JPS6327767A - Position compensation method in insulating resistance measuring apparatus - Google Patents

Position compensation method in insulating resistance measuring apparatus

Info

Publication number
JPS6327767A
JPS6327767A JP17132586A JP17132586A JPS6327767A JP S6327767 A JPS6327767 A JP S6327767A JP 17132586 A JP17132586 A JP 17132586A JP 17132586 A JP17132586 A JP 17132586A JP S6327767 A JPS6327767 A JP S6327767A
Authority
JP
Japan
Prior art keywords
phase
voltage
frequency
low frequency
output
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP17132586A
Other languages
Japanese (ja)
Other versions
JPH0731219B2 (en
Inventor
Tatsuji Matsuno
松野 辰治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Communication Equipment Co Ltd
Original Assignee
Toyo Communication Equipment Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Communication Equipment Co Ltd filed Critical Toyo Communication Equipment Co Ltd
Priority to JP61171325A priority Critical patent/JPH0731219B2/en
Publication of JPS6327767A publication Critical patent/JPS6327767A/en
Publication of JPH0731219B2 publication Critical patent/JPH0731219B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Measurement Of Resistance Or Impedance (AREA)

Abstract

PURPOSE:To always perform accurate measurement by correcting the phase shift of a measuring signal, by a method wherein a switch means is repeatedly turned ON and OFF at a predetermined interval and the phase theta1 of voltage applied to the second input terminal of a synchronous detector so that the predetermined frequency component contained in the output of the synchronous detector always becomes zero. CONSTITUTION:The value of the predetermined resistor inserted between electric circuit 1, 2 and the ground is changed at random at a repeated cycle T and a time interval tau. A leak current component is synchronously detected on the basis of voltage shifted by 90 deg. in a phase from low frequency signal voltage by a synchronous detector MULT2 separately provided to obtain output and, so as to allow the frequency component of frequency 1/T contained in said output to approach zero, the low frequency signal voltage applied to the synchronous detector MULT2 and the phase of voltage shifted by 90 deg. in a phase from low frequency signal voltage are adjusted automatically. By this method, accurate and stable measurement can be always performed.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は活線状態で電路等の絶縁抵抗を測定する装置の
温度変化或は回路定数の経年変化等に対する補償方法に
関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a method of compensating for temperature changes, secular changes in circuit constants, etc. of a device that measures the insulation resistance of electrical circuits or the like in a live line state.

(従来技術) 従来、漏電等の電路に於けるトラブルの早期発見の為に
例えば第4図に示す如き電路の絶縁抵抗測定方法を用い
電路状態を監視するのが一般的であった。
(Prior Art) Conventionally, it has been common practice to monitor the condition of an electrical circuit using a method of measuring the insulation resistance of the electrical circuit, as shown in FIG.

これは負荷Zを有する受電変圧器Tの接地線LEを、商
用電源周波とは異なる周波数f1なる低周波信号発揚器
O8Cに接続されたトランスOTに貫通せしめるか、或
いは前記接地線LP:に直列に前記発振器を挿入接続す
る等して電路1及び電路2に低周波電圧を印加し、前記
接地線Lvを貫通せしめた零相変流器ZCTによって電
路と大地間に存在する絶縁抵抗Ro及び対地浮遊容量C
oを介して前記接地線に帰還する前記低周波電圧により
生ずる漏洩電流を検出しこれを増幅器AMPで増幅した
のち、フィルタFILによって周波数f1の成分のみを
選択し、これを例えば前記発振器O8Cの出力信号を用
いて掛算器MULTで同期検波して該漏洩電流中の有効
分(即ち印加低周波電圧と同相の成分)を検出すること
により電路の絶縁抵抗を測定するよう構成したものであ
った。
This is done by passing the grounding wire LE of the power receiving transformer T with the load Z through the transformer OT connected to the low frequency signal generator O8C having a frequency f1 different from the commercial power supply frequency, or by connecting the grounding wire LE in series with the grounding wire LP: A low frequency voltage is applied to the electrical circuits 1 and 2 by inserting and connecting the oscillator, etc., and the insulation resistance Ro existing between the electrical circuit and the ground and the grounding are Stray capacitance C
After detecting the leakage current caused by the low-frequency voltage that returns to the grounding line via O and amplifying it with the amplifier AMP, only the frequency f1 component is selected by the filter FIL, and this is used as the output of the oscillator O8C, for example. The structure was such that the insulation resistance of the electrical circuit was measured by synchronously detecting the signal using a multiplier MULT and detecting the effective component (ie, the component in phase with the applied low-frequency voltage) in the leakage current.

