JPS63289464A - Insulation resistance measurement compensated for phase - Google Patents

Insulation resistance measurement compensated for phase

Info

Publication number
JPS63289464A
JPS63289464A JP12494587A JP12494587A JPS63289464A JP S63289464 A JPS63289464 A JP S63289464A JP 12494587 A JP12494587 A JP 12494587A JP 12494587 A JP12494587 A JP 12494587A JP S63289464 A JPS63289464 A JP S63289464A
Authority
JP
Japan
Prior art keywords
phase
frequency
insulation resistance
current
signal voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP12494587A
Other languages
Japanese (ja)
Other versions
JPH0721522B2 (en
Inventor
Tatsuji Matsuno
松野 辰治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Communication Equipment Co Ltd
Original Assignee
Toyo Communication Equipment Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Communication Equipment Co Ltd filed Critical Toyo Communication Equipment Co Ltd
Priority to JP12494587A priority Critical patent/JPH0721522B2/en
Publication of JPS63289464A publication Critical patent/JPS63289464A/en
Publication of JPH0721522B2 publication Critical patent/JPH0721522B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Measurement Of Resistance Or Impedance (AREA)

Abstract

PURPOSE:To enable correction of a phase deviation of a measuring signal at all times without requiring a costly part, by permitting automatic adjustment of a phase against variations in phase characteristic of an insulation resistance measuring circuit. CONSTITUTION:An AC signal voltage with a frequency f1 is inputted into an electric circuit through an earth wire of a transformer or through a current transformer connected to the electric circuit. Currents for measuring phases with frequencies f1-fS and f1+fS (f1>>fS) respectively are inputted anew through a connection wire piercing the current transformer. Phase of the AC signal voltage with the frequency f1 necessary for detection of a leakage current compo nent gained from the current transformer synchronizing the AC signal voltage is adjusted automatically so that a component of the frequency fS becomes zero as contained in an output obtained from the synchronous detection. Then, phase deviations caused among equipment of an insulation resistance measuring apparatus are made up for thereby enabling compensation for insulation resis tance of the electric circuit.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は活線状態で電路等の絶縁抵抗を測定する装置の
温度変化或は回路定数の経年変化等に対する補償方法に
関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a method of compensating for temperature changes, secular changes in circuit constants, etc. of a device that measures the insulation resistance of electrical circuits or the like in a live line state.

(従来技術) 従来、漏電等の電路に於けるトラブルの早期発見の為に
例えば第2図に示す如き電路の絶縁抵抗測定方法を用い
電路状態を監視するのが一般的であった。
(Prior Art) Conventionally, it has been common practice to monitor the condition of an electrical circuit using a method of measuring the insulation resistance of the electrical circuit as shown in FIG. 2, for example, in order to detect troubles in the electrical circuit such as leakage at an early stage.

これは負荷Zを有する受電変圧器Tの接地線LEを、商
用電源周波とは異なる周波数J1なる低周波信号発振器
O8Cに接続されたトランスOTに貫通せしめるか、或
いは前記接地線LEに直列に前記発振器を挿入接続する
等して電路1及び電路2に低周波電圧を印加し、前記接
地線LEを貫通せしめた零相変流器ZCTによって電路
と大地間に存在する絶縁抵抗Ro及び対地浮遊容量CO
を介して前記接地線に帰還する前記低周波電圧によシ生
ずる漏洩電流を検出しこれを増幅器AMPで増幅したの
ち、フィルタFILによって周波数j1の成分のみを選
択し、これを例えば前記発振器O8Cの出力信号を用い
て掛算器MULTで同期検波して該漏洩電流中の有効分
(即ち印加低周波電圧と同相の成分)を検出することに
よりミ路の絶縁抵抗を測定するよう構成したものであっ
た。
This is done by passing the grounding wire LE of the power receiving transformer T having the load Z through the transformer OT connected to the low frequency signal oscillator O8C having a frequency J1 different from the commercial power supply frequency, or by passing the grounding wire LE in series with the grounding wire LE. A low frequency voltage is applied to the electrical circuits 1 and 2 by inserting and connecting an oscillator, etc., and the insulation resistance Ro and ground stray capacitance that exist between the electrical circuit and the ground are reduced by the zero-phase current transformer ZCT that penetrates the grounding wire LE. C.O.
After detecting the leakage current caused by the low frequency voltage that returns to the ground line via the amplifier AMP and amplifying it with the amplifier AMP, only the component of frequency j1 is selected by the filter FIL, and this is transmitted to the oscillator O8C, for example. The output signal is used for synchronous detection with a multiplier MULT to detect the effective component of the leakage current (that is, the component in phase with the applied low-frequency voltage), thereby measuring the insulation resistance of the Mi circuit. Ta.

