hand, if the measured AC impedance is less than the threshold value, the determination unit 44 determines that there is an erroneous connection.
  • the display unit 45 includes a liquid crystal display device as an example, and displays a determination result by the determination unit 44. That is, the presence / absence of erroneous connection is displayed. It should be noted that instead of the display unit 45 or in addition to the display unit 45, when a sound generation unit including a buzzer or a speaker is provided, a notification sound corresponding to the determination result by the determination unit 44 may be output. Good.
  • FIG. 9 is a flowchart illustrating an example of the inspection process according to the first embodiment of the present invention. This inspection process is started before the lighting system 1 is powered on.
  • the inspection device 40 acquires device information in accordance with a user input operation (step S101). That is, the input unit 41 inputs device information such as the type (model) and the number of devices constituting a system (for example, the B system) connected to the inspection apparatus 40 in accordance with a user's operation of switches and operation keys.
  • the input unit 41 inputs device information such as the type (model) and the number of devices constituting a system (for example, the B system) connected to the inspection apparatus 40 in accordance with a user's operation of switches and operation keys.
  • the inspection device 40 generates a threshold value (step S102). That is, the threshold value generation unit 42 generates a threshold value for determining the presence or absence of an erroneous connection according to the device information (for example, the model or the number of units) input from the input unit 41. For example, when the model F is input from the input unit 41, the threshold value generation unit 42 generates 1200 ⁇ as the threshold value regardless of the number (the input of the number may be omitted). In addition, when the model M is input from the input unit 41 and the number of 30 units is input, the threshold value generation unit 42 generates 12060 ⁇ as the threshold value from Equation 3 described above.
  • the inspection device 40 outputs a small amplitude AC signal (step S103). That is, the signal generator 431 generates, for example, a 10 KHz AC signal and supplies it to the B-system communication line 30.
  • the inspection apparatus 40 performs impedance measurement (step S104). That is, in the state where the signal generation unit 431 generates an AC signal, the voltage measurement unit 432 measures the voltage of the communication line 30, and the current measurement unit 433 transmits the current of the communication line 30 through the current transformer CT. Measure current. And the measurement part 43 measures the alternating current impedance of the communication line 30 from the measured voltage and electric current.
  • the inspection device 40 determines whether or not there is a misconnection according to the measured impedance (step S105). That is, the determination unit 44 determines whether or not there is a misconnection based on the AC impedance measured by the measurement unit 43 and the threshold value generated by the threshold value generation unit 42. That is, if the measured AC impedance is equal to or greater than the threshold value, the determination unit 44 determines that there is no erroneous connection. On the other hand, if the measured AC impedance is less than the threshold value, the determination unit 44 determines that there is an erroneous connection.
  • the inspection device 40 displays the determination result (step S106). That is, the display unit 45 displays the determination result by the determination unit 44. That is, the presence / absence of erroneous connection is displayed.
  • the AC impedance of the communication line 30 in the system (for example, the B system) to which the inspection apparatus 40 is connected is measured in a state where the lighting system 1 is not turned on. And whether there is an erroneous connection between the systems is determined based on the threshold value corresponding to the device information. As a result, it is possible to appropriately inspect for erroneous connection before operation.
  • FIG. 10 is a schematic diagram showing an example of the overall configuration of the illumination system 2 according to Embodiment 2 of the present invention.
  • the illumination system 2 is also divided into a plurality of systems (for example, A system and B system), and one master device 50 and a plurality of slave devices 20 are connected to the communication line. 30 is connected.
  • the slave device 20 and the communication line 30 are the same as those in the first embodiment.
  • the A-system communication line 30 and the B-system communication line 30 should be operated in an electrically disconnected state. May be erroneously connected (incorrect wiring). As in the first embodiment, although omitted in FIG. 10, it is assumed that lighting devices are connected to some slave devices 20 (relay terminals as an example).
  • the master device 50 is, for example, a central control device, and controls the slave device 20 via the communication line 30.
  • the master device 50 incorporates the function of the inspection device 40 in the first embodiment.
  • FIG. 11 is a block diagram showing an example of the configuration of the master device 50 according to the second embodiment of the present invention.
  • the master device 50 includes an input unit 41, a threshold generation unit 42, a measurement unit 43, a determination unit 44, and a display unit 45 in addition to the control unit 51 and the communication processing unit 52. Prepare. These input unit 41 to display unit 45 have the same configuration as the inspection apparatus 40 in the first embodiment.
  • the control unit 51 controls the entire master device 50. For example, before operating the communication processing unit 52, the control unit 51 operates the measurement unit 43 and the determination unit 44 to inspect whether there is an erroneous connection. When it is determined that there is an erroneous connection, the control unit 51 does not operate the communication processing unit 52.
  • the communication processing unit 52 is controlled by the control unit 51 and transmits the transmission signal as shown in FIG. 2 to the communication line 30 to supply power to the slave device 20 (for example, a wall switch) and signal transmission. Do it at the same time. Note that the communication processing unit 52 operates only when the measurement unit 43 or the determination unit 44 determines that there is no erroneous connection.
  • FIG. 12 is a flowchart illustrating an example of a preliminary inspection process according to the second embodiment of the present invention. This pre-inspection process is started, for example, when the master device 50 is powered on. It is assumed that device information is input to the input unit 41 in advance by the user.
  • the master device 50 waits for a random time to elapse (step S201). That is, the control part 51 produces
  • the master device 50 When the standby for the random time is finished, the master device 50 outputs a small amplitude AC signal (step S202). That is, the signal generator 431 generates, for example, a 10 KHz AC signal and supplies it to the B-system communication line 30.
  • the master device 50 performs impedance measurement (step S203). That is, in the state where the signal generation unit 431 generates an AC signal, the voltage measurement unit 432 measures the voltage of the communication line 30, and the current measurement unit 433 transmits the current of the communication line 30 through the current transformer CT. Measure current. And the measurement part 43 measures the alternating current impedance of the communication line 30 from the measured voltage and electric current.
  • the master device 50 determines whether or not the measured impedance is greater than or equal to a threshold value (step S204). That is, the threshold generation unit 42 generates a threshold for determining the presence or absence of an erroneous connection according to the device information (for example, the model or the number of units) input from the input unit 41.
  • the determination unit 44 It is determined whether or not the AC impedance measured by the measurement unit 43 is equal to or greater than this threshold value.
  • the master device 50 determines that the measured impedance is greater than or equal to the threshold (step S204; Yes), it displays a normal message (step S205). That is, the display unit 45 displays a normal message indicating that there is no erroneous connection. Then, the master device 50 ends the preliminary inspection normally, and starts communication with the slave device 20. That is, the control unit 51 operates the communication processing unit 52 to transmit the transmission signal as shown in FIG.
  • step S204 when it is determined that the measured impedance is not equal to or higher than the threshold (less than the threshold) (step S204; No), the master device 50 displays an alert message (step S206). That is, the display unit 45 displays an alert message indicating that there is an erroneous connection. Then, the master device 50 ends the preliminary inspection abnormally and stops the operation as it is. That is, the control unit 51 stops the processing without operating the communication processing unit 52.
  • the AC impedance of the communication line 30 is measured before the lighting system 2 is actually operated, and based on the AC impedance and the threshold value corresponding to the device information, the erroneous connection between the systems is measured. Presence / absence is determined. As a result, it is possible to appropriately inspect for erroneous connection before operation.
  • the presence / absence of an erroneous connection has been examined. However, if there is an erroneous connection, the distance to the location may be obtained. For example, when determining that there is an erroneous connection, the determination unit 44 obtains the distance to the erroneous connection by a TDR (Time Domain Refrectometer) technique.
  • TDR Time Domain Refrectometer
  • the measurement unit 43 applies a high-speed pulse signal from the signal generation unit 431 to the communication line 30 and measures the time of the reflected waveform that is returned, thereby obtaining the distance to the erroneous connection location.
  • the display unit 45 displays the determination result and the distance (if there is an erroneous connection) to the location of the erroneous connection.
  • the lighting systems 1 and 2 have been described as specific examples of the control system, but the present invention can be applied to other control systems as appropriate.
  • the present invention can be similarly applied to an air conditioning system or a ventilation system including the master device 10 and a plurality of slave devices 20.
  • the programs executed by the microcomputer that implements the threshold generation unit 42 and the determination unit 44 are CD-ROM (Compact / Disc / Read / Only / Memory), DVD (Digital / Versatile / Disc), MO (Magneto-Optical). Disk), USB memory, memory card, etc. can also be stored and distributed in a computer-readable recording medium. Then, by installing such a program on a specific or general-purpose computer, it is possible to cause the computer to function as the threshold value generation unit 42 or the determination unit 44 in the above-described embodiment.
  • the above program may be stored in a disk device included in a server device on a communication network such as the Internet, and may be downloaded onto a computer by being superimposed on a carrier wave, for example.
  • the above-described processing can also be achieved by starting and executing a program while transferring it via a communication network.
  • the above-described processing can also be achieved by executing all or part of the program on the server device and executing the program while the computer transmits and receives information regarding the processing via the communication network.
  • the present invention can be suitably employed in an inspection apparatus, a control system, and an inspection method capable of appropriately inspecting whether or not there is a misconnection before operation.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Testing Of Short-Circuits, Discontinuities, Leakage, Or Incorrect Line Connections (AREA)
  • Circuit Arrangement For Electric Light Sources In General (AREA)
  • Measurement Of Resistance Or Impedance (AREA)
  • Locating Faults (AREA)