本発明の理解を助ける九めにその測定理論を更に説明す
る。
Ninth, the measurement theory will be further explained to help understand the present invention.

前記接地線LEに印加される低周波信号電圧を例えば正
弦波としてE sinω11(ω1=2πfl)とすれ
ば、接地点Eを介して接地線Lzに帰還する周波数f1
の漏洩電流工は と表わされ、印加する交流電圧と同相の成分。
If the low frequency signal voltage applied to the ground line LE is a sine wave, for example, E sin ω11 (ω1 = 2πfl), then the frequency f1 returned to the ground line Lz via the ground point E is
The leakage current is expressed as the component that is in phase with the applied AC voltage.

即ち上記(1)式の右辺第1項の成分に比例した値を同
期検波等の手段で検出すればこの値は絶縁抵抗Roに逆
比例したものとなるから、これによって電路の絶縁抵抗
値を求めることができる。
In other words, if a value proportional to the first term on the right-hand side of equation (1) is detected using a means such as synchronous detection, this value will be inversely proportional to the insulation resistance Ro. You can ask for it.

しかしこのように前記接地線に帰還する漏洩電流な零相
変流器ZCTで検出し、更に零相変流器出力に含まれる
周波数f1の漏洩電流成分をフィルタFILで選択出力
する従来の方法では、通常零相変流器→増幅器→フィル
タの系で周波数f1の漏洩電流の位相がずれるから、こ
れらの同期検波出力からROに逆比例した値を得るため
にはこの位相ずれを補償する必要がある。1このために
同図に示す如く同期検波器MtJLTの第1の入力端又
は第2の入力端に固定の移相器PSを挿入し、これによ
って上記位相ずれを補正し互いの同期をとっていた。即
ちとの移相器PSを設けることにより対地浮遊容量Co
がない状態(Co=O)にて、同期検波器の第1.第2
の入力端に印加される電圧の位相差が零となるように前
もって設定しておくものであった。
However, in the conventional method, the leakage current returning to the ground line is detected by the zero-phase current transformer ZCT, and the leakage current component of the frequency f1 included in the output of the zero-phase current transformer is selectively outputted by the filter FIL. , the phase of the leakage current at frequency f1 usually shifts in the zero-phase current transformer → amplifier → filter system, so it is necessary to compensate for this phase shift in order to obtain a value inversely proportional to RO from these synchronous detection outputs. be. 1 For this purpose, as shown in the figure, a fixed phase shifter PS is inserted into the first input terminal or second input terminal of the synchronous detector MtJLT, thereby correcting the above phase shift and achieving mutual synchronization. Ta. That is, by providing a phase shifter PS with
In the state where there is no Co=O, the first . Second
The phase difference between the voltages applied to the input terminals was set in advance to be zero.

しかしながら上述の如き従来の方法では零相変流15Z
cT、フィルタFIL 、移相器PS等の位相特性は温
度変化ま之は使用部品特性の経年変化等によって変動す
るため、この結果最初の設定値との位相誤差が発生し、
正しい測定結果を提供できなくなる欠点があり念。これ
らに対処するために従来は特性変動の少ない極めて高品
質な零相変流器或いはフィルタ等を採用することによっ
て位相誤差の影響を極力小さくしていたが、それでもそ
の影響を完全に除去することは困難であった。
However, in the conventional method as described above, zero-phase current transformation 15Z
The phase characteristics of cT, filter FIL, phase shifter PS, etc. fluctuate due to temperature changes and secular changes in the characteristics of the parts used, resulting in a phase error with the initial setting value.
Please note that there is a drawback that it may not be possible to provide accurate measurement results. In order to deal with these problems, the influence of phase errors has traditionally been minimized by using extremely high-quality zero-phase current transformers or filters with little characteristic variation, but it is still difficult to completely eliminate the influence. was difficult.