本発明の理解を助けるためにその測定理論を更に説明す
る。
To help understand the present invention, the measurement theory thereof will be further explained.

前記接地線LEに印加される低周波信号電圧を例えば正
弦波としてV sinωlt(ω1=2π、fl)とす
れば、接地点Eを介して接地線Lxに帰還する周波数f
lの漏洩電流Iは と表わされ、印加する交流電圧と同相の成分。
If the low frequency signal voltage applied to the ground line LE is a sine wave, for example, V sinωlt (ω1=2π, fl), then the frequency f that returns to the ground line Lx via the ground point E is
The leakage current I of l is expressed as and is a component in phase with the applied AC voltage.

即ち上記(1)式の右辺第1項の成分に比例した値を同
期検波等の手段で検出すればとの値は絶縁抵抗ROに逆
比例したものとなるから、これによって電路の絶縁抵抗
値を求めることができる。
In other words, if a value proportional to the first term on the right side of equation (1) is detected by means such as synchronous detection, the value will be inversely proportional to the insulation resistance RO. can be found.

しかしこのように前記接地線に帰還する漏洩電流を変流
器ZCTで検出し、史に零相変流器出力に含まれる周波
数f1の漏洩電流成分をフィルタFILで選択出力する
従来の方法では1通常変流器→増幅器→フィルタの系で
周波数flの漏洩電流の位相がずれるから、これらの同
期検波出力からRoに逆比例した値を得るためにはこの
位相ずれを補償する必要がある。
However, in the conventional method, the leakage current that returns to the grounding wire is detected by the current transformer ZCT, and the leakage current component of the frequency f1 included in the zero-phase current transformer output is selected and outputted by the filter FIL. Normally, the phase of the leakage current at frequency fl shifts in the current transformer->amplifier->filter system, so it is necessary to compensate for this phase shift in order to obtain a value inversely proportional to Ro from these synchronous detection outputs.

このために同図に示す如く同期検波器MLILTの第1
の入力端又は第2の入力端に固定の移相器PSを挿入し
、これによって上記位相ずれを補正し互いの同期をとっ
ていた。即ちとの移相器PSを設けることによシ対地浮
遊容量Coがない状態(Co=0)にて、同期検波器の
第1.第2の入力端に印加される電圧の位相差が零とな
るように前もって設定しておくものであった。
For this purpose, as shown in the figure, the first
A fixed phase shifter PS is inserted into the input end or the second input end of the phase shifter PS, thereby correcting the phase shift and achieving mutual synchronization. That is, by providing the phase shifter PS with the phase shifter PS, the first . The phase difference between the voltages applied to the second input terminal was set in advance to be zero.

しかしながら上述の如き従来の方法では変流器ZCT 
、フィルタFIL 、移相器PS等の位相特性は温度変
化または使用部品特性の経年変化等によって変動するた
め、この結果最初の設定値との位相誤差が発生し、正し
い沖1定結果を提供できなくなる欠点があった。これら
に対処するために従来は特性変動の少ない極めて高品質
な変流器或いはフィルタ等を採用することによって位相
誤差の影響を極力小さくしていたが、それでもその影響
を完全に除去することは困難であった。
However, in the conventional method as described above, the current transformer ZCT
The phase characteristics of the filter FIL, phase shifter PS, etc. change due to changes in temperature or changes in the characteristics of the parts used over time. As a result, a phase error with the initial setting value occurs, making it impossible to provide accurate results. There was a drawback that would go away. To deal with these problems, the effects of phase errors have traditionally been minimized by using extremely high-quality current transformers or filters with little characteristic variation, but it is still difficult to completely eliminate the effects. Met.

(発明の目的) 本発明は以上説明したような従来の絶縁抵抗測定方法の
欠点を除去するためになされたものであって、高価な部
品を必要とせず安価に測定信号の位相ずれを常時補正し
、常に正確な測定結果をもたらしうる絶縁抵抗測定方法
を提供することを目的とする。
(Object of the Invention) The present invention has been made in order to eliminate the drawbacks of the conventional insulation resistance measurement method as explained above, and is capable of constantly correcting the phase shift of the measurement signal at low cost without requiring expensive parts. The purpose of the present invention is to provide an insulation resistance measurement method that can always provide accurate measurement results.

