JPH083508B2 - Insulation resistance measuring device phase compensation method - Google Patents

Insulation resistance measuring device phase compensation method

Info

Publication number
JPH083508B2
JPH083508B2 JP868987A JP868987A JPH083508B2 JP H083508 B2 JPH083508 B2 JP H083508B2 JP 868987 A JP868987 A JP 868987A JP 868987 A JP868987 A JP 868987A JP H083508 B2 JPH083508 B2 JP H083508B2
Authority
JP
Japan
Prior art keywords
phase
insulation resistance
output
frequency
circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP868987A
Other languages
Japanese (ja)
Other versions
JPS63175772A (en
Inventor
辰治 松野
Original Assignee
東洋通信機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東洋通信機株式会社 filed Critical 東洋通信機株式会社
Priority to JP868987A priority Critical patent/JPH083508B2/en
Publication of JPS63175772A publication Critical patent/JPS63175772A/en
Publication of JPH083508B2 publication Critical patent/JPH083508B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Measurement Of Resistance Or Impedance (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は活線状態で電路等の絶縁抵抗を測定する装置
に於ける温度変化或は回路定数の経年変化等に対する補
償方法に関する。
Description: TECHNICAL FIELD The present invention relates to a method of compensating for a temperature change or an aged change of a circuit constant in an apparatus for measuring the insulation resistance of an electric circuit or the like in a live state.

(従来の技術) 従来,漏電等の電路に於けるトラブルの早期発見の為
に例えば第3図に示す如き電路の絶縁抵抗測定方法を用
い電路状態を監視するのが一般的であった。
(Prior Art) Conventionally, in order to detect a trouble in an electric circuit such as an electric leakage at an early stage, it is general to monitor the electric circuit condition by using an insulation resistance measuring method of the electric circuit as shown in FIG. 3, for example.

これはZなる負荷を有する受電変圧器Tの第2種接地
線LEに,商用電源周波数と別違の周波数なる測定用
低周波信号発振器OSCを接続したトランスOTを挿入する
か,或いは前記接地線LEに直列に前記発振器OSCを挿入
接続するか又は前記電路1,2を前記発振器を接続したト
ロイダルコアトランスに貫通する等して電路1及び電路
2に測定用低周波電圧を印加し,前記接地線LEを貫通せ
しめた変流器ZCTによって,電路と大地間に存在する絶
縁抵抗RO及び対地浮遊容量COを介して前記接地線に帰還
する前記測定用低周波信号の漏洩電流を検出し,これを
増幅器AMPで増幅したのち,フィルタFILによって周波数
の成分のみを選択し,これを例えば前記発振器OSC
の出力信号を用いて掛算器MULTで同期検波して漏洩電流
分中の有効分(OUT1)(即ち,印加低周波電圧と同相の
成分)を検出することにより電路の絶縁抵抗を測定する
よう構成したものであった。
This is to insert a transformer OT in which a measuring low-frequency signal oscillator OSC having a frequency of 1, which is different from the commercial power frequency, is connected to the second-type grounding line L E of the power receiving transformer T having a load of Z, or Apply the low frequency voltage for measurement to the electric lines 1 and 2 by inserting the oscillator OSC in series with the ground line L E or by penetrating the electric lines 1 and 2 into the toroidal core transformer to which the oscillator is connected. , Leakage of the low-frequency signal for measurement returned to the ground line through the insulation resistance R O existing between the electric line and the ground and the stray capacitance C O by the current transformer ZCT that penetrates the ground line L E. The current is detected, this is amplified by the amplifier AMP, and the frequency is set by the filter FIL.
Only one component is selected, which can be
The insulation resistance of the circuit is measured by detecting the effective component (OUT 1 ) in the leakage current component (that is, the component in phase with the applied low frequency voltage) by synchronously detecting with the multiplier MULT using the output signal of It was composed.

本発明の理解を助けるためにその測定理論を更に説明
する。
The theory of measurement will be further explained to help understanding of the present invention.