Abstract

An input unit (41) inputs machine information (e.g., type of machine or number of machines) for machines constituting a system to be inspected. A threshold value generation unit (42) generates, in accordance with the machine information inputted by the input unit (41), a threshold value for determining whether there is an improper connection. A measurement unit (43) measures the electrical characteristics (e.g., AC impedance) of a communication line in the system to be inspected, in a state in which no power is supplied to an illumination system. A determination unit (44) determines, on the basis of the electrical characteristics measured by the measurement unit (43) and the threshold value generated by the threshold value generation unit (42), whether there is an improper connection between systems. A display unit (45) displays the determination result from the determination unit (44).

Description

検査装置、制御システム、および、検査方法Inspection device, control system, and inspection method
 本発明は、検査装置、制御システム、および、検査方法に関する。 The present invention relates to an inspection apparatus, a control system, and an inspection method.
 従来より、ビルや工場に代表される建物内には、各種の制御システムが導入されている。例えば、照明システム(照明制御システム)では、マスタ機器(一例として、中央制御装置)と、スレーブ機器(一例として、壁スイッチやリレー端末)とが、通信線を介して接続されている。なお、マスタ機器は、給電を兼ねた伝送信号を通信線に供給し、スレーブ機器(一例として、壁スイッチ)は、この伝送信号を通信線を通じて受信することにより動作する。一般に、照明システム内には、複数の系が存在し、1つの系は、1つのマスタ機器と複数のスレーブ機器とから構成されている。そして、異なる系同士は、電気的に非接続な状態で稼働するようになっている。 Conventionally, various control systems have been introduced in buildings such as buildings and factories. For example, in an illumination system (illumination control system), a master device (as an example, a central control device) and a slave device (as an example, a wall switch or a relay terminal) are connected via a communication line. Note that the master device supplies a transmission signal that also serves as power supply to the communication line, and the slave device (for example, a wall switch) operates by receiving this transmission signal through the communication line. In general, there are a plurality of systems in an illumination system, and one system is composed of one master device and a plurality of slave devices. Different systems operate in an electrically disconnected state.
 このような照明システムにおいて、例えば、施工時に作業者が誤って系同士を接続してしまうこともある。この状態で照明システムに電源を投入してしまうと、双方のマスタ機器の電源が短絡状態となり、出力部分のデバイスが破壊されたり、あるいは、電気的なストレスを受けて運用後に故障し易くなり、結果として、通信不良が生じることとなる。 In such a lighting system, for example, an operator may mistakenly connect the systems during construction. If the lighting system is turned on in this state, the power supply of both master devices will be short-circuited, the device in the output part will be destroyed, or it will be susceptible to failure after operation due to electrical stress, As a result, communication failure occurs.
 なお、誤接続(誤結線)に対応するための先行技術として、特許文献1には、直流電源と負荷との間の給電路に挿入される回路遮断器の発明が開示されている。 In addition, as a prior art for dealing with erroneous connection (incorrect connection), Patent Document 1 discloses an invention of a circuit breaker inserted in a power supply path between a DC power source and a load.
特許第5043642号公報Japanese Patent No. 5043642
 特許文献1の発明は、誤接続による短絡保護を目的としており、稼働(通電)後に、誤接続が検出されるようになっている。 The invention of Patent Document 1 is intended for short circuit protection due to erroneous connection, and an erroneous connection is detected after operation (energization).
 しかしながら、照明システムに代表される制御システムにおいては、多数の機器が接続されるため、回路遮断器や誤接続検出部に相当するものを各機器に組み入れると、コストが大幅に上昇することが懸念される。また、制御システムにおいては、施工時に、建物内の全てに電源が供給されていない場合もあり、稼働前に、誤接続の有無を検査することのできる技術が求められていた。 However, since a large number of devices are connected in a control system represented by a lighting system, there is a concern that the cost may be significantly increased if a device corresponding to a circuit breaker or an erroneous connection detector is incorporated in each device. Is done. In addition, in the control system, there is a case where power is not supplied to the entire building at the time of construction, and a technique capable of inspecting whether or not there is a misconnection before the operation has been demanded.
 本発明は、上述のような課題を解決するためになされたものであり、稼働前に、誤接続の有無を適切に検査することのできる検査装置、制御システム、および、検査方法を提供することを目的とする。 The present invention has been made to solve the above-described problems, and provides an inspection apparatus, a control system, and an inspection method capable of appropriately inspecting whether or not there is a misconnection before operation. With the goal.
 上記目的を達成するため、本発明に係る検査装置は、
 第1の系と第2の系とが電気的に非接続な状態で稼働すべき制御システムにおける検査装置であって、
 前記第1及び第2の系にはそれぞれ通信線を介してマスタ機器とスレーブ機器とが接続され、電源が投入されると当該マスタ機器が給電を兼ねた伝送信号を当該通信線に供給し、当該スレーブ機器が当該通信線を通じて当該伝送信号を受信して動作するものであり、
 前記制御システムに電源が投入されていない状態で、前記第1の系における前記通信線の電気特性を計測する計測部と、
 前記電気特性に応じて、前記第1の系と前記第2の系との誤接続の有無を表示する表示部と、
 を備える。
In order to achieve the above object, an inspection apparatus according to the present invention comprises:
An inspection apparatus in a control system that should operate in a state where the first system and the second system are electrically disconnected from each other,
A master device and a slave device are connected to each of the first and second systems via a communication line, and when the power is turned on, the master device supplies a transmission signal that also serves as power supply to the communication line, The slave device operates by receiving the transmission signal through the communication line,
A measurement unit that measures electrical characteristics of the communication line in the first system in a state where the power is not turned on to the control system;
In accordance with the electrical characteristics, a display unit that displays presence / absence of erroneous connection between the first system and the second system;
Is provided.
 本発明に係る検査装置では、制御システムに電源が投入されていない状態で、第1の系における通信線の電気特性(一例として、交流インピーダンス)を計測し、この電気特性に応じて、第1の系と第2の系との誤接続の有無を表示する。この結果、稼働前に、誤接続の有無を適切に検査することができる。 In the inspection apparatus according to the present invention, the electrical characteristic (for example, AC impedance) of the communication line in the first system is measured in a state where the power is not turned on to the control system, and the first characteristic is determined according to the electrical characteristic. Whether or not there is a misconnection between the second system and the second system is displayed. As a result, it is possible to appropriately inspect for erroneous connection before operation.
本発明の実施形態1に係る照明システムの全体構成の一例を示す模式図The schematic diagram which shows an example of the whole structure of the illumination system which concerns on Embodiment 1 of this invention. 通信線における伝送信号の一例を説明するための模式図Schematic diagram for explaining an example of a transmission signal in a communication line 実施形態1に係る検査装置の構成の一例を示すブロック図1 is a block diagram illustrating an example of a configuration of an inspection apparatus according to a first embodiment. 各機器の入力インピーダンスの違いを示すグラフGraph showing the difference in input impedance of each device 合成インピーダンスを求めるための並列回路モデルを説明するための模式図Schematic diagram for explaining the parallel circuit model for determining the composite impedance 機種Fの機器から構成される系(正常の系及び誤接続の系)における合成インピーダンスの特性を示すグラフA graph showing the characteristics of the combined impedance in systems composed of model F equipment (normal systems and misconnected systems) 機種Mの機器から構成される系(正常の系及び誤接続の系)における合成インピーダンスの特性を示すグラフA graph showing the characteristics of the combined impedance in a system composed of devices of model M (normal system and erroneous connection system) 機種Mの機器から構成される系における閾値を説明するためのグラフA graph for explaining a threshold in a system composed of devices of model M 本発明の実施形態1に係る検査処理を説明するためのフローチャートThe flowchart for demonstrating the inspection process which concerns on Embodiment 1 of this invention. 本発明の実施形態2に係る照明システムの全体構成の一例を示す模式図The schematic diagram which shows an example of the whole structure of the illumination system which concerns on Embodiment 2 of this invention. 実施形態2に係る検査装置の構成の一例を示すブロック図The block diagram which shows an example of a structure of the inspection apparatus which concerns on Embodiment 2. 本発明の実施形態2に係る事前検査処理を説明するためのフローチャートThe flowchart for demonstrating the preliminary inspection process which concerns on Embodiment 2 of this invention.
 以下、本発明の実施形態について、図面を参照しながら詳細に説明する。なお、図中同一または相当部分には同一符号を付す。以下では、制御システムの具体例として、本発明が照明システム(照明制御システム)に適用される場合について説明するが、後述するように、他の制御システムにおいても同様に本発明を適用することができる。すなわち、以下に説明する実施形態は説明のためのものであり、本発明の範囲を制限するものではない。従って、当業者であればこれらの各要素または全要素をこれと均等なものに置換した実施形態を採用することが可能であるが、これらの実施形態も本発明の範囲に含まれる。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. In the drawings, the same or corresponding parts are denoted by the same reference numerals. In the following, a case where the present invention is applied to a lighting system (lighting control system) will be described as a specific example of the control system. However, as will be described later, the present invention can be similarly applied to other control systems. it can. That is, the embodiment described below is for explanation, and does not limit the scope of the present invention. Therefore, those skilled in the art can employ embodiments in which each or all of these elements are replaced with equivalent ones, and these embodiments are also included in the scope of the present invention.