(発明の概要) この目的を達成するために本発明では接地線を介して電
路に又該電路に結合した変流器を介して周波数f1の交
流信号電圧を入力すると共に新たに前記変流器を貫通す
る接続線を介し周波数f1−fs並びに周波数fl+、
f’s(ここでft>fs)の位相測定用電流を入力し
、前記変流器よシ得た漏洩電流成分と前記交流信号電圧
とで同期検波することにより得る出力に於て該出力中に
含まれる周波数fsの成分が零になるように同期検波に
必要な周波数f1の交流信号電圧の位相を自動的に調整
し、絶縁抵抗測定装置の各々機器によシ生ずる位相のず
れを補償し電路の絶縁抵抗を補償するものである。
(Summary of the Invention) In order to achieve this object, the present invention inputs an alternating current signal voltage of frequency f1 to an electric line via a grounding line and via a current transformer coupled to the electric line, and also newly inputs an alternating current signal voltage to the current transformer. Frequency f1-fs as well as frequency fl+,
f's (where ft>fs) is input, and the output obtained by synchronously detecting the leakage current component obtained from the current transformer and the AC signal voltage. The phase of the AC signal voltage of frequency f1 necessary for synchronous detection is automatically adjusted so that the component of frequency fs contained in This compensates for the insulation resistance of the electrical circuit.

(発明の実施例) 以下図示した実施例に基づき本発明の詳細な説明する。(Example of the invention) The present invention will be described in detail below based on the illustrated embodiments.

先づ本発明に係る測定方法を説明する前にその理解を助
ける為従来の方法とその欠点を少しく詳細に説明する。
First, before explaining the measuring method according to the present invention, the conventional method and its drawbacks will be explained in some detail to aid understanding.

第(1)式にて示される周波数f1の漏洩電流成分工が
第2図の変流器ZCT 、増幅器AMP 。
The leakage current component of frequency f1 shown by equation (1) is current transformer ZCT and amplifier AMP in FIG.

フィルタFILの系を通過する際発生する位相ずれをθ
とすればフィルタFIL出力■1は・・・・・・・・・
(2) となシ、これは同期検波器MULTの第1の入力端に印
加される。
The phase shift that occurs when passing through the filter FIL system is θ
Then, the filter FIL output ■1 is...
(2) This is applied to the first input of the synchronous detector MULT.

また掛算器MULTの第2の入力端に印加される電圧を
例えば一定振幅のa。5in(ω1t+01)とすれば
、掛算器M[JLT2の出力りは(□は角周波数01以
上−の成分 を除去することを意味する) ・・・・・・・・・(4) 従ってθ=θlのときの出力Doは とな’)+■+aoは一定となるから絶縁抵抗R。
Further, the voltage applied to the second input terminal of the multiplier MULT is set to, for example, a constant amplitude a. 5in (ω1t+01), the output of the multiplier M[JLT2 is (□ means to remove the component with an angular frequency of 01 or more -) (4) Therefore, θ= Since the output Do when θl is constant, the insulation resistance R is +■+ao.

に逆比例した値を測定することができる。したがって位
相ずれθ−01が零でない時の上記り。
A value that is inversely proportional to can be measured. Therefore, the above is true when the phase shift θ-01 is not zero.

に対するDの誤差Eは = l −cos (θ−θ1)−ωIC0ROsin
 (θ−01)・・・・・・(6)となる。
The error E of D is = l −cos (θ−θ1)−ωIC0ROsin
(θ-01)...(6).

今1位相ずれの影響を検討するために例えば位相誤差を
θ−θ1−1(度)とすれば、(6)式にてfl=25
Hzで、Ro=20にΩyCo=5〃Fとするときωx
coRo?15.7となるがら誤差εは27.4チとな
り著しく測定誤差が大きくなることが分る。
Now, in order to examine the influence of phase shift, for example, if the phase error is θ-θ1-1 (degrees), fl=25 in equation (6).
Hz, when Ro=20 and ΩyCo=5〃F, ωx
coRo? 15.7, but the error ε is 27.4 inches, indicating that the measurement error becomes significantly large.