前記接地線LEに印加される測定用信号電圧を例えば正
弦波としてVsinωt(ω=2π)とすれば,接
地点Eを介して接地線LEに帰還する周波数の漏洩電
流Iは と表わされ,印加する交流電圧と同相の成分,即ち上記
(1)式の右辺第1項の成分に比例した値を同期検波等
の手段で検出すればこの値は絶縁抵抗ROに逆比例したも
のとなるから,これによって電路の絶縁抵抗値を求める
ことができる。しかしこのように前記接地線に帰還する
漏洩電流を変流器ZCTで検出し,これに含まれる周波数
の漏洩電流成分をフィルタFILで選択出力する従来
の方法では,通常変流器→増幅器→フィルタの系で周波
の漏洩電流の位相がずれるから,これらの同期検
波出力からROに逆比例した値を得るためにはこの位相ず
れを補償する必要がある。このために従来同図に示す如
く同期検波器MULTの第1の入力端に又は,第2の入力端
に移相器PSを挿入することによって上記位相ずれを補正
し互いの同期をとっていた。即ちこの移相器PSを設ける
ことにより対地浮遊容量COがない状態(CO=0)にて,
同期検波器の第1,第2の入力端に印加される電圧の位相
差が零となるように前もって設定しておくものであっ
た。
If the measurement signal voltage applied to the ground line L E is , for example, a sinusoidal wave and is V sin ω 1 t (ω 1 = 2π 1 ), the frequency 1 of the frequency 1 returned to the ground line L E via the ground point E is The leakage current I is If a value proportional to the component of the same phase as the applied AC voltage, that is, the component of the first term on the right side of equation (1) above is detected by means such as synchronous detection, this value is reversed to the insulation resistance R O. Since it is proportional, the insulation resistance value of the electric path can be obtained. However, the leakage current returning to the ground wire is detected by the current transformer ZCT and the frequency contained in this is detected.
In the conventional method in which the leakage current component of 1 is selectively output by the filter FIL, the phase of the leakage current of frequency 1 is usually shifted in the system of current transformer → amplifier → filter, so these synchronous detection outputs are inversely proportional to R O. It is necessary to compensate for this phase shift in order to obtain this value. For this reason, conventionally, as shown in the same figure, by inserting a phase shifter PS at the first input end of the synchronous detector MULT or at the second input end, the phase shift is corrected and the two are synchronized with each other. . That is, by providing this phase shifter PS, in the state where there is no stray capacitance C O to the ground (C O = 0),
It has been set in advance so that the phase difference between the voltages applied to the first and second input terminals of the synchronous detector becomes zero.

しかしながら上述の如き従来の方法では変流器ZCT,フ
ィルタFIL,移相器PS等の位相特性は温度変化または使用
部品特性の経年変化等によって変動するため,この結果
最初の調整値との位相誤差が発生し,正しい測定結果を
提供できなくなる欠点があった。これらに対処するため
に従来は特性変動の少ない極めて高品質な変流器或いは
フィルタ等を採用することによって位相誤差の影響を極
力小さくしていたが,それでもその影響を完全に除去す
ることは困難であった。
However, in the conventional method as described above, the phase characteristics of the current transformer ZCT, the filter FIL, the phase shifter PS, etc. fluctuate due to temperature changes or changes in the characteristics of the parts used over time. However, there is a drawback that correct measurement results cannot be provided. In order to deal with these problems, the influence of the phase error was conventionally minimized by adopting an extremely high-quality current transformer or filter with less characteristic fluctuation, but it is still difficult to completely eliminate the influence. Met.

(発明の目的) 本発明は以上説明したような従来の絶縁抵抗測定方法
の欠点を除去するためになされたものであって,高価な
部品を必要とせず安価に測定信号の位相ずれを常時補正
し,常に正確な測定結果をもたらしうる絶縁抵抗測定装
置の位相調整方法を提供することを目的とする。
(Object of the Invention) The present invention has been made in order to eliminate the drawbacks of the conventional insulation resistance measuring method as described above, and always corrects the phase shift of the measurement signal inexpensively without requiring expensive parts. However, it is an object of the present invention to provide a phase adjustment method for an insulation resistance measuring device that can always provide accurate measurement results.