(実施形態1)
 図1は、本発明の実施形態1に係る照明システム1の全体構成の一例を示す模式図である。この照明システム1は、複数の系(一例として、A系,B系)に分かれており、系単位に1つのマスタ機器10と複数のスレーブ機器20とが、通信線30を介して接続されている。そして、1つの系(一例として、B系)の通信線30に検査装置40が接続されている。
(Embodiment 1)
FIG. 1 is a schematic diagram illustrating an example of the overall configuration of a lighting system 1 according to Embodiment 1 of the present invention. This lighting system 1 is divided into a plurality of systems (for example, A system and B system), and one master device 10 and a plurality of slave devices 20 are connected via a communication line 30 for each system. Yes. The inspection device 40 is connected to the communication line 30 of one system (for example, the B system).
 なお、A系の通信線30とB系の通信線30とは、電気的に非接続な状態で稼働すべきであるが、点線Lにて示すように、系同士が誤接続(誤配線)されてしまうことも起こり得る。 The A-system communication line 30 and the B-system communication line 30 should be operated in an electrically disconnected state, but as shown by the dotted line L, the systems are misconnected (incorrect wiring). It can happen.
 また、図1では省略しているが、幾つかのスレーブ機器20(一例として、リレー端末)には、照明器具が接続されているものとする。 Further, although omitted in FIG. 1, it is assumed that lighting devices are connected to some slave devices 20 (relay terminals as an example).
 マスタ機器10は、例えば、各スレーブ機器20のアドレスを記憶した中央制御装置であり、通信線30を介してスレーブ機器20を制御する。一例として、通信線30には、図2に示すような伝送信号が流れ、マスタ機器10とスレーブ機器20との間でデータのやり取りが行われる。具体的に、マスタ機器10は、±24Vの電圧モードで、スレーブ機器20(一例として、壁スイッチ)への電源供給と信号送信とを同時に行う。つまり、マスタ機器10は、給電を兼ねた伝送信号を通信線30に供給する。また、この伝送信号には、アドレスや制御データが含まれており(制御モードの場合)、アドレス先のスレーブ機器20は、受信した制御データに応じて動作するようになっている。 The master device 10 is, for example, a central control device that stores the address of each slave device 20, and controls the slave device 20 via the communication line 30. As an example, a transmission signal as shown in FIG. 2 flows through the communication line 30, and data is exchanged between the master device 10 and the slave device 20. Specifically, the master device 10 simultaneously performs power supply and signal transmission to the slave device 20 (for example, a wall switch) in a voltage mode of ± 24V. That is, the master device 10 supplies a transmission signal that also serves as power supply to the communication line 30. The transmission signal includes an address and control data (in the control mode), and the slave device 20 at the address destination operates according to the received control data.
 スレーブ機器20は、例えば、壁スイッチやリレー端末であり、通信線30を介して、マスタ機器10から送られる図2の伝送信号を受信して動作する。なお、上述したように、スレーブ機器20が壁スイッチである場合に、この伝送信号によって、電源供給もなされる。また、スレーブ機器20がリレー端末である場合に、受信した伝送信号における制御データに従って、図示せぬ照明器具と電源との接続をオン・オフする。 The slave device 20 is, for example, a wall switch or a relay terminal, and operates by receiving the transmission signal of FIG. 2 sent from the master device 10 via the communication line 30. As described above, when the slave device 20 is a wall switch, power is supplied by this transmission signal. Further, when the slave device 20 is a relay terminal, the connection between a lighting device (not shown) and a power source is turned on / off according to the control data in the received transmission signal.
 通信線30は、例えば、2線式の伝送線であり、上述した図2に示すような伝送信号が流れる。具体的に、マスタ機器10からスレーブ機器20(一例として、壁スイッチ)へは、電圧モードにて、電源供給と信号送信とが同時に行われる。また、スレーブ機器20からマスタ機器10へは、電流モードにて、返信が行われる。 The communication line 30 is, for example, a two-wire transmission line, and a transmission signal as shown in FIG. Specifically, power supply and signal transmission are simultaneously performed from the master device 10 to the slave device 20 (for example, a wall switch) in the voltage mode. In addition, a reply is made from the slave device 20 to the master device 10 in the current mode.
 検査装置40は、照明システム1の電源投入前(稼働前)に、系同士の誤接続の有無を検査する。例えば、照明システム1の施工時に作業者が誤って、点線Lにて示すように、A系の通信線30とB系の通信線30とを誤接続してしまうことも起こり得る。この状態で照明システム1に電源を投入してしまうと、双方のマスタ機器10の電源が短絡状態となり、出力部分のデバイスが破壊されたり、あるいは、電気的なストレスを受けて、運用後に故障し易くなり、結果として、通信不良が生じることとなる。 The inspection device 40 inspects whether there is an erroneous connection between systems before the lighting system 1 is turned on (before operation). For example, an operator may mistakenly connect the A-system communication line 30 and the B-system communication line 30 as indicated by a dotted line L during construction of the lighting system 1. If the lighting system 1 is turned on in this state, the power supply of both master devices 10 is short-circuited, and the device in the output part is destroyed or is subjected to electrical stress and fails after operation. As a result, communication failure occurs.
 そのため、検査装置40は、照明システム1における電源投入前に、接続された系(一例として、B系)について、通信線30の電気特性(一例として、交流インピーダンス)を計測し、その計測値に応じて誤接続の有無を検査する。 Therefore, the inspection apparatus 40 measures the electrical characteristics (for example, AC impedance) of the communication line 30 for the connected system (for example, the B system) before turning on the power in the illumination system 1, and uses the measured value as the measured value. Check for incorrect connections accordingly.
 このような検査装置40の詳細について、図3を参照して説明する。図3は、本発明の実施形態1に係る検査装置40の構成の一例を示すブロック図である。図示するように、検査装置40は、入力部41と、閾値生成部42と、計測部43と、判定部44と、表示部45とを備える。なお、閾値生成部42及び判定部44は、一例として、CPU(Central Processing Unit)、ROM(Read Only Memory)、及び、RAM(Random Access Memory)を備えたマイコンにより実現される。つまり、CPUが、RAMをワークメモリとして用い、ROMに記憶されている各種プログラムを適宜実行することにより、閾値生成部42及び判定部44の機能が実現される。 Details of such an inspection apparatus 40 will be described with reference to FIG. FIG. 3 is a block diagram showing an example of the configuration of the inspection apparatus 40 according to Embodiment 1 of the present invention. As illustrated, the inspection device 40 includes an input unit 41, a threshold generation unit 42, a measurement unit 43, a determination unit 44, and a display unit 45. Note that the threshold generation unit 42 and the determination unit 44 are realized by, for example, a microcomputer including a CPU (Central Processing Unit), a ROM (Read Only Memory), and a RAM (Random Access Memory). That is, the functions of the threshold generation unit 42 and the determination unit 44 are realized by the CPU using the RAM as a work memory and appropriately executing various programs stored in the ROM.
 入力部41は、例えば、スイッチや操作キーであり、ユーザ(一例として、作業者や検査者)が、検査装置40に接続された系(一例として、B系)を構成する機器の種類(機種)や台数といった機器情報を入力する。なお、機種の代わりに、入力部41は、RS485規格といった物理層を規定する情報を入力してもよい。この他にも、入力部41は、検査の開始を指示する開始情報を入力してもよい。この場合、入力された開始情報に応答して、計測部43が、電気特性の計測を開始する。なお、入力部41に機器情報が入力されたことに応答して、計測部43が、電気特性の計測を開始してもよい。 The input unit 41 is, for example, a switch or an operation key, and the types of devices (models) that configure a system (for example, system B) connected to the inspection apparatus 40 by a user (for example, an operator or an inspector). ) And device information such as the number of devices. Instead of the model, the input unit 41 may input information that defines the physical layer, such as the RS485 standard. In addition, the input unit 41 may input start information for instructing the start of the inspection. In this case, in response to the input start information, the measurement unit 43 starts measuring electrical characteristics. In response to the device information being input to the input unit 41, the measurement unit 43 may start measuring the electrical characteristics.
 閾値生成部42は、入力部41から入力された機器情報に応じて、誤接続の有無を判定するための閾値を生成する。具体的に、閾値生成部42は、予め、図4に示すような各機種(一例として、機種F及び機種M)の機器(マスタ機器10及びスレーブ機器20)のインピーダンスをそれぞれ計測した情報を記憶している。この図4に示す各機器のインピーダンスは、一例として、10KHzの交流信号を流して計測した値である。なお、10KHzに限られず、他の周波数の交流信号を生成させてインピーダンスを計測しても良いが、通信線30の伝送特性への影響を考慮すると、1~10KHz程度の範囲が望ましい。 The threshold value generation unit 42 generates a threshold value for determining whether or not there is a misconnection according to the device information input from the input unit 41. Specifically, the threshold value generation unit 42 stores in advance information obtained by measuring impedances of devices (master device 10 and slave device 20) of each model (model F and model M as an example) as illustrated in FIG. is doing. The impedance of each device shown in FIG. 4 is a value measured by flowing an AC signal of 10 KHz as an example. The impedance is not limited to 10 KHz and may be measured by generating an AC signal of another frequency, but considering the influence on the transmission characteristics of the communication line 30, a range of about 1 to 10 KHz is desirable.
 閾値生成部42は、このような各機器のインピーダンスを基に、図5に示すような並列回路モデルを生成する。具体的には、以下の式1により、閾値生成部42は、1つの系を構成する機器情報(一例として、機種及び台数)に応じた合成インピーダンスを求めておく。 The threshold generation unit 42 generates a parallel circuit model as shown in FIG. 5 based on the impedance of each device. Specifically, the threshold value generation unit 42 obtains a composite impedance according to device information (for example, model and number of units) constituting one system by the following Expression 1.
 Zc=(Zs×Zp/N)/(Zs+(Zp/N)) ・・・(式1)
 Zc:合成インピーダンス
 Zs:マスタ機器のインピーダンス
 Zp:スレーブ機器のインピーダンス
 N:スレーブ機器の台数
Zc = (Zs × Zp / N) / (Zs + (Zp / N)) (Formula 1)
Zc: synthetic impedance Zs: impedance of master device Zp: impedance of slave device N: number of slave devices