:発明の目的) 本発明は以上説明したような従来の絶縁抵抗測定方法の
欠点を除去するためになされたものであって、高価な部
品を必要とせず安価に測定信号の位相ずれを常時補正し
、常に正確な測定結果をもたらしつる絶縁抵抗測定方法
を提供することを目的とする。
(Object of the Invention) The present invention has been made to eliminate the drawbacks of the conventional insulation resistance measurement method as explained above, and it is possible to constantly correct the phase shift of the measurement signal at low cost without requiring expensive parts. The purpose of the present invention is to provide a method for measuring insulation resistance that always provides accurate measurement results.

(発明の概要) 本発明はこの目的達成のため、前記被測定電路と大地と
の間に強制的に所定値の抵抗を挿入し、この接続を一定
周期又は所定間隔でランダムに接をくり返えすとともに
、該抵抗を介して大地に流れ前記接地線に還流する低周
波の漏洩電流信号を前記低周波電圧より90’シフトし
た電圧で同期検波することにより検出しこの出力信号中
に含まれる前記抵抗の断続周期で定まる所定周波数成分
が零と彦るように前記同期検波器の第2の入力端に印加
する前記低周波電圧より90°シフトした電圧の位相を
調整するように、更にはこの調整を自動的に行なうよう
構成する。
(Summary of the Invention) In order to achieve this object, the present invention forcibly inserts a resistance of a predetermined value between the electrical circuit to be measured and the ground, and repeats this connection randomly at a fixed period or at a predetermined interval. At the same time, a low frequency leakage current signal flowing to the ground through the resistor and flowing back to the ground wire is detected by synchronous detection with a voltage shifted by 90' from the low frequency voltage, and the signal contained in this output signal is detected. Further, the phase of the voltage shifted by 90° from the low frequency voltage applied to the second input terminal of the synchronous detector is adjusted so that a predetermined frequency component determined by the intermittent period of the resistor becomes zero. Configure adjustments to occur automatically.

(実施例) 先ず本発明に係る測定方法を説明する前にその理解を助
ける為従来の方法とその欠点を少しく詳細に説明する。
(Example) First, before explaining the measuring method according to the present invention, a conventional method and its drawbacks will be explained in some detail in order to facilitate understanding thereof.

第(1)式にて示される周波数f1の漏洩電流信号工が
第4図の零相変流器ZCT 、増幅器AMP、フィルタ
FILO系を通過する際発生する位相ずれをθとすれば
フィルりFIL出力Ifは・・・・・・・・・(2) となり、これは同期検波器MULTの第1の入力端に印
加される。
If the phase shift that occurs when the leakage current signal of frequency f1 shown in equation (1) passes through the zero-phase current transformer ZCT, amplifier AMP, and filter FILO system shown in Fig. 4 is θ, then the filter FIL is The output If becomes (2) and is applied to the first input terminal of the synchronous detector MULT.

また同期検波器MULTの第2の入力端に印加される電
圧を例えば一定振幅のa。sin (ωIt+θ1)と
すれば、同期検波器の出力りは (□は角周波数01以上の成分 を除去することを意味する) ・・・・・・・・・(4) 従ってθ=01のときの出力Doは となり、v、aoは一定となるから絶縁抵抗ROに逆比
例した値を測定することができる。したがって位相ずれ
θ−01が零でない時の上記DOに対するDの誤差Eは =1→S(θ−01)−ωs CoRo sin(θ−
01)・・・・・・(6)となる。
Further, the voltage applied to the second input terminal of the synchronous detector MULT is set to, for example, a constant amplitude a. If sin (ωIt+θ1), then the output of the synchronous detector is (□ means that components with an angular frequency of 01 or higher are removed) ・・・・・・・・・(4) Therefore, when θ=01 The output Do is as follows, and since v and ao are constant, it is possible to measure a value that is inversely proportional to the insulation resistance RO. Therefore, when the phase shift θ-01 is not zero, the error E of D with respect to the above DO is = 1 → S(θ-01)-ωs CoRo sin(θ-
01)...(6).