(発明の概要) 本発明はこの目的を達成するため原理的には,接地線
を介して商用電源周波数と異なる測定用低周波信号電圧
を電路に印加し,電路と大地間の絶縁抵抗及び浮遊容量
を介して前記接地線に帰還する測定用低周波信号の漏洩
成分を前記接地線に結合せしめた変流器を介して抽出
し,この信号を同期検波することによって電路の絶縁抵
抗を測定する装置に於いて,前記変流器に新らたに導線
を貫通せしめるとともに,前記電路に測定用低周波電圧
が印加されない状態にて前記導線に測定用低周波電圧と
90°位相が推移した信号を通電し,このとき得られる前
記同期検波器出力が零となるように同期検波器に印加す
る基準用測定用低周波信号電圧の位相を自動的に又は手
動にて調整するよう構成する。
(Summary of the Invention) In order to achieve this object, the present invention applies, in principle, a measurement low-frequency signal voltage different from the commercial power supply frequency to an electric line via a grounding wire to cause insulation resistance and floating between the line and ground. The leakage component of the low-frequency signal for measurement that returns to the ground line via a capacitance is extracted through a current transformer coupled to the ground line, and the insulation resistance of the electric path is measured by synchronously detecting this signal. In the device, a new conductor is made to penetrate the current transformer, and a low-frequency voltage for measurement is applied to the conductor while the low-frequency voltage for measurement is not applied to the circuit.
The phase of the low frequency signal voltage for reference measurement applied to the synchronous detector so that the output of the synchronous detector obtained at this time is energized by applying a signal with a 90 ° phase shift automatically or manually. Configure to adjust.

この状態にて前記導線への通電を停止し通常の測定を
行なえば測定回路の位相特性の変動が補償され,このと
き得られる測定結果は正確なものとなる。
In this state, if current supply to the conductor is stopped and normal measurement is performed, fluctuations in the phase characteristic of the measurement circuit are compensated, and the measurement result obtained at this time becomes accurate.

(実施例) 先ず本発明に係る測定方法を説明する前にその理解を
助ける為従来の方法及びその欠点を少しく詳細に説明す
る。
(Example) First, before explaining the measuring method according to the present invention, the conventional method and its drawbacks will be described in a little more detail in order to help understanding thereof.

第(1)式にて示される周波数の漏洩電流成分I
が変流器ZCT,増幅器AMP,フィルタFILの系を通過する際
発生する位相ずれをθとすればフィルタFIL出力I1となり,これは同期検波器MULTの第1の入力端に印加さ
れる。
Leakage current component I of frequency 1 shown in the equation (1)
There current transformer ZCT, an amplifier AMP, Tosureba filter FIL outputs I 1 the phase shift θ generated when passing through the system filter FIL is And this is applied to the first input of the synchronous detector MULT.

また同期検波器の第2の入力端に印加される電圧を例
えば一定振幅のaOsin(ωt+θ)とすれば,同期
検波器の出力即ち有効成分Dは 従ってθ=θのときの出力DOとなり,V,aOは一定となるから絶縁抵抗ROに逆比例した
値を測定することができる。したがって位相ずれθ−θ
が零でない時の上記DOに対するDの誤差Eは となる。
If the voltage applied to the second input terminal of the synchronous detector is a Osin1 t + θ 1 ) having a constant amplitude, the output of the synchronous detector, that is, the effective component D is Therefore, the output D O when θ = θ 1 is Since V and a O are constant, a value inversely proportional to the insulation resistance R O can be measured. Therefore, the phase shift θ−θ
The error E of D with respect to D O when 1 is not zero is Becomes

今,例えばθ−θ=1(度)のとき(6)式にて
=25Hzで,RO=20KΩ,CO=5μFとするときωCOR
O15.7となるから誤差εは27.4%となり著しく測定誤
差が大きくなることが分る。
Now, for example, when θ−θ 1 = 1 (degrees), the equation (6) is used.
Ω 1 C O R when R O = 20 KΩ and C O = 5 μF at 1 = 25 Hz
Since O is 15.7, the error ε is 27.4%, and it can be seen that the measurement error is significantly large.

本発明は上述した位相ずれに伴う測定誤差の発生を極
力抑える方法を提案するものである。
The present invention proposes a method for suppressing the occurrence of the above-mentioned measurement error due to the phase shift as much as possible.

第1図は本発明に係かる絶縁抵抗測定装置の一実施例
を示す回路図であって,前記第3図に示したものと同様
一方を接地した電路1,2の絶縁抵抗を測定するための装
置である。
FIG. 1 is a circuit diagram showing an embodiment of an insulation resistance measuring apparatus according to the present invention. For measuring the insulation resistance of the electric paths 1 and 2 with one of them grounded as in the case shown in FIG. Device.