本発明は上述の位相ずれに伴う誤差の発生を極力抑える
方法を提案するものである。
The present invention proposes a method for suppressing the occurrence of errors due to the above-mentioned phase shift as much as possible.

第1図は本発明に係る絶縁抵抗測定方法の一実施例を示
す回路図であって第2図と同一の記号は同一の意味をも
つものとする。即ち、同図に於てTは変圧器、1及び2
はこの変圧器の2次側低電路であって該電路2には第2
種接地工事を施した接地線LEが接続される。該接地線
LEにはトランスOT及び変流器ZCTとが結合され、
前記変流器ZCTの出力端は増幅器AMP1とフィルタ
FILを介し同期検波器MULT1の一入力端と接続し
、該MLILT1の他の入力端は位相制御回路PCの一
端と接続される。更に前記変流器ZCTには位相制御回
路PCよシ掛算器MULT2 、増幅器AMP2 、及
び抵抗r。
FIG. 1 is a circuit diagram showing an embodiment of the insulation resistance measuring method according to the present invention, and the same symbols as in FIG. 2 have the same meanings. That is, in the same figure, T is a transformer, 1 and 2
is the secondary side low current circuit of this transformer, and the second
A grounding wire LE that has undergone preliminary grounding work is connected. A transformer OT and a current transformer ZCT are coupled to the ground line LE,
The output end of the current transformer ZCT is connected to one input end of a synchronous detector MULT1 via an amplifier AMP1 and a filter FIL, and the other input end of MLILT1 is connected to one end of a phase control circuit PC. Furthermore, the current transformer ZCT includes a phase control circuit PC, a multiplier MULT2, an amplifier AMP2, and a resistor r.

を接続した接続線3を介し接続する。前記MLILT2
の他の入力端には位相制御回路PCから90°移相器P
Sを介し接続し、トランスOTの一次側には位相制御回
路PCより電力増幅器PAMPを介し接続する。一方M
IJLTIの出力端はフィルタBP及び整流器DETを
介し位相制御回路PCと接続する。なお前記位相制御回
路PCには周波数f1及びfsなる信号発振源及び位相
制御装置を持つ。
The connection is made via the connection line 3 which is connected to the . Said MLILT2
The other input terminal of the 90° phase shifter P is connected to the phase control circuit PC.
The phase control circuit PC is connected to the primary side of the transformer OT via a power amplifier PAMP. On the other hand, M
The output end of IJLTI is connected to phase control circuit PC via filter BP and rectifier DET. Note that the phase control circuit PC has a signal oscillation source with frequencies f1 and fs and a phase control device.

上記の如く構成した回路に於ける各装置の動作及び各ブ
ロックの機能を数式を用いて以下詳細に説明する。
The operation of each device and the function of each block in the circuit configured as described above will be explained in detail below using mathematical formulas.

掛算器MULT2の一入力端に位相制御回路PCよシ周
波数fsなる信号acO5ωs(a+5==2jrf5
 ) Y入力し、前記MULT2の他の入力端には前記
位相制御回路PCよシ90°移相器PSを介して周波数
f1なる信号e。cosω1tを入力すると掛算器ML
ILT2の出力eは e=aeocosω1t11ωSωst= ]1(co
s (ω1柚s)t+ω5(ω1→5)tJ  ・・・
・・・(7)となる。
A signal acO5ωs (a+5==2jrf5
), and a signal e having a frequency f1 is input to the other input terminal of the MULT2 through the phase control circuit PC and the 90° phase shifter PS. When cosω1t is input, the multiplier ML
The output e of ILT2 is e=aeocosω1t11ωSωst= ]1(co
s (ω1yus)t+ω5(ω1→5)tJ...
...(7).

従って増幅器AMP2の出力よシ接続線3に流れる電流
1′は ■′=□ O e = < (cos (ω1−1−6+5)i+ωS(ω
1”−”5)tJ −・−・−(81となる。一方接地
線LEには位相制御回路PCよシミ力増幅器PAMP及
びトランスOTを介してVsinω1t  なる電圧を
与えることにより、変流器ZCTの出力は(2)式に相
当する漏洩電流成分I及び接続線3を介して入力される
(8)式に相当する電流I′を得る。
Therefore, the current 1' flowing from the output of the amplifier AMP2 to the connection line 3 is: ■'=□ O e = < (cos (ω1-1-6+5)i+ωS(ω
1"-"5) tJ -・-・-(81) On the other hand, by applying a voltage of Vsinω1t to the ground line LE via the phase control circuit PC, the bias power amplifier PAMP, and the transformer OT, the current transformer ZCT As the output, a leakage current component I corresponding to the equation (2) and a current I' corresponding to the equation (8) inputted via the connection line 3 are obtained.