今9位相ずれの影響を検討するために例えば位相誤差を
θ−θ1=1(度)とすれば、(6)式にてjt=25
Hzで、Ro=20にΩ、C0=5/JFとするときω
ICoRo ”E 15.7  となるから誤差εは2
7.4俤となり著しく測定誤差が大きくなることが分る
Now, in order to examine the influence of phase shift, for example, if the phase error is θ - θ1 = 1 (degree), then jt = 25 in equation (6).
Hz, Ro=20, Ω, C0=5/JF, then ω
ICoRo ”E 15.7, so the error ε is 2
It can be seen that the measurement error becomes 7.4 yen, which significantly increases the measurement error.

本発明は上述の位相ずれに伴う誤差の発生を極力抑える
方法を提案するものである。
The present invention proposes a method for suppressing the occurrence of errors due to the above-mentioned phase shift as much as possible.

第1図は本発明に係る絶縁抵抗測定方法の一実施例を示
す回路図であって第4図と同一の記号は同一の意味をも
つものとする。
FIG. 1 is a circuit diagram showing an embodiment of the insulation resistance measuring method according to the present invention, and the same symbols as in FIG. 4 have the same meanings.

即ち、同図に於いてTは変圧器、1及び2はこの変圧器
の2次側低圧電路であって、その−方2には第2種接地
工事を施し之接地線LEが接続され、更に該接地線LE
Kfi低周波発振器O8Cを接続した低インピーダンス
のトランスOTと零相変流器ZCTとが結合されている
That is, in the same figure, T is the transformer, 1 and 2 are the secondary low-voltage electric lines of this transformer, and the -2 side is connected to the grounding line LE which has undergone type 2 grounding work. Furthermore, the ground wire LE
A low-impedance transformer OT connected to a Kfi low-frequency oscillator O8C is coupled to a zero-phase current transformer ZCT.

又、この零相変i器ZC’l’の出力は増幅器AMPと
フィルタFILとを介して掛算器MULTIの一入力端
に導かれる。
Further, the output of this zero-phase transformer ZC'l' is guided to one input terminal of a multiplier MULTI via an amplifier AMP and a filter FIL.

この実施例では上述したものの他に、更に抵抗Rとスイ
ッチ手段8Wとの直列回路を前記接地電路2と大地のア
ース点Eとの間に挿入し。
In this embodiment, in addition to what has been described above, a series circuit consisting of a resistor R and a switch means 8W is further inserted between the grounding conductor 2 and the earthing point E.

該スイッチ手段SWを前記低周波信号発娠器O8Cの出
力にてコントロールされた位相制御回路PCによって制
御する。
The switch means SW is controlled by a phase control circuit PC controlled by the output of the low frequency signal generator O8C.

又、零相変流器出力を増幅器AMPとフィルタFILと
を介して得た出力の一部を第2の同期検波器MULT2
 、バンドパスフィルタBP及び整流回路DETの直列
回路に入力し、該整流回路出力でもって前記位相制御回
路PCをコントロールする。
Further, a part of the output obtained from the zero-phase current transformer output via the amplifier AMP and the filter FIL is sent to the second synchronous detector MULT2.
, a bandpass filter BP and a rectifier circuit DET in series, and the phase control circuit PC is controlled by the output of the rectifier circuit.

更に、前記第1及び第2の同期検波器MULT1とMU
LT2のもう一方の入力端には前記位相制御回路PCか
ら得た出力を前者には直接、後者には90°移相器PS
8を介して夫々入力すると共に、前者第1の同期検波器
MULTI出力を一方の入力端に前記位相制御回路PC
の一出力を入力せしめた引算器SUBを介して所望の出
力信号0UT2として導出するよう構成したものである
Furthermore, the first and second synchronous detectors MULT1 and MU
At the other input terminal of LT2, the output obtained from the phase control circuit PC is directly connected to the former, and the 90° phase shifter PS is connected to the latter.
8, and the output of the former first synchronous detector MULTI is connected to one input terminal of the phase control circuit PC.
The configuration is such that a desired output signal 0UT2 is derived through a subtracter SUB to which one output of 0UT2 is input.

このように構成した装置の動作及び各ブロックの機能を
数式を用いつつ以下詳細に説明する。
The operation of the apparatus configured as described above and the functions of each block will be explained in detail below using mathematical formulas.