即ち,負荷Zを有する変圧器Tの2次電路1,2の一方
2に第2種接地線LEが施こされ,該接地線LEにはこれが
貫通する如く変流器ZCTが又直接結合によってトランスO
Tを夫々接続する。
That is, the load the two ground lines L E to one 2 of the secondary electrical path and second transformer T having a Z is strained facilities, the grounding line L E current transformer ZCT is also directly as it passes through Trans by binding O
Connect T respectively.

又,該トランスOTの二次側には切替スイッチSW1を介
して電力増幅器PAMPの出力端が,更に該電力増幅器PAMP
の入力端には周波数なる測定用低周波信号を発生す
る位相制御回路PCが接続されている。
The output side of the power amplifier PAMP is further connected to the secondary side of the transformer OT via the changeover switch SW 1, and
A phase control circuit PC for generating a low-frequency signal for measurement having a frequency of 1 is connected to the input terminal of.

尚,前記トランスOTの一次側インピーダンスは低く,
電路の接地機能を妨げないものである。前記変流器ZCT
の2次コイル出力は増幅器AMP及び商用周波数を除去す
るフィルタFILを経て同期検波器MULTに入力し,その出
力は第2のスイッチSW2によって2ルートに切分け,一
方は抵抗R2とコンデンサC1とを逆L型に接続した保持回
路を介して出力端OUT2に,又他方は同様に抵抗R3とコン
デンサC2とからなる保持回路を介して前記位相制御回路
PCにフィードバックする。
The primary impedance of the transformer OT is low,
It does not interfere with the grounding function of the electric circuit. The current transformer ZCT
The secondary coil output of is input to the synchronous detector MULT via the amplifier AMP and the filter FIL for removing the commercial frequency, and its output is divided into two routes by the second switch SW 2 , one of which is the resistor R 2 and the capacitor C. The phase control circuit is connected to the output terminal OUT 2 through a holding circuit in which 1 and 1 are connected in an inverted L shape, and the other through a holding circuit which is similarly composed of a resistor R 3 and a capacitor C 2.
Give feedback to your PC.

前記周期検波器MULTの基準信号としては,位相制御回
路PCの出力を印加し,かつ前記2つの切替スイッチSW1
及びSW2は該位相制御回路PCの出力によって制御する。
As the reference signal of the period detector MULT, the output of the phase control circuit PC is applied, and the two changeover switches SW 1
And SW 2 are controlled by the output of the phase control circuit PC.

又,前記切替スイッチSW1の一方にはコンデンサCを
直列に含む信号線3をその一部が前記変流器ZCTを貫通
して電力増幅器PAMPの負極に至るようにループ接続する
よう構成する。
Further, a signal line 3 including a capacitor C in series is connected to one of the change-over switches SW 1 in a loop so that a part of the signal line 3 penetrates the current transformer ZCT and reaches the negative electrode of the power amplifier PAMP.

以下,このように構成した絶縁抵抗測定装置の動作及
び操作について詳細に説明する。
Hereinafter, the operation and operation of the insulation resistance measuring device configured as described above will be described in detail.

先づ,第1のスイッチSW1が第1図に示す如く実線側
に接続している場合,接地線LEに流れる周波数の漏
洩電流は(1)式で与えられ,かつ同期検波器の出力は
前述の如く(2)式で与えられる。一方,スイッチSW1
が破線側に接続されている場合トランスOTの一次側は抵
抗R1で終端されているから電力増幅器PAMPの出力電圧を
eとすれば,電力増幅器PAMPの出力をコンデンサCを介
して変流器を貫通する導線に流れる電流I2は I2=ωCecosωt……(7) となる。又,このときのフィルタFILの出力I3は I3=ωCecos(ωt+θ)……(8) したがって同期検波器MULTの出力D1となる。
First, when the first switch SW 1 is connected to the solid line side as shown in FIG. 1 , the leakage current of frequency 1 flowing in the ground line L E is given by the equation (1) and the synchronous detector The output is given by the equation (2) as described above. On the other hand, switch SW 1
Is connected to the side of the broken line, the primary side of the transformer OT is terminated by the resistor R 1 , so if the output voltage of the power amplifier PAMP is e, the output of the power amplifier PAMP is connected via the capacitor C to the current transformer. The current I 2 flowing in the conductor penetrating through is I 2 = ω 1 C ecos ω 1 t (7). Further, the output I 3 of the filter FIL at this time is I 3 = ω 1 C ecos1 t + θ) (8) Therefore, the output D 1 of the synchronous detector MULT is Becomes