 図6は、一例として、機種Fの機器から構成される系(正常の系及び誤接続の系)における合成インピーダンスの特性を示すグラフである。図6において、曲線C1は、正常の系における合成インピーダンスの変化(台数に応じた変化)を示している。また、図6におけるその他の曲線は、誤接続の系における合成インピーダンスの変化を示している。図示するように、曲線C1は、台数が50台まで増えても、合成インピーダンスが1500Ωを下回らず、誤接続の系における合成インピーダンスの最大値(1080Ω程度)とは大きく離れている。これにより、機種Fの機器から構成される系の場合、構成する台数に依らず、一例として、インピーダンスが1200Ω以上であれば、誤接続がないと判定可能となる。逆に、インピーダンスが1200Ω未満であれば、誤接続があると判定可能となる。そのため、閾値生成部42は、機種Fと対応付けて、1200Ωを閾値として記憶しておく。 FIG. 6 is a graph showing, as an example, the characteristics of the synthetic impedance in a system (a normal system and an erroneous connection system) composed of model F equipment. In FIG. 6, a curve C <b> 1 indicates a change in synthetic impedance (change according to the number) in a normal system. Further, other curves in FIG. 6 indicate changes in the combined impedance in the erroneous connection system. As shown in the figure, the curve C1 is far from the maximum value (about 1080Ω) of the combined impedance in the erroneous connection system, even if the number increases to 50, the combined impedance does not fall below 1500Ω. Thereby, in the case of a system composed of devices of model F, as an example, if the impedance is 1200Ω or more, it can be determined that there is no erroneous connection, regardless of the number of components. Conversely, if the impedance is less than 1200Ω, it can be determined that there is an incorrect connection. Therefore, the threshold value generation unit 42 stores 1200Ω as a threshold value in association with the model F.
 また、図7は、一例として、機種Mの機器から構成される系(正常の系及び誤接続の系)における合成インピーダンスの特性を示すグラフである。図7において、曲線C2は、正常の系における合成インピーダンスの変化(台数に応じた変化)を示している。また、図7におけるその他の曲線は、誤接続の系における合成インピーダンスの変化を示している。図示するように、曲線C2は、台数が増えると、合成インピーダンスが誤接続の系における合成インピーダンスの最大値を下回ってしまうため、上記の機種Fと異なり、台数に依存した閾値が必要となる。そのため、閾値生成部42は、図8に示すように、曲線C2に近似する曲線C3(近似曲線)を求め、その曲線C3のオフセット値を調整して、正常の系の合成インピーダンス(つまり、曲線C2)と、誤接続の系の合成インピーダンスとの間となる曲線C4を求めておく。具体的に、曲線C3は、以下の式2にて表され、また、曲線C4は、以下の式3にて表される。 FIG. 7 is a graph showing the characteristics of the composite impedance in a system (a normal system and an erroneous connection system) composed of model M devices as an example. In FIG. 7, a curve C <b> 2 indicates a change in synthetic impedance (change according to the number) in a normal system. Further, the other curves in FIG. 7 indicate changes in the combined impedance in the erroneous connection system. As shown in the figure, when the number of curves C2 increases, the combined impedance falls below the maximum value of the combined impedance in the erroneously connected system. Therefore, unlike the model F, a threshold value depending on the number is required. Therefore, as shown in FIG. 8, the threshold value generator 42 obtains a curve C3 (approximate curve) that approximates the curve C2, adjusts the offset value of the curve C3, and thus combines the normal system impedance (that is, the curve). A curve C4 between C2) and the combined impedance of the misconnected system is obtained. Specifically, the curve C3 is represented by the following formula 2, and the curve C4 is represented by the following formula 3.
 Z=5.92X2-627.1X+28248 ・・・(式2)
 Z=5.92X2-627.1X+25500 ・・・(式3)
 Z:合成インピーダンス
 X:台数
Z = 5.92X 2 -627.1X + 28248 (Expression 2)
Z = 5.92X 2 -627.1X + 25500 (Formula 3)
Z: Composite impedance X: Number of units
 これにより、機種Mの機器から構成される系の場合、一例として、インピーダンスが、数式3から求められた値(台数を式3に当てはめて求められた値)以上であれば、誤接続がないと判定可能となる。逆に、インピーダンスが、数式3から求められた値未満であれば、誤接続があると判定可能となる。そのため、閾値生成部42は、閾値を生成するために、機種Mと対応付けて、数式3を記憶しておく。 Thereby, in the case of a system composed of devices of model M, as an example, if the impedance is equal to or greater than the value obtained from Equation 3 (the value obtained by applying the number to Equation 3), there is no erroneous connection. Can be determined. On the contrary, if the impedance is less than the value obtained from Equation 3, it can be determined that there is an erroneous connection. Therefore, the threshold value generation unit 42 stores Equation 3 in association with the model M in order to generate a threshold value.
 これらのような閾値や数式3を記憶している閾値生成部42は、入力部41から入力された機器情報(一例として、機種や台数)に応じて、誤接続の有無を判定するための閾値を生成する。例えば、入力部41から、機種Fが入力された場合に、台数に依らず(台数の入力を省略してもよい)、閾値生成部42は、閾値として、1200Ωを生成する。また、入力部41から、機種Mが入力され、30台の台数が入力された場合に、閾値生成部42は、数式3から閾値として、12060Ωを生成する。 The threshold value generating unit 42 that stores the threshold values and Equation 3 as described above is a threshold value for determining the presence / absence of an erroneous connection according to the device information (for example, the model and the number of units) input from the input unit 41. Is generated. For example, when the model F is input from the input unit 41, the threshold value generation unit 42 generates 1200Ω as the threshold value regardless of the number (the input of the number may be omitted). In addition, when the model M is input from the input unit 41 and 30 units are input, the threshold value generation unit 42 generates 12060Ω as the threshold value from Equation 3.
 図3に戻って、計測部43は、接続された系(一例として、B系)について、通信線30の電気特性を計測する。なお、計測部43は、信号発生部431と、電圧計測部432と、電流計測部433とを備えている。 3, the measurement unit 43 measures the electrical characteristics of the communication line 30 for the connected system (for example, the B system). The measurement unit 43 includes a signal generation unit 431, a voltage measurement unit 432, and a current measurement unit 433.
 信号発生部431は、一例として、10KHzの交流信号を発生させる。なお、発生させる交流信号は、10KHzに限られないが、上述したように、通信線30の伝送特性への影響を考慮すると、1~10KHz程度の範囲が望ましい。発生させた交流信号は、端子Tを通じて、B系の通信線30に供給される。 The signal generator 431 generates an AC signal of 10 KHz as an example. The AC signal to be generated is not limited to 10 KHz, but as described above, the range of about 1 to 10 KHz is desirable in consideration of the influence on the transmission characteristics of the communication line 30. The generated AC signal is supplied to the B-system communication line 30 through the terminal T.
 電圧計測部432は、信号発生部431が交流信号を発生させている状態で、通信線30の電圧を計測する。 The voltage measurement unit 432 measures the voltage of the communication line 30 in a state where the signal generation unit 431 generates an AC signal.
 電流計測部433は、信号発生部431が交流信号を発生させている状態で、変流器CTを通じて、通信線30の電流を計測する。 The current measuring unit 433 measures the current of the communication line 30 through the current transformer CT in a state where the signal generating unit 431 generates an AC signal.
 このような構成の計測部43は、電圧計測部432が計測した電圧、及び、電流計測部433が計測した電流から、通信線30の交流インピーダンスを計測する。このようにして、交流インピーダンスの計測を終えると、信号発生部431は、交流信号の発生を停止し、また、電圧計測部432及び電流計測部433は、計測を終了する。 The measurement unit 43 having such a configuration measures the AC impedance of the communication line 30 from the voltage measured by the voltage measurement unit 432 and the current measured by the current measurement unit 433. In this way, when the measurement of the AC impedance is finished, the signal generation unit 431 stops the generation of the AC signal, and the voltage measurement unit 432 and the current measurement unit 433 end the measurement.
 判定部44は、計測部43が計測した交流インピーダンスと、閾値生成部42が生成した閾値とに基づいて、誤接続の有無を判定する。つまり、計測された交流インピーダンスが、閾値以上であれば、判定部44は、誤接続がないと判定する。一方、計測された交流インピーダンスが、閾値未満であれば、判定部44は、誤接続があると判定する。 The determination unit 44 determines whether or not there is a misconnection based on the AC impedance measured by the measurement unit 43 and the threshold value generated by the threshold value generation unit 42. That is, if the measured AC impedance is equal to or greater than the threshold value, the determination unit 44 determines that there is no erroneous connection. On the other hand, if the measured AC impedance is less than the threshold value, the determination unit 44 determines that there is an erroneous connection.
 表示部45は、一例として、液晶表示デバイスからなり、判定部44による判定結果を表示する。つまり、誤接続の有無を表示する。なお、表示部45の代わりに、若しくは、表示部45に加えて、ブザーやスピーカからなる発音部を備えている場合に、判定部44による判定結果に応じた報知音を出力するようにしてもよい。 The display unit 45 includes a liquid crystal display device as an example, and displays a determination result by the determination unit 44. That is, the presence / absence of erroneous connection is displayed. It should be noted that instead of the display unit 45 or in addition to the display unit 45, when a sound generation unit including a buzzer or a speaker is provided, a notification sound corresponding to the determination result by the determination unit 44 may be output. Good.
 以下、このような構成の検査装置40の動作について、図9を参照して説明する。図9は、本発明の実施形態1に係る検査処理の一例を示すフローチャートである。この検査処理は、照明システム1への電源投入前に開始される。 Hereinafter, the operation of the inspection apparatus 40 having such a configuration will be described with reference to FIG. FIG. 9 is a flowchart illustrating an example of the inspection process according to the first embodiment of the present invention. This inspection process is started before the lighting system 1 is powered on.
 まず、検査装置40は、ユーザの入力操作に従って、機器情報を取得する(ステップS101)。つまり、入力部41は、ユーザによるスイッチや操作キーの操作に従って、検査装置40に接続された系(一例として、B系)を構成する機器の種類(機種)や台数といった機器情報を入力する。 First, the inspection device 40 acquires device information in accordance with a user input operation (step S101). That is, the input unit 41 inputs device information such as the type (model) and the number of devices constituting a system (for example, the B system) connected to the inspection apparatus 40 in accordance with a user's operation of switches and operation keys.
 検査装置40は、閾値を生成する(ステップS102)。すなわち、閾値生成部42は、入力部41から入力された機器情報(一例として、機種や台数)に応じて、誤接続の有無を判定するための閾値を生成する。例えば、入力部41から、機種Fが入力された場合に、台数に依らず(台数の入力を省略してもよい)、閾値生成部42は、閾値として、1200Ωを生成する。また、入力部41から、機種Mが入力され、30台の台数が入力された場合に、閾値生成部42は、上述した数式3から閾値として、12060Ωを生成する。 The inspection device 40 generates a threshold value (step S102). That is, the threshold value generation unit 42 generates a threshold value for determining the presence or absence of an erroneous connection according to the device information (for example, the model or the number of units) input from the input unit 41. For example, when the model F is input from the input unit 41, the threshold value generation unit 42 generates 1200Ω as the threshold value regardless of the number (the input of the number may be omitted). In addition, when the model M is input from the input unit 41 and the number of 30 units is input, the threshold value generation unit 42 generates 12060Ω as the threshold value from Equation 3 described above.
 検査装置40は、小振幅交流信号を出力する(ステップS103)。すなわち、信号発生部431は、一例として、10KHzの交流信号を発生させ、B系の通信線30に供給する。 The inspection device 40 outputs a small amplitude AC signal (step S103). That is, the signal generator 431 generates, for example, a 10 KHz AC signal and supplies it to the B-system communication line 30.
 検査装置40は、インピーダンス計測を行う(ステップS104)。すなわち、信号発生部431が交流信号を発生させている状態で、電圧計測部432は、通信線30の電圧を計測し、また、電流計測部433は、変流器CTを通じて、通信線30の電流を計測する。そして、計測部43は、計測された電圧及び電流から、通信線30の交流インピーダンスを計測する。 The inspection apparatus 40 performs impedance measurement (step S104). That is, in the state where the signal generation unit 431 generates an AC signal, the voltage measurement unit 432 measures the voltage of the communication line 30, and the current measurement unit 433 transmits the current of the communication line 30 through the current transformer CT. Measure current. And the measurement part 43 measures the alternating current impedance of the communication line 30 from the measured voltage and electric current.
 検査装置40は、計測されたインピーダンスに応じて、誤接続の有無を判定する(ステップS105)。すなわち、判定部44は、計測部43が計測した交流インピーダンスと、閾値生成部42が生成した閾値とに基づいて、誤接続の有無を判定する。つまり、計測された交流インピーダンスが、閾値以上であれば、判定部44は、誤接続がないと判定する。一方、計測された交流インピーダンスが、閾値未満であれば、判定部44は、誤接続があると判定する。 The inspection device 40 determines whether or not there is a misconnection according to the measured impedance (step S105). That is, the determination unit 44 determines whether or not there is a misconnection based on the AC impedance measured by the measurement unit 43 and the threshold value generated by the threshold value generation unit 42. That is, if the measured AC impedance is equal to or greater than the threshold value, the determination unit 44 determines that there is no erroneous connection. On the other hand, if the measured AC impedance is less than the threshold value, the determination unit 44 determines that there is an erroneous connection.
 検査装置40は、判定結果を表示する(ステップS106)。すなわち、表示部45は、判定部44による判定結果を表示する。つまり、誤接続の有無を表示する。 The inspection device 40 displays the determination result (step S106). That is, the display unit 45 displays the determination result by the determination unit 44. That is, the presence / absence of erroneous connection is displayed.
 このような検査処理によって、照明システム1に電源が投入されていない状態で、検査装置40が接続されている系(一例として、B系)における通信線30の交流インピーダンスが計測され、この交流インピーダンスと機器情報に応じた閾値とに基づいて、系同士の誤接続の有無が判定される。この結果、稼働前に、誤接続の有無を適切に検査することができる。 By such an inspection process, the AC impedance of the communication line 30 in the system (for example, the B system) to which the inspection apparatus 40 is connected is measured in a state where the lighting system 1 is not turned on. And whether there is an erroneous connection between the systems is determined based on the threshold value corresponding to the device information. As a result, it is possible to appropriately inspect for erroneous connection before operation.
 上記の実施形態1では、外付けの検査装置40を用いて、誤接続の有無を検査する場合について説明したが、このような検査装置40の機能を、マスタ機器10内に内蔵して、誤接続の有無を検査するようにしてもよい。以下、本発明の実施形態2に係る照明システム2について、説明する。 In the first embodiment described above, the case of inspecting the presence / absence of an incorrect connection using the external inspection device 40 has been described. However, the function of such an inspection device 40 is incorporated in the master device 10 and erroneously detected. You may make it test | inspect for the presence or absence of a connection. Hereinafter, the illumination system 2 according to Embodiment 2 of the present invention will be described.
(実施形態2)
 図10は、本発明の実施形態2に係る照明システム2の全体構成の一例を示す模式図である。この照明システム2も、実施形態1と同様に、複数の系(一例として、A系,B系)に分かれており、系単位に1つのマスタ機器50と複数のスレーブ機器20とが、通信線30を介して接続されている。なお、スレーブ機器20、及び、通信線30は、実施形態1と同様である。
(Embodiment 2)
FIG. 10 is a schematic diagram showing an example of the overall configuration of the illumination system 2 according to Embodiment 2 of the present invention. Similarly to the first embodiment, the illumination system 2 is also divided into a plurality of systems (for example, A system and B system), and one master device 50 and a plurality of slave devices 20 are connected to the communication line. 30 is connected. Note that the slave device 20 and the communication line 30 are the same as those in the first embodiment.
 また、実施形態1と同様に、A系の通信線30とB系の通信線30とは、電気的に非接続な状態で稼働すべきであるが、点線Lにて示すように、系同士が誤接続(誤配線)されてしまうことも起こり得る。また、実施形態1と同様に、図10では省略しているが、幾つかのスレーブ機器20(一例として、リレー端末)には、照明器具が接続されているものとする。 Similarly to the first embodiment, the A-system communication line 30 and the B-system communication line 30 should be operated in an electrically disconnected state. May be erroneously connected (incorrect wiring). As in the first embodiment, although omitted in FIG. 10, it is assumed that lighting devices are connected to some slave devices 20 (relay terminals as an example).
 マスタ機器50は、例えば、中央制御装置であり、通信線30を介してスレーブ機器20を制御する。なお、マスタ機器50は、実施形態1における検査装置40の機能を内蔵している。 The master device 50 is, for example, a central control device, and controls the slave device 20 via the communication line 30. The master device 50 incorporates the function of the inspection device 40 in the first embodiment.
 このようなマスタ機器50の詳細について、図11を参照して説明する。図11は、本発明の実施形態2に係るマスタ機器50の構成の一例を示すブロック図である。図示するように、マスタ機器50は、制御部51、及び、通信処理部52に加えて、入力部41と、閾値生成部42と、計測部43と、判定部44と、表示部45とを備える。これら入力部41~表示部45は、実施形態1における検査装置40と同じ構成である。 Details of the master device 50 will be described with reference to FIG. FIG. 11 is a block diagram showing an example of the configuration of the master device 50 according to the second embodiment of the present invention. As illustrated, the master device 50 includes an input unit 41, a threshold generation unit 42, a measurement unit 43, a determination unit 44, and a display unit 45 in addition to the control unit 51 and the communication processing unit 52. Prepare. These input unit 41 to display unit 45 have the same configuration as the inspection apparatus 40 in the first embodiment.
 制御部51は、マスタ機器50全体を制御する。例えば、制御部51は、通信処理部52を動作させる前に、計測部43や判定部44を動作させ、誤接続の有無を検査させる。なお、誤接続があると判定された場合には、制御部51は、通信処理部52を動作させない。 The control unit 51 controls the entire master device 50. For example, before operating the communication processing unit 52, the control unit 51 operates the measurement unit 43 and the determination unit 44 to inspect whether there is an erroneous connection. When it is determined that there is an erroneous connection, the control unit 51 does not operate the communication processing unit 52.
 通信処理部52は、制御部51に制御され、通信線30に上述した図2に示すような伝送信号を送信し、スレーブ機器20(一例として、壁スイッチ)への電源供給と信号送信とを同時に行う。なお、通信処理部52は、計測部43や判定部44により、誤接続がないと判定された場合に限り動作する。 The communication processing unit 52 is controlled by the control unit 51 and transmits the transmission signal as shown in FIG. 2 to the communication line 30 to supply power to the slave device 20 (for example, a wall switch) and signal transmission. Do it at the same time. Note that the communication processing unit 52 operates only when the measurement unit 43 or the determination unit 44 determines that there is no erroneous connection.
 以下、このような構成のマスタ機器50の動作について、図12を参照して説明する。図12は、本発明の実施形態2に係る事前検査処理の一例を示すフローチャートである。この事前検査処理は、例えば、マスタ機器50への電源投入時に開始される。なお、予め入力部41には、ユーザによって機器情報が入力されているものとする。 Hereinafter, the operation of the master device 50 having such a configuration will be described with reference to FIG. FIG. 12 is a flowchart illustrating an example of a preliminary inspection process according to the second embodiment of the present invention. This pre-inspection process is started, for example, when the master device 50 is powered on. It is assumed that device information is input to the input unit 41 in advance by the user.
 まず、マスタ機器50は、ランダム時間の経過を待機する(ステップS201)。つまり、制御部51は、他のマスタ機器50との時間差を確保するためのランダム時間を生成し、このランダム時間が経過するまで待機する。 First, the master device 50 waits for a random time to elapse (step S201). That is, the control part 51 produces | generates the random time for ensuring the time difference with the other master apparatus 50, and waits until this random time passes.
 ランダム時間の待機を終えるとマスタ機器50は、小振幅交流信号を出力する(ステップS202)。すなわち、信号発生部431は、一例として、10KHzの交流信号を発生させ、B系の通信線30に供給する。 When the standby for the random time is finished, the master device 50 outputs a small amplitude AC signal (step S202). That is, the signal generator 431 generates, for example, a 10 KHz AC signal and supplies it to the B-system communication line 30.
 マスタ機器50は、インピーダンス計測を行う(ステップS203)。すなわち、信号発生部431が交流信号を発生させている状態で、電圧計測部432は、通信線30の電圧を計測し、また、電流計測部433は、変流器CTを通じて、通信線30の電流を計測する。そして、計測部43は、計測された電圧及び電流から、通信線30の交流インピーダンスを計測する。 The master device 50 performs impedance measurement (step S203). That is, in the state where the signal generation unit 431 generates an AC signal, the voltage measurement unit 432 measures the voltage of the communication line 30, and the current measurement unit 433 transmits the current of the communication line 30 through the current transformer CT. Measure current. And the measurement part 43 measures the alternating current impedance of the communication line 30 from the measured voltage and electric current.
 マスタ機器50は、計測されたインピーダンスが閾値以上であるか否かを判別する(ステップS204)。すなわち、閾値生成部42は、入力部41から入力された機器情報(一例として、機種や台数)に応じて、誤接続の有無を判定するための閾値を生成しており、判定部44は、計測部43が計測した交流インピーダンスが、この閾値以上であるかどうかを判別する。 The master device 50 determines whether or not the measured impedance is greater than or equal to a threshold value (step S204). That is, the threshold generation unit 42 generates a threshold for determining the presence or absence of an erroneous connection according to the device information (for example, the model or the number of units) input from the input unit 41. The determination unit 44 It is determined whether or not the AC impedance measured by the measurement unit 43 is equal to or greater than this threshold value.
 マスタ機器50は、計測されたインピーダンスが閾値以上であると判別すると(ステップS204;Yes)、正常メッセージを表示する(ステップS205)。つまり、表示部45は、誤接続がないことを示す正常メッセージを表示する。そして、マスタ機器50は、事前検査を正常終了し、スレーブ機器20との通信を開始する。すなわち、制御部51は、通信処理部52を動作させ、上述した図2に示すような伝送信号を通信線30に送信させる。 When the master device 50 determines that the measured impedance is greater than or equal to the threshold (step S204; Yes), it displays a normal message (step S205). That is, the display unit 45 displays a normal message indicating that there is no erroneous connection. Then, the master device 50 ends the preliminary inspection normally, and starts communication with the slave device 20. That is, the control unit 51 operates the communication processing unit 52 to transmit the transmission signal as shown in FIG.
 一方、計測されたインピーダンスが閾値以上でない(閾値未満である)と判別された場合(ステップS204;No)に、マスタ機器50は、アラートメッセージを表示する(ステップS206)。つまり、表示部45は、誤接続があることを示すアラートメッセージを表示する。そして、マスタ機器50は、事前検査を異常終了し、そのまま、動作を停止させる。すなわち、制御部51は、通信処理部52を動作させることなく、処理を停止する。 On the other hand, when it is determined that the measured impedance is not equal to or higher than the threshold (less than the threshold) (step S204; No), the master device 50 displays an alert message (step S206). That is, the display unit 45 displays an alert message indicating that there is an erroneous connection. Then, the master device 50 ends the preliminary inspection abnormally and stops the operation as it is. That is, the control unit 51 stops the processing without operating the communication processing unit 52.
 このような事前検査処理によって、照明システム2が実際に稼働する前に、通信線30の交流インピーダンスが計測され、この交流インピーダンスと機器情報に応じた閾値とに基づいて、系同士の誤接続の有無が判定される。この結果、稼働前に、誤接続の有無を適切に検査することができる。 By such pre-inspection processing, the AC impedance of the communication line 30 is measured before the lighting system 2 is actually operated, and based on the AC impedance and the threshold value corresponding to the device information, the erroneous connection between the systems is measured. Presence / absence is determined. As a result, it is possible to appropriately inspect for erroneous connection before operation.
(他の実施形態)
 上記の実施形態1,2では、誤接続の有無を検査するにとどめたが、更に、誤接続があれば、その箇所までの距離を求めるようにしてもよい。例えば、判定部44は、誤接続があると判定すると、TDR(Time Domain Refrectometer)の手法により、誤接続の箇所までの距離を求める。
(Other embodiments)
In the first and second embodiments, the presence / absence of an erroneous connection has been examined. However, if there is an erroneous connection, the distance to the location may be obtained. For example, when determining that there is an erroneous connection, the determination unit 44 obtains the distance to the erroneous connection by a TDR (Time Domain Refrectometer) technique.
 具体的に、計測部43は、信号発生部431から、高速なパルス信号を通信線30に印可し、返ってくる反射波形の時間を計測することで、誤接続の箇所までの距離を求める。 Specifically, the measurement unit 43 applies a high-speed pulse signal from the signal generation unit 431 to the communication line 30 and measures the time of the reflected waveform that is returned, thereby obtaining the distance to the erroneous connection location.
 そして、表示部45は、判定結果と、誤接続の箇所までの距離(誤接続がある場合)とを表示する。 Then, the display unit 45 displays the determination result and the distance (if there is an erroneous connection) to the location of the erroneous connection.
 このように、誤接続の箇所までの距離が表示されると、ユーザは、誤接続の解消を容易に行うことができる。 Thus, when the distance to the location of the erroneous connection is displayed, the user can easily eliminate the erroneous connection.
 上記の実施形態では、制御システムの具体例として、照明システム1,2について説明したが、他の制御システムにも適宜適用可能である。例えば、マスタ機器10と複数のスレーブ機器20とから構成される空調システムや換気システムにおいても、同様に適用可能である。 In the above embodiment, the lighting systems 1 and 2 have been described as specific examples of the control system, but the present invention can be applied to other control systems as appropriate. For example, the present invention can be similarly applied to an air conditioning system or a ventilation system including the master device 10 and a plurality of slave devices 20.
 また、上記の実施形態において、閾値生成部42や判定部44を実現するマイコンにより実行されるプログラムは、CD-ROM(Compact Disc Read Only Memory),DVD(Digital Versatile Disc),MO(Magneto-Optical Disk),USBメモリ,メモリカード等のコンピュータ読み取り可能な記録媒体に格納して配布することも可能である。そして、かかるプログラムを特定の又は汎用のコンピュータにインストールすることによって、当該コンピュータを上記の実施形態における閾値生成部42や判定部44として機能させることも可能である。 In the above-described embodiment, the programs executed by the microcomputer that implements the threshold generation unit 42 and the determination unit 44 are CD-ROM (Compact / Disc / Read / Only / Memory), DVD (Digital / Versatile / Disc), MO (Magneto-Optical). Disk), USB memory, memory card, etc. can also be stored and distributed in a computer-readable recording medium. Then, by installing such a program on a specific or general-purpose computer, it is possible to cause the computer to function as the threshold value generation unit 42 or the determination unit 44 in the above-described embodiment.
 また、上記のプログラムをインターネットといった通信ネットワーク上のサーバ装置が有するディスク装置に格納しておき、例えば、搬送波に重畳させて、コンピュータにダウンロードするようにしてもよい。また、通信ネットワークを介してプログラムを転送しながら起動実行することによっても、上述の処理を達成することができる。さらに、プログラムの全部又は一部をサーバ装置上で実行させ、その処理に関する情報をコンピュータが通信ネットワークを介して送受信しながらプログラムを実行することによっても、上述の処理を達成することができる。 Further, the above program may be stored in a disk device included in a server device on a communication network such as the Internet, and may be downloaded onto a computer by being superimposed on a carrier wave, for example. The above-described processing can also be achieved by starting and executing a program while transferring it via a communication network. Furthermore, the above-described processing can also be achieved by executing all or part of the program on the server device and executing the program while the computer transmits and receives information regarding the processing via the communication network.
 なお、上述の機能を、OS(Operating System)が分担して実現する場合又はOSとアプリケーションとの協働により実現する場合等には、OS以外の部分のみを上記の記録媒体に格納して配布してもよく、また、コンピュータにダウンロードしてもよい。 Note that when the above functions are realized by sharing an OS (Operating System) or when the functions are realized by cooperation between the OS and an application, only the part other than the OS is stored in the recording medium and distributed. It may also be downloaded to a computer.
 本発明は、広義の精神と範囲を逸脱することなく、様々な実施形態及び変形が可能である。また、上述した実施形態は、本発明を説明するためのものであり、本発明の範囲を限定するものではない。つまり、本発明の範囲は、実施形態ではなく、請求の範囲によって示される。そして、請求の範囲内及びそれと同等の発明の意義の範囲内で施される様々な変形が、本発明の範囲内とみなされる。 The present invention can be variously modified and modified without departing from the spirit and scope of the broad sense. Further, the above-described embodiment is for explaining the present invention, and does not limit the scope of the present invention. That is, the scope of the present invention is shown not by the embodiments but by the claims. Various modifications within the scope of the claims and within the scope of the equivalent invention are considered to be within the scope of the present invention.
 本発明は、稼働前に、誤接続の有無を適切に検査することのできる検査装置、制御システム、および、検査方法に好適に採用され得る。 The present invention can be suitably employed in an inspection apparatus, a control system, and an inspection method capable of appropriately inspecting whether or not there is a misconnection before operation.
 1,2 照明システム、10,50 マスタ機器、20 スレーブ機器、30 通信線、40 検査装置、41 入力部、42 閾値生成部、43 計測部、431 信号発生部、432 電圧計測部、433 電流計測部、44 判定部、45 表示部、51 制御部、52 通信処理部 1, 2 lighting system, 10, 50 master device, 20 slave device, 30 communication line, 40 inspection device, 41 input unit, 42 threshold generation unit, 43 measurement unit, 431 signal generation unit, 432 voltage measurement unit, 433 current measurement Unit, 44 determination unit, 45 display unit, 51 control unit, 52 communication processing unit

Claims (7)

  1.  第1の系と第2の系とが電気的に非接続な状態で稼働すべき制御システムにおける検査装置であって、
     前記第1及び第2の系にはそれぞれ通信線を介してマスタ機器とスレーブ機器とが接続され、電源が投入されると当該マスタ機器が給電を兼ねた伝送信号を当該通信線に供給し、当該スレーブ機器が当該通信線を通じて当該伝送信号を受信して動作するものであり、
     前記制御システムに電源が投入されていない状態で、前記第1の系における前記通信線の電気特性を計測する計測部と、
     前記電気特性に応じて、前記第1の系と前記第2の系との誤接続の有無を表示する表示部と、
     を備える検査装置。
    An inspection apparatus in a control system that should operate in a state where the first system and the second system are electrically disconnected from each other,
    A master device and a slave device are connected to each of the first and second systems via a communication line, and when the power is turned on, the master device supplies a transmission signal that also serves as power supply to the communication line, The slave device operates by receiving the transmission signal through the communication line,
    A measurement unit that measures electrical characteristics of the communication line in the first system in a state where the power is not turned on to the control system;
    In accordance with the electrical characteristics, a display unit that displays presence / absence of erroneous connection between the first system and the second system;
    An inspection apparatus comprising:
  2.  前記電気特性と、前記第1の系における前記マスタ機器及び前記スレーブ機器の構成に応じて定まる閾値とに基づいて、前記第1の系と前記第2の系との誤接続の有無を判定する判定部を更に備え、
     前記表示部は、前記判定部の判定結果を表示する、
     請求項1に記載の検査装置。
    Based on the electrical characteristics and a threshold value determined according to the configuration of the master device and the slave device in the first system, it is determined whether or not there is an erroneous connection between the first system and the second system. A determination unit;
    The display unit displays a determination result of the determination unit.
    The inspection apparatus according to claim 1.
  3.  前記第1の系における前記マスタ機器及び前記スレーブ機器の構成に関する機器情報を入力する入力部と、
     前記機器情報に従って、閾値を生成する閾値生成部と、
     前記電気特性と、前記閾値とに基づいて、前記第1の系と前記第2の系との誤接続の有無を判定する判定部を更に備え、
     前記表示部は、前記判定部の判定結果を表示する、
     請求項1に記載の検査装置。
    An input unit for inputting device information related to configurations of the master device and the slave device in the first system;
    A threshold generation unit that generates a threshold according to the device information;
    A determination unit for determining whether or not there is an erroneous connection between the first system and the second system based on the electrical characteristics and the threshold;
    The display unit displays a determination result of the determination unit.
    The inspection apparatus according to claim 1.
  4.  前記計測部は、
     交流信号を発生させて前記第1の系の前記通信線に供給する信号発生部と、
     前記交流信号が供給されている状態における前記通信線の電圧を計測する電圧計測部と、
     前記交流信号が供給されている状態における前記通信線の電流を計測する電流計測部と、を備え、
     前記電圧及び前記電流に基づいて、前記通信線の交流インピーダンスを計測する、
     請求項1に記載の検査装置。
    The measuring unit is
    A signal generator that generates an alternating current signal and supplies the alternating current signal to the communication line of the first system;
    A voltage measuring unit for measuring a voltage of the communication line in a state where the AC signal is supplied;
    A current measuring unit that measures a current of the communication line in a state in which the AC signal is supplied,
    Based on the voltage and the current, the AC impedance of the communication line is measured.
    The inspection apparatus according to claim 1.
  5.  前記信号発生部は、1kHz以上10kHz以下の範囲の前記交流信号を発生させる、
     請求項4に記載の検査装置。
    The signal generator generates the AC signal in a range of 1 kHz to 10 kHz;
    The inspection apparatus according to claim 4.
  6.  第1の系と第2の系とが電気的に非接続な状態で稼働すべき制御システムであって、
     前記第1及び第2の系にはそれぞれ通信線を介してマスタ機器とスレーブ機器とが接続され、電源が投入されると当該マスタ機器が給電を兼ねた伝送信号を当該通信線に供給し、当該スレーブ機器が当該通信線を通じて当該伝送信号を受信して動作するものであり、
     前記マスタ機器は、前記制御システムに電源が投入されていない状態で、前記第1の系における前記通信線の電気特性を計測する計測部と、
     前記電気特性に応じて、前記第1の系と前記第2の系との誤接続の有無を表示する表示部と、を備える、
     制御システム。
    A control system that should operate in a state where the first system and the second system are electrically disconnected,
    A master device and a slave device are connected to each of the first and second systems via a communication line, and when the power is turned on, the master device supplies a transmission signal that also serves as power supply to the communication line, The slave device operates by receiving the transmission signal through the communication line,
    The master device is a measurement unit that measures electrical characteristics of the communication line in the first system in a state where the control system is not powered on;
    A display unit that displays the presence or absence of erroneous connection between the first system and the second system according to the electrical characteristics;
    Control system.
  7.  第1の系と第2の系とが電気的に非接続な状態で稼働すべき制御システムにおける検査方法であって、
     前記第1及び第2の系にはそれぞれ通信線を介してマスタ機器とスレーブ機器とが接続され、電源が投入されると当該マスタ機器が給電を兼ねた伝送信号を当該通信線に供給し、当該スレーブ機器が当該通信線を通じて当該伝送信号を受信して動作するものであり、
     前記制御システムに電源が投入されていない状態で、前記第1の系における前記通信線の電気特性を計測する計測ステップと、
     前記電気特性と、前記第1の系における前記マスタ機器及び前記スレーブ機器の構成に応じて定まる閾値とに基づいて、前記第1の系と前記第2の系との誤接続の有無を判定する判定ステップと、
     を備える検査方法。
    An inspection method in a control system that should operate in a state where the first system and the second system are electrically disconnected,
    A master device and a slave device are connected to each of the first and second systems via a communication line, and when the power is turned on, the master device supplies a transmission signal that also serves as power supply to the communication line, The slave device operates by receiving the transmission signal through the communication line,
    A measurement step of measuring electrical characteristics of the communication line in the first system in a state where the control system is not powered on;
    Based on the electrical characteristics and a threshold value determined according to the configuration of the master device and the slave device in the first system, it is determined whether or not there is an erroneous connection between the first system and the second system. A determination step;
    An inspection method comprising:
PCT/JP2016/082040 2016-10-28 2016-10-28 Inspection device, control system, and inspection method WO2018078790A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2018547023A JP6641502B2 (en) 2016-10-28 2016-10-28 Inspection device, control system, and inspection method
PCT/JP2016/082040 WO2018078790A1 (en) 2016-10-28 2016-10-28 Inspection device, control system, and inspection method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/082040 WO2018078790A1 (en) 2016-10-28 2016-10-28 Inspection device, control system, and inspection method

Publications (1)

Publication Number Publication Date
WO2018078790A1 true WO2018078790A1 (en) 2018-05-03

Family

ID=62024542

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/082040 WO2018078790A1 (en) 2016-10-28 2016-10-28 Inspection device, control system, and inspection method

Country Status (2)

Country Link
JP (1) JP6641502B2 (en)
WO (1) WO2018078790A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021056172A (en) * 2019-10-02 2021-04-08 三菱電機株式会社 Diagnosis device, diagnosis system, and method for diagnosis
WO2023277178A1 (en) * 2021-07-02 2023-01-05 日置電機株式会社 Impedance measurement system

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61262082A (en) * 1985-05-16 1986-11-20 Yokogawa Electric Corp Regulated power source
JPH08130782A (en) * 1994-10-31 1996-05-21 Daikin Ind Ltd Transmitter
WO2015061220A2 (en) * 2013-10-24 2015-04-30 Osram Sylvania Inc. Power line communication for lighting systems
JP2015224907A (en) * 2014-05-27 2015-12-14 横河電機株式会社 Current load detection device and current load detection method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61262082A (en) * 1985-05-16 1986-11-20 Yokogawa Electric Corp Regulated power source
JPH08130782A (en) * 1994-10-31 1996-05-21 Daikin Ind Ltd Transmitter
WO2015061220A2 (en) * 2013-10-24 2015-04-30 Osram Sylvania Inc. Power line communication for lighting systems
JP2015224907A (en) * 2014-05-27 2015-12-14 横河電機株式会社 Current load detection device and current load detection method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021056172A (en) * 2019-10-02 2021-04-08 三菱電機株式会社 Diagnosis device, diagnosis system, and method for diagnosis
WO2023277178A1 (en) * 2021-07-02 2023-01-05 日置電機株式会社 Impedance measurement system

Also Published As

Publication number Publication date
JP6641502B2 (en) 2020-02-05
JPWO2018078790A1 (en) 2019-02-21

Similar Documents

Publication Publication Date Title
JP7277009B2 (en) Failure location detection method, handheld maintenance tool and failure detection method
US10895871B2 (en) Method and system for automatically generating interactive wiring diagram in an industrial automation environment
CN102707113B (en) For detection of usurping and system, the method and apparatus of state of electrical power
US10148203B2 (en) Motor driving apparatus including DC link voltage detection unit
US20150316600A1 (en) Portable multi-function cable tester
WO2018078790A1 (en) Inspection device, control system, and inspection method
TW201727254A (en) Test device and alternating current power detection method of the same
US8903099B2 (en) End of branch module system
US10520538B2 (en) Identifying and determining status of reefer containers
JP7086169B2 (en) Charging device test system and method
JP2010016560A (en) Disconnection detection device of communication system, and communication system
JP6491852B2 (en) Circuit element measuring device
CN106487456A (en) Communication test device, system and method
KR102085731B1 (en) Interconnection Evaluation System for Switchboard
CN112912740A (en) Measuring device
JP2014202699A (en) Cable inspection system, cable inspection device, information processing device, cable inspection method, and cable inspection program
US10802052B2 (en) Circuit multi-tester including phase rotation-measurement circuitry
JP2018068115A (en) Dispersed power supply system and method for controlling dispersed power supply system
JP2004208431A (en) Wiring test device
JP2013240466A (en) Testing of defibrillator electrode
JP7279009B2 (en) Power calculation device and power calculation method
JP7300372B2 (en) Distribution board connection inspection device
US20210206110A1 (en) Identifying an ac mains connection state of a power device
JP6628537B2 (en) Communication abnormality detection system and communication abnormality detection method
KR20210153449A (en) System for self examination of end of life inspecting device and method thereof

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2018547023

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16919628

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16919628

Country of ref document: EP

Kind code of ref document: A1