即ち、接地電路2と接地点8間に挿入した前記スイッチ
手段SWがオンのときに接地線LE流が追加されて流れ
ることになり、接地線LEに流れる印加低周波成分の漏
洩電流工0は’O”” (’  +−りVsinω1t
+ω1CoVcosωtt −−−−−−(71Ro 
   R となる。したがってフィルタFILの出カニ2は(2)
式の関係から 十〇) ・・・・・・・・・(8) となる。
That is, when the switch means SW inserted between the grounding line 2 and the grounding point 8 is on, the grounding line LE current flows additionally, and the leakage current 0 of the applied low frequency component flowing through the grounding line LE is 'O""(' +-riVsinω1t
+ω1CoVcosωtt −−−−−−(71Ro
It becomes R. Therefore, output 2 of filter FIL is (2)
From the relationship of the formula, it becomes 10) ・・・・・・・・・(8).

そこで同期検波器MULTIの第2の入力端子に印加さ
れる電圧をa。5in(ω1を十01)とし、この電圧
を90°移相器PSSに印加することにより得られる電
圧a。cos(ωz t+a t )を同期検波器MU
LT2の第2の入力端子に印加すれば、同期検波器Mt
JLT2の出力Dtは ωS(θ−01) (□の意味は(3)式と同様) ・・−・・・・・・(9) となる。
Therefore, the voltage applied to the second input terminal of the synchronous detector MULTI is a. 5 inches (ω1 is 1001) and voltage a obtained by applying this voltage to the 90° phase shifter PSS. cos(ωz t+a t ) as a synchronous detector MU
If applied to the second input terminal of LT2, the synchronous detector Mt
The output Dt of JLT2 is ωS(θ−01) (the meaning of □ is the same as in equation (3)).

ここで、前記スイッチ手段SWの開閉周期な2π T(ここでT >> −)  とすれば(9)式のW、
1項にω1 含まれるRの値が周期Tで変るため同期検波器MULT
2の出力D1には周波数1/Tの成分が生ずることにな
る。
Here, if 2π T (here T >> -) is the opening/closing period of the switch means SW, then W in equation (9),
Since the value of R included in the first term ω1 changes with the period T, the synchronous detector MULT
In the output D1 of 2, a component of frequency 1/T is generated.

そこで、同期検波器MULT2の出力を周波数1/Tの
成分のみをとり出すフィルタBPに印加すれば、該フィ
ルタBPの出力Aは と表すことができる。ここでkは定数、ψはフィルタB
Pの位相特性等から定まる位相である。
Therefore, if the output of the synchronous detector MULT2 is applied to a filter BP that extracts only the frequency 1/T component, the output A of the filter BP can be expressed as follows. Here k is a constant, ψ is filter B
This is the phase determined from the phase characteristics of P, etc.

したがってフィルタBPの出力を整流回路DETで整流
すれば、その出力Bは となる。そこで整流回路DgTの出方が零となるように
同期検波器MULTIの第2の入力端子に印加する電圧
a。sin (ω1t+θ1)の位相01を前記位相制
御回路PCで調整すれば出力Bが零となるようにするこ
とができるから、θ−01−+Qとなるから位相ずれを
零に近づけることができる。
Therefore, if the output of the filter BP is rectified by the rectifier circuit DET, the output B will be as follows. Therefore, a voltage a is applied to the second input terminal of the synchronous detector MULTI so that the output of the rectifier circuit DgT becomes zero. If the phase 01 of sin (ω1t+θ1) is adjusted by the phase control circuit PC, the output B can be made zero, so that θ-01-+Q is obtained, so the phase shift can be brought close to zero.

したがってスイッチ手段SWを所定の間隔てでのオン・
オフを繰返し行い、同期検波器MtlLT2  の出力
に含まれる周波数1/Tの成分が常に零となるように上
記θ1の位相を調整すれば1位相ずれはなくなる。
Therefore, the switch means SW is turned on and off at predetermined intervals.
If the phase of θ1 is adjusted so that the frequency 1/T component included in the output of the synchronous detector MtlLT2 is always zero by repeatedly turning it off, one phase shift will disappear.

ここで必要な位相制御回路PC及び自動位相制御回路は
1先存の技術で容易に実現できるものであるから詳述を
省略する。
The phase control circuit PC and automatic phase control circuit required here can be easily realized using existing technology, so detailed description thereof will be omitted.

一方、上記方法で位相ずれを補償している状態では、θ
−θ1→0となるから同期検波器〜IULT1の出力は
(4)式から分るようにスイッチ手段SWがオンのとき
On the other hand, when the phase shift is compensated by the above method, θ
-θ1 → 0, so the output of the synchronous detector ~IULT1 is when the switch means SW is on, as can be seen from equation (4).

又、スイッチSWがオフのときは 2     式O となる。したがって、スイッチのオンの時、同(一定値
)だけ差し引けば引算回路の出力OUT正しく測定でき
ることになる。
Furthermore, when the switch SW is off, the formula 2 is O. Therefore, when the switch is on, the output OUT of the subtraction circuit can be accurately measured by subtracting the same amount (a constant value).

また例えばフィルタBPの出力Aを、スイッチ手段SW
をオン・オフする信号で更に同期検波(図示していない
)すると、この同期検波器の出力Soは となる。(ここでkoは定数である) ならばθ〉θ1のとき5o)O、θ〈θ1のときS。
Further, for example, the output A of the filter BP is connected to the switch means SW.
When synchronous detection (not shown) is further performed using a signal that turns on and off, the output So of this synchronous detector becomes as follows. (Here, ko is a constant.) Then, when θ>θ1, 5o) O, and when θ<θ1, S.

〈0.θ=θ0のときS o = 0となり、 Soを
用いて位相の調整方向(進み、遅れ)を判定することが
でき、この判定結果を用いれば効率的に自動位相制御が
可能である。
<0. When θ=θ0, S o = 0, and the phase adjustment direction (advance or lag) can be determined using So, and by using this determination result, efficient automatic phase control is possible.

上記説明では単に抵抗Rを周期Tでオン・オフしたが、
抵抗Rの値を周期Tで連続的に(例えは正弦状に)変化
させる等しても上記位相制御方法を適用することができ
る。
In the above explanation, the resistor R was simply turned on and off at a period T.
The above phase control method can also be applied by changing the value of the resistance R continuously (eg, sinusoidally) with a period T.

またある一定期間上記位相調整を実施しθ−σl;Oと
なったからθ1を固定し、また一定期間後に位相調整を
行うごとく上述の位相調整を間欠的に行うよう構成して
もよい。
Alternatively, the above phase adjustment may be performed for a certain period of time and θ1 is fixed since θ-σl;O is obtained, and the above-mentioned phase adjustment may be performed intermittently such that the phase adjustment is performed after a certain period of time.

上述の説明では抵抗Rを接地電路と大地間に挿入する場
合を述べたが2本発明はこれに限定する必要はなく例え
ば非接地電路と大地間に挿入してもよい。ただし、この
場合は抵抗Rに商用電源が印加されるため抵抗R及びス
イッチSWに流れる電流は著しく大きくなるからこれに
耐え得るものを使用する必要がある。
In the above description, a case has been described in which the resistor R is inserted between a grounded electric path and the earth, but the present invention need not be limited to this, and the resistor R may be inserted between an ungrounded electric path and the earth, for example. However, in this case, since commercial power is applied to the resistor R, the current flowing through the resistor R and switch SW becomes significantly large, so it is necessary to use a resistor that can withstand this.

第2図は本発明の変形実施例を示す主要部分のブロック
図であり、前記抵抗R々らびにスイッチSWを介して零
相変流器ZCTに電流を流す之めに印加トラフ3010
代りに第2の2次巻線を設けたOT’を用い、これより
得られる測定用低周波電圧を印加する如くしたものであ
る。
FIG. 2 is a block diagram of the main parts of a modified embodiment of the present invention, in which an application trough 3010 is used to supply current to the zero-phase current transformer ZCT via the resistors R and switch SW.
Instead, an OT' provided with a second secondary winding is used, and a low frequency voltage for measurement obtained from this is applied.

この例によれば第1図の実施例の如く、接地線LEに抵
抗R,スイッチSWを接続する必要がないため設置工事
を簡易化することができる。
According to this example, unlike the embodiment shown in FIG. 1, it is not necessary to connect the resistor R and the switch SW to the grounding line LE, so that the installation work can be simplified.

なお動作については、第1図の説明で述べ念ものと全く
同じである。
Note that the operation is exactly the same as that described in the explanation of FIG.

第3図は他の実施例を示しており、抵抗R。FIG. 3 shows another embodiment in which the resistance R.

スイッチS Wを印加トランスOTの1次側に接続した
ものであり、1次側の電圧が2次側の電圧より高い場合
、その比率分だけ抵抗Rの値を大きくすることにより第
1図の実施例で述べた動作を同じにしたものである。
The switch SW is connected to the primary side of the application transformer OT, and if the voltage on the primary side is higher than the voltage on the secondary side, the value of the resistor R is increased by that ratio, so that the voltage shown in Fig. 1 is This is the same operation as described in the embodiment.

なお、抵抗Rに印加する電圧は(7)式で示した如く■
としたが、これに制約されないことは明らかであり、他
の電圧であっても動作上は何ら問題ない。
Note that the voltage applied to the resistor R is as shown in equation (7).
However, it is clear that there is no restriction to this, and there is no problem in operation even if other voltages are used.

また2位相制御回路PCから出力され同期検波回路MT
JLTIの第2の入力端に印加される位相はCo = 
Oのとき同位相となるよりに前もって調整し、温度等に
よる位相ずれのみを上述の自動位相制御にて補償するよ
うにすれば位相同期の時間を短縮することができる。
In addition, the output from the two-phase control circuit PC is output from the synchronous detection circuit MT.
The phase applied to the second input of JLTI is Co =
If the phases are adjusted in advance so that they are in the same phase when O, and only the phase shift due to temperature or the like is compensated for by the above-mentioned automatic phase control, the time for phase synchronization can be shortened.

さらに上記説明では低周波電圧と同相電流を流すために
、抵抗素子を用いたが、必ずしもこれに限定されるもの
でなく他の回路網(例えば、インダクタンスとコンデン
サとを組合せた回路)を用いてもよいことは明らかであ
る。
Furthermore, in the above explanation, a resistance element is used to flow a low frequency voltage and a common-mode current, but the invention is not limited to this, and other circuit networks (for example, a circuit combining an inductance and a capacitor) may be used. It is clear that it is good.

ま九上記説明では低周波信号電圧を正弦波として説明し
たが、これに限定されるものではなく例えば矩形波であ
ってもよくその基本波成分或いは高調波成分を用いても
よい。
(9) In the above description, the low frequency signal voltage has been explained as a sine wave, but it is not limited to this, and it may be a rectangular wave, for example, and its fundamental wave component or harmonic component may be used.

なお上記説明においては位相調整をするに当り、同期検
波器の第2の入力に印加される信号の位相を調整する如
くしたが、同期検波器の第1の入力に印加されるフィル
タFILの出力信号の位相を調整しても同一の結果が得
られることは明らかである。
In the above explanation, when performing phase adjustment, the phase of the signal applied to the second input of the synchronous detector is adjusted, but the output of the filter FIL applied to the first input of the synchronous detector It is clear that the same result can be obtained by adjusting the phase of the signal.

又、上述の説明に於いては周期Tで抵抗Rを断続したが
1本発明ではこれに限定する必要はなく所定間隔Tでラ
ンダムにこれを断続しても同様の結果を得ることができ
、この場合若干の位相ズレが生じても自動的にこれを補
正する手段を講するうえで都合がよいであろう。
Further, in the above explanation, the resistance R is interrupted at a period T, but the present invention is not limited to this, and the same result can be obtained even if the resistance R is interrupted at a predetermined interval T. In this case, it would be convenient to take measures to automatically correct even if a slight phase shift occurs.

また上記実施例では単相2線式電路の場合で示したが、
単相3線式電路、3相3線式電路であってもよい。
In addition, although the above example shows the case of a single-phase two-wire electric circuit,
It may be a single-phase three-wire electric circuit or a three-phase three-wire electric circuit.

(発明の効果) 以上説明したごとく9本発明は絶縁抵抗測定回路の位相
特性変動を自動位相調整を可能にするものであるから極
めて安定な測定方法を実現するうえで著効を奏するもの
である。
(Effects of the Invention) As explained above, the present invention enables automatic phase adjustment of fluctuations in phase characteristics of an insulation resistance measuring circuit, and is therefore very effective in realizing an extremely stable measuring method. .

【図面の簡単な説明】[Brief explanation of drawings]

gg1図は本発明の一実施例を示すブロック図、第2図
及び第3図は本発明の他の実施例を示す部分的ブロック
図、第4図は従来の絶縁抵抗を測定する方法を示すブロ
ック図である。 T・・・・・・・・・トランス、   1.2・・・・
・・・・・電路。 LE・・・・・・・・・接地線、   E・・・・・−
・・・接地点。 ZCT・・・・・・・・・零相変流器、    AMP
・・・・・・・・・増幅器、    FIL・・・・・
・・・・フィルタ。 MULT、MULTl、MULT2・・・・・・・・・
同期検波回路、    OSC・・・・・・・・・発振
器。 OT 、 OT’・・・・・・・・・印加トランス、 
   PS・・・・・・・・・移相器、   SW・・
・・・・・・・スイッチ。 PSS・・・・・・・・・90°移相器、   PC・
・・・・・・・・位相制御回路、    BP・・・・
・・・・・フィルタ。 DET・・・・・・・・・整流回路、    SUB・
・・・・・・・・引算回路。 特許出願人  東洋通信機株式会社 毛 乙 K 第 3 g
gg1 is a block diagram showing one embodiment of the present invention, FIGS. 2 and 3 are partial block diagrams showing other embodiments of the present invention, and FIG. 4 shows a conventional method for measuring insulation resistance. It is a block diagram. T......Trans, 1.2...
...Electric circuit. LE・・・・・・Grounding wire, E・・・・・・−
...Grounding point. ZCT・・・・・・Zero phase current transformer, AMP
・・・・・・・・・Amplifier, FIL・・・・・・
····filter. MULT, MULTl, MULT2...
Synchronous detection circuit, OSC...Oscillator. OT, OT'・・・・・・・Ipplication transformer,
PS... Phase shifter, SW...
·······switch. PSS・・・・・・90° phase shifter, PC・
...... Phase control circuit, BP...
·····filter. DET・・・・・・・・・ Rectifier circuit, SUB・
・・・・・・・・・Subtraction circuit. Patent applicant: Toyo Tsushinki Co., Ltd. K. 3g

Claims (1)

【特許請求の範囲】 1、変圧器の接地線を介して電路に商用周波数と異なる
周波数f_1なる低周波信号電圧を電磁誘導或は直列結
合等によって印加し、前記接地線に結合せしめた零相変
流器出力中に含まれる周波数f_1の漏洩電流成分を前
記低周波信号電圧で同期検波することにより得られる出
力から前記電路と大地間の絶縁抵抗を測定する装置にお
いて、前記電路と大地の間に挿入した所定の抵抗の値を
繰返し周期T又は時間間隔τでランダムに変化させると
共に、前記漏洩電流成分を前記低周波信号電圧より90
°位相のシフトした電圧で別に設けた同期検波器にて同
期検波することにより得られる出力中に含まれる周波数
1/Tの周波数成分が零に近づくように同期検波器に印
加する前記低周波信号電圧ならびに前記低周波信号電圧
より90°位相のシフトした電圧の位相を自動的に調整
するようにしたことを特徴とする絶縁抵抗測定装置の位
相補償方法。 2、前記漏洩電流成分を前記低周波信号電圧で同期検波
することにより得られる出力から前記繰返し周期T又は
時間間隔τでランダムに変化させた抵抗の値による増加
分を時間間隔τで補正することにより電路と大地間の絶
縁抵抗を測定することを特徴とする特許請求範囲1記載
の絶縁抵抗装置の位相補償方法。 3、前記低周波電圧を所定の抵抗に印加し、該抵抗の値
を繰返し周期T又は時間間隔τでランダムに変化させる
と共に、該抵抗に接続された接続線を上記零相変流器に
貫通させたことを特徴とする特許請求の範囲1記載の絶
縁抵抗測定装置の位相補償方法。 4、前記低周波電圧と同相の電流の大きさを