即ち(9)式から明らかなように、ω,c,e,aOを一
定とすれば のときθ−θ>0ならD1<0,又θ−θ<0ならD1
0となるから,D1の値もしくは極性を判別することによ
り同期検波器に印加する測作用低周波信号aOsin(ω
t+θ)の位相θを調整して,D1を零に近づけるよ
うにすればθ−θ→0とすることができる。
That is, as is clear from equation (9), if ω 1 , c, e, a O are constant, If θ-θ 1 > 0 then D 1 <0, and if θ-θ 1 <0 then D 1 >
0 because made, measuring the action applied to the synchronous detector by determining the value or polarity of the D 1 low-frequency signal a Osin1
By adjusting the phase θ 1 of t + θ 1 ) so that D 1 approaches zero, θ−θ 1 → 0 can be obtained.

第2図は第1図に示した測定装置の各部の出力波形を
示したものである。同図に於いて(イ)は前記スイッチ
SW1,SW2を周期T/2にて切替えた場合の同期検波器MULTの
出力電圧であって,(a)はスイッチが実線に(b)は
スイッチが破線の場合を夫々示す。又(ロ)は出力OUT2
の波形を示しており,スイッチSW1,SW2が実線の期間は
同期検波器MULTの出力がそのまま出現するが,スイッチ
が破線の期間は抵抗R2とコンデンサC1とからなる保持回
路の働きによって切替直前の電圧がそのまま保持された
状態となる。又,同第2図(ハ)は位相制御回路PCの入
力電圧,即ちコンデンサC2の両端電圧を示したものであ
って,スイッチSW1,SW2が破線のときは同期検波器MULT
の出力電圧がそのまま出現するが,同スイッチが実線の
ときは切替直前の値が保持される。
FIG. 2 shows the output waveform of each part of the measuring device shown in FIG. In the figure, (a) is the switch
The output voltage of the synchronous detector MULT when SW 1 and SW 2 are switched at the cycle T / 2, where (a) shows the switch as a solid line and (b) shows the switch as a broken line. Also, (B) is the output OUT 2
The output of the synchronous detector MULT appears as it is while the switches SW 1 and SW 2 are in the solid line, but the function of the holding circuit consisting of the resistor R 2 and the capacitor C 1 is shown in the period when the switches are in the broken line. As a result, the voltage immediately before switching is maintained as it is. Further, FIG. 2C shows the input voltage of the phase control circuit PC, that is, the voltage across the capacitor C 2 , and when the switches SW 1 and SW 2 are broken lines, the synchronous detector MULT
The output voltage of appears as it is, but when the switch is a solid line, the value immediately before switching is retained.

同図から明らかな如く,上述した回路によれば例えば
周期T/2にてスイッチSW1,SW2を切替えたとしても出力端
OUT2に現れる信号によって電路の絶縁抵抗値を算出して
も不都合は生じないから,該出力を用いて絶縁抵抗値を
算出しつつ,コンデンサC2の両端電圧即ち,第2図
(ハ)の電圧を用いて,これが零になるように同期検波
器MULTに印加する基準信号の位相を調整する。
As is clear from the figure, according to the circuit described above, even if the switches SW 1 and SW 2 are switched at the cycle T / 2, for example, the output terminal
Even if the insulation resistance value of the electric circuit is calculated from the signal appearing at OUT 2 , no inconvenience will occur. Therefore, while calculating the insulation resistance value using this output, the voltage across the capacitor C 2 , that is, in FIG. The voltage is used to adjust the phase of the reference signal applied to the synchronous detector MULT so that it becomes zero.