前記変流器ZCTの出力電流I+I’を増幅器AMPを
介しフィルタに入力すると、該フィルタFIL の出力
は前記増幅器AMP及びフィルタF I Lによる位相
のずれを生じた電流I+1 ’と彦る。
When the output current I+I' of the current transformer ZCT is input to the filter via the amplifier AMP, the output of the filter FIL becomes the current I+1' with a phase shift caused by the amplifier AMP and the filter F I L.

前記I+I’をIOとするとIoは t十〇−1)〕   ・・・叫−・(9)ここでθ1及
びθ−1は周波数f1+fs及びfl−fsにおける変
流器ZCT→増幅器AMP→フィルタFILの系におけ
る位相推移量である。
If the above I+I' is IO, then Io is t10-1)]... (9) Here, θ1 and θ-1 are current transformer ZCT → amplifier AMP → filter FIL at frequencies f1+fs and fl-fs. is the amount of phase shift in the system.

前記フィルタ出力電流■0を同期検波器M[JLTlの
一入力端に、他の入力端には位相制御回路PCよシ周波
数f1なる交流電圧a。sin (ωft+θ′)を入
力すれば該同期検波器MLILTIの出力D′は (は周波数fs以下の成分。
The filter output current (1)0 is input to one input terminal of the synchronous detector M[JLTl, and the other input terminal is connected to the phase control circuit PC and an alternating current voltage a having a frequency f1. If sin (ωft+θ') is input, the output D' of the synchronous detector MLILTI is a component below the frequency fs.

θ′は位相補償のための移相量) −2シー立(sin(−ωst+L1−0’)+sln
(mst十θ□−θ′月 ・・・・・・・・・ (9) ところで ωS(ω1なるから と近似でき、 C111式に(転)式を代入すると(!
−にょシae、a、 sin (θ−θ’ ) cos
 (ωs t 十−シーーコ)・・・・・・・・・ (
2) となる。θ=θ′のときには(至)式からも明らかな如
く第2項の周波数fsの成分は零とな)更に第1項で表
わされる同期検波器出方D′の直流分もとな多電路の絶
縁抵抗を測定しうるこ七が分かる。即ち、同期検波器M
ULTIの出力θ′中の周波数fSの成分をフィルタB
Pで検出し、その出力を整流器DETで整流し、該整流
器DET出力の直流分が零となるように位相制御回路P
Cから同期検波器MIJLTIに入力する電圧a。sI
I+(ω1を十θ′)の位相補償のための移相量θ′を
自動調整すれば9位相推移量0の影響を受けずに電路の
絶縁抵抗を測定することが可能である。
θ' is the amount of phase shift for phase compensation) -2 C(sin(-ωst+L1-0')+sln
(mst 10θ□−θ′ month...... (9) By the way, since ωS(ω1), it can be approximated, and by substituting the (conversion) equation into the C111 equation, (!
-Nyosha ae, a, sin (θ-θ') cos
(ωs t 10-sheiko)・・・・・・・・・ (
2) It becomes. When θ = θ', the frequency fs component of the second term is zero, as is clear from equation (to)).Furthermore, the DC component of the synchronous detector output D' expressed by the first term is the original multi-current circuit. You can find out how to measure the insulation resistance of That is, the synchronous detector M
The frequency fS component in the output θ' of ULTI is filtered by filter B.
P, the output is rectified by a rectifier DET, and a phase control circuit P is set so that the DC component of the output of the rectifier DET becomes zero.
Voltage a input from C to synchronous detector MIJLTI. sI
If the phase shift amount θ' for phase compensation of I+ (ω1 is 10θ′) is automatically adjusted, it is possible to measure the insulation resistance of the electric circuit without being affected by the phase shift amount 0.

又、第3図に示す如く同期検線器MLILTIの出力D
′と位相制御回路PCから掛算器MULT2の一入力端
に入力する電圧Bcosωstとを更に掛算器MLIL
T3の入力端に夫々入力することにより該ML]LT3
の出力D I+には D” = D ’  x  acoSωsi0□−θ−
1 十rtrs    、   J となシ、この直流分doは ωS(ωlのとき cos−L−1≧1 であるからθ
〉θ′のときには do<O,θくθ′ のときにはd
o>0となることにょヤ該直流分doを測定することに
ょシ位相θ′の制御方向をも判定することか可能である
Also, as shown in Fig. 3, the output D of the synchronous line detector MLILTI
′ and the voltage Bcosωst input from the phase control circuit PC to one input terminal of the multiplier MULT2 are further applied to the multiplier MLIL.
By inputting the respective input terminals of T3, the corresponding ML]LT3
For the output D I+, D” = D' x acoSωsi0□−θ−
1 rtrs, J, this DC component do is ωS (when ωl, cos-L-1≧1, so θ
〉θ′, do<O, when θ×θ′, d
If o>0, it is possible to determine the control direction of the phase θ' by measuring the DC component do.

なお上記説明においては位相調整をするに当)、同期検
波器の第2の入力に印加される信号の位相を調整する如
くしたが、同期検波器の第1の入力に印加されるフィル
タFILの出力信号の位相を調整しても同一の結果が得
られるととは明らかである。
In the above explanation, when performing phase adjustment), the phase of the signal applied to the second input of the synchronous detector is adjusted, but the phase of the filter FIL applied to the first input of the synchronous detector is It is clear that the same result can be obtained by adjusting the phase of the output signal.

更に接続線3に流す周波数fx+fs並びにfx−fs
なる電流を得るのに電圧acosωstの信号及び電圧
e sir+ωItの信号との積にょ)得た信号によ多
発生させていたが、これに限定されるものではなく9位
相制御回路内にクロック発生器を設けることによシ周波
数fl+fs及びfl−fs力る成分の電流を発生して
もよいことは明らかである。
Furthermore, the frequencies fx+fs and fx-fs sent to the connection line 3
In order to obtain a current of It is clear that by providing a current having a frequency fl+fs and fl-fs, it is possible to generate a current having a component that applies the frequencies fl+fs and fl-fs.

また上記実施例では単相2線式電路の場合で示したが、
単相3線式電路、3相3線式電路であってもよい。
In addition, although the above example shows the case of a single-phase two-wire electric circuit,
It may be a single-phase three-wire electric circuit or a three-phase three-wire electric circuit.

(発明の効果) 以上説明したごとく9本発明は絶縁抵抗測定回路の位相
特性変動を自動位相調整を可能にするものであるから極
めて安定な測定方法を実現するうえで著効を奏するもの
である。
(Effects of the Invention) As explained above, the present invention enables automatic phase adjustment of fluctuations in phase characteristics of an insulation resistance measuring circuit, and is therefore very effective in realizing an extremely stable measuring method. .

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示すブロック図、第2図は
従来の絶縁抵抗を測定する方法を示すブロック図、第3
図は本発明の変形実施例を示すブロック図である。 T・・・・・・・・・トランス、   1,2・・・・
・・・・・電路。 LE・・・・・・・・・接地線、   E・・・・・・
・・・接地点。 ZCT・・・・・・・・・変流器、    AMP・−
・・・・・・・増幅i 、    FIL・・・・・・
・・・フィルタ。 MULT 、MULTl、MTJLT2 、MTJLT
3−・・0.。 ・・・掛算回路、    OT・・・・・・・・・印加
トランスPS・・・・・・・・・移相器、    PC
・・・・・・・・・位相制御回路、    BP・・・
・・・・・・フィルタ。 DET・・・・・・・・・整流回路。 特許出願人  東洋通信機株式会社 第 3 図
Fig. 1 is a block diagram showing an embodiment of the present invention, Fig. 2 is a block diagram showing a conventional method for measuring insulation resistance, and Fig. 3 is a block diagram showing an embodiment of the present invention.
The figure is a block diagram showing a modified embodiment of the present invention. T......Trans, 1,2...
...Electric circuit. LE・・・・・・Ground wire, E・・・・・・
...Grounding point. ZCT・・・・・・・・・Current transformer, AMP・-
・・・・・・Amplification i, FIL・・・・・・
···filter. MULT, MULTl, MTJLT2, MTJLT
3-...0. .・・・Multiplier circuit, OT・・・・・・・Input transformer PS・・・・・・・Phase shifter, PC
...... Phase control circuit, BP...
······filter. DET・・・・・・・・・ Rectifier circuit. Patent applicant: Toyo Tsushinki Co., Ltd. Figure 3

Claims (1)

【特許請求の範囲】[Claims] 変圧器の接地線を介して電路に、又は該電路に結合した
変流器を介して前記電路に周波数f_1の交流信号電圧
を入力し、前記接地線に帰還する周波数f_1の漏洩電
流成分を検出したものを前記交流信号電圧で同期検波す
ることにより得られる出力から前記電路と大地間の絶縁
抵抗を測定する方法に於て、前記変流器を新たに貫通す
る接続線に周波数f_1−f_s並びに周波数f_1+
f_sの位相測定用電流を印加し、接地線に帰還する漏
洩電流成分と前記交流信号電圧とで同期検波することに
より得る出力に於て該出力中に含まれる周波数f_sの
成分が零に近づくよう前記交流信号電圧の位相を調整す
ることを特徴とした位相補償した絶縁抵抗測定方法。
Input an alternating current signal voltage of frequency f_1 to the electric line through the grounding line of the transformer or to the electric line via a current transformer coupled to the electric line, and detect the leakage current component of frequency f_1 that returns to the grounding line. In the method of measuring the insulation resistance between the electrical circuit and the ground from the output obtained by synchronously detecting the current transformer using the AC signal voltage, the frequencies f_1-f_s and Frequency f_1+
In the output obtained by applying a phase measuring current of f_s and synchronously detecting the leakage current component that returns to the ground wire and the AC signal voltage, the frequency component of the frequency f_s included in the output approaches zero. A method for measuring insulation resistance with phase compensation, characterized in that the phase of the alternating current signal voltage is adjusted.
JP12494587A 1987-05-21 1987-05-21 Insulation resistance measurement method with phase compensation Expired - Lifetime JPH0721522B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12494587A JPH0721522B2 (en) 1987-05-21 1987-05-21 Insulation resistance measurement method with phase compensation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12494587A JPH0721522B2 (en) 1987-05-21 1987-05-21 Insulation resistance measurement method with phase compensation

Publications (2)

Publication Number Publication Date
JPS63289464A true JPS63289464A (en) 1988-11-25
JPH0721522B2 JPH0721522B2 (en) 1995-03-08

Family

ID=14898085

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12494587A Expired - Lifetime JPH0721522B2 (en) 1987-05-21 1987-05-21 Insulation resistance measurement method with phase compensation

Country Status (1)

Country Link
JP (1) JPH0721522B2 (en)

Also Published As

Publication number Publication date
JPH0721522B2 (en) 1995-03-08

Similar Documents

Publication Publication Date Title
US4857830A (en) Method for measuring insulation resistance of electric line
US4851761A (en) Method for measuring insulation resistance of electric line
US4999564A (en) Power system stabilizer system having improved integrity checking scheme
JP2617324B2 (en) Insulation resistance measurement method
JPS63289464A (en) Insulation resistance measurement compensated for phase
JPS61155869A (en) Measuring method of phase-compensated insulation resistance
JPH0552466B2 (en)
JP2696513B2 (en) Electrical capacitance measurement method for ground
JP2646089B2 (en) Method for measuring insulation resistance of low-voltage circuit
JP2696510B2 (en) Measurement method of insulation resistance of electric circuit
JPS63175772A (en) Phase compensating method for insulation resistance measuring instrument
JPH0721523B2 (en) Insulation resistance measurement method that compensates for fluctuations in circuit constants
JP2764582B2 (en) Simple insulation resistance measurement method
JPS637349B2 (en)
JP2612703B2 (en) Insulation resistance measurement method with canceling ground resistance
JP2556980B2 (en) Electric fault detection method
JPH0721520B2 (en) Insulation resistance measurement method with phase compensation
JP2896574B2 (en) Compensation method for phase characteristics of zero-phase current transformer
JPS63153478A (en) Measuring method for insulation resistance
JP2614447B2 (en) Insulation resistance measurement method that compensates for the effect of ground resistance
JPH0814593B2 (en) Stray capacitance compensation method in insulation resistance measurement of electric circuits etc.
JPS63204161A (en) Phase correction for insulation resistance measuring apparatus
JPS6327767A (en) Position compensation method in insulating resistance measuring apparatus
JP2896572B2 (en) Simple insulation resistance measurement method
JP2593669B2 (en) Method for locating defective electrical insulation

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080308

Year of fee payment: 13