尚,この場合,スイッチSW1とSW2は共に連動して切替
えるが,切替周期は前記実施例の如くT/2に限定する必
要はなく,要は電路に測定用低周波信号を印加していな
い状態にて前記変流器に貫通した信号線に測定用低周波
信号を印加しそのときのコンデンサC2の両端電圧が零に
なるよう制御するものであればいかなる手段であっても
よい。
In this case, although the switches SW 1 and SW 2 are switched in conjunction with each other, the switching cycle need not be limited to T / 2 as in the above embodiment, and the point is that a low-frequency signal for measurement is applied to the circuit. Any means may be used as long as a low frequency signal for measurement is applied to the signal line penetrating the current transformer in the absence of the current and the voltage across the capacitor C 2 at that time is controlled to be zero.

又,更には,変流器ZCT,増幅器AMP,フィルタFIL及び
同期検波器MULTのルートに90°移相した測定用低周波信
号を通電する手段は,上述した実施例に限らず他の方法
を用いてもよい。
Furthermore, the means for energizing the low frequency signal for measurement which is 90 ° phase-shifted to the route of the current transformer ZCT, the amplifier AMP, the filter FIL and the synchronous detector MULT is not limited to the above-mentioned embodiment, and other methods may be used. You may use.

又,このような位相制御回路は既知の技術で実現可能
なので詳述を省略する。なお,スイッチSW1の切替に伴
い,同期検波器出力に発生する過渡現象をさけるため切
替後,過渡現象が定常的になったときの同期検波器の出
力のみを用いる如くするために同期検波器とスイッチSW
2の間に更にサンプリング回路を付加してもよい。
Further, since such a phase control circuit can be realized by a known technique, its detailed description is omitted. In order to avoid the transient phenomenon that occurs in the output of the synchronous detector when the switch SW 1 is switched, the synchronous detector is used in order to use only the output of the synchronous detector when the transient phenomenon becomes steady after switching. And switch SW
A sampling circuit may be added between the two .

上記実施例では単相2線式電路の場合で示したが,単
相3線,3相3線の電路であってもよいことは明らかであ
る。
In the above embodiment, the case of the single-phase two-wire type electric circuit has been shown, but it is obvious that the electric circuit may be a single-phase three-wire type or a three-phase three-wire type electric line.

また,コンデンサCの挿入方法等については同一原理
の元で,更に多くの拡張した展開が可能である。
Further, with respect to the method of inserting the capacitor C and the like, many expanded developments are possible under the same principle.

(発明の効果) 以上説明したごとく,本発明は絶縁抵抗測定装置の測
定回路の位相変動特性を補償するものであるから極めて
精度の高い測定装置を提供することができる。
(Effects of the Invention) As described above, the present invention compensates for the phase fluctuation characteristics of the measuring circuit of the insulation resistance measuring apparatus, and therefore a measuring apparatus with extremely high accuracy can be provided.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の一実施例を示すブロック図、第2図は
本発明の実施例を示す各部の波形を示す図であって
(イ)は同期検波器の出力波形,(ロ)は出力端OUT2
出力波形,(ハ)はコンデンサC2の両端電圧を示す図,
第3図は従来の絶縁抵抗測定装置を示すブロック図であ
る。 T……トランス,1,2……電路,LE……接地線,E……接地
点,ZCT……変流器,AMP……増幅器,FIL……フィルタ,MUL
T……同期検波器,OSC……発振器,OT……印加トランス,P
S……移相器,SW1,SW2……スイッチ,PC……位相制御回
路,PAMP……電力増幅器。
FIG. 1 is a block diagram showing an embodiment of the present invention, and FIG. 2 is a diagram showing waveforms of respective portions showing an embodiment of the present invention. (A) is an output waveform of a synchronous detector, (b) is Output waveform of output terminal OUT 2 , (C) shows voltage across capacitor C 2 ,
FIG. 3 is a block diagram showing a conventional insulation resistance measuring device. T …… transformer, 1,2 …… electric line, L E …… ground wire, E …… ground point, ZCT …… current transformer, AMP …… amplifier, FIL …… filter, MUL
T …… Synchronous detector, OSC …… Oscillator, OT …… Applying transformer, P
S …… Phase shifter, SW 1 , SW 2 …… Switch, PC …… Phase control circuit, PAMP …… Power amplifier.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】変圧器の接地線を介して電路に商用周波数
と異なる周波数の測定用低周波信号電圧を間欠的に
断接して印加すると共に,前記接地線に結合した変流器
の出力中に含まれる前記周波数の漏洩電流を前記低
周波信号電圧で同期検波することにより電路の絶縁抵抗
を測定する装置に於いて,前記変流器を貫通する導線に
前記低周波信号電圧より90°位相の推移した所定値の電
流を前記低周波電圧を前記接地線に印加していない状態
で流した時前記同期検波出力が零に近づくように前記同
期検波器に印加する低周波信号電圧の位相を自動的に調
整することにより測定回路の位相特性変動を補償したこ
とを特徴とする絶縁抵抗測定装置の位相補償方法。
1. An output of a current transformer coupled to the ground line while intermittently connecting and disconnecting a measuring low-frequency signal voltage of frequency 1 different from the commercial frequency to the circuit through the ground line of the transformer. In a device for measuring the insulation resistance of an electric circuit by synchronously detecting the leakage current of the frequency 1 contained therein by the low frequency signal voltage, a conductor penetrating the current transformer is connected to the low frequency signal voltage 90 ° A low frequency signal voltage applied to the synchronous detector so that the synchronous detection output approaches zero when a current having a phase-shifted predetermined value is applied while the low frequency voltage is not applied to the ground line. A phase compensation method for an insulation resistance measuring device, characterized in that a phase characteristic variation of a measuring circuit is compensated by automatically adjusting the phase.
JP868987A 1987-01-16 1987-01-16 Insulation resistance measuring device phase compensation method Expired - Fee Related JPH083508B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP868987A JPH083508B2 (en) 1987-01-16 1987-01-16 Insulation resistance measuring device phase compensation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP868987A JPH083508B2 (en) 1987-01-16 1987-01-16 Insulation resistance measuring device phase compensation method

Publications (2)

Publication Number Publication Date
JPS63175772A JPS63175772A (en) 1988-07-20
JPH083508B2 true JPH083508B2 (en) 1996-01-17

Family

ID=11699889

Family Applications (1)

Application Number Title Priority Date Filing Date
JP868987A Expired - Fee Related JPH083508B2 (en) 1987-01-16 1987-01-16 Insulation resistance measuring device phase compensation method

Country Status (1)

Country Link
JP (1) JPH083508B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02118270U (en) * 1989-03-07 1990-09-21
JPH0661322B2 (en) * 1992-06-05 1994-08-17 ヤーマン株式会社 Body fat measuring device

Also Published As

Publication number Publication date
JPS63175772A (en) 1988-07-20

Similar Documents

Publication Publication Date Title
US4066950A (en) Circuit for measuring the ground resistance of an ungrounded power circuit
JPH083508B2 (en) Insulation resistance measuring device phase compensation method
JPS61155869A (en) Measuring method of phase-compensated insulation resistance
JPH0552466B2 (en)
JP2617324B2 (en) Insulation resistance measurement method
JPH0640113B2 (en) Simple insulation resistance measuring method
JP2764582B2 (en) Simple insulation resistance measurement method
JP2646089B2 (en) Method for measuring insulation resistance of low-voltage circuit
JPH0814593B2 (en) Stray capacitance compensation method in insulation resistance measurement of electric circuits etc.
JP2942894B2 (en) Measurement method of insulation resistance of three-phase three-wire circuit
JP2696513B2 (en) Electrical capacitance measurement method for ground
JPH0721518B2 (en) Insulation resistance measurement method
JP2614447B2 (en) Insulation resistance measurement method that compensates for the effect of ground resistance
JP2665912B2 (en) Insulation resistance measurement method that compensates for the effect of ground resistance
JPS58127172A (en) Insulation resistance measuring apparatus for electric line with suppressed stray capacity
JP2654549B2 (en) Simple insulation resistance measurement method
JP2942892B2 (en) Measurement method of insulation resistance of ungrounded circuit
JP2750707B2 (en) Insulation resistance measurement method compensated for ground resistance
JP2612703B2 (en) Insulation resistance measurement method with canceling ground resistance
JP2593669B2 (en) Method for locating defective electrical insulation
JP2696223B2 (en) Insulation resistance measurement method
JP2617325B2 (en) Insulation resistance measurement method
RU2028638C1 (en) Method for insulation resistance test in branched dc and ac lines
JP2942893B2 (en) Method for measuring insulation resistance of single-phase three-wire circuit
SU1026100A2 (en) Hall emf meter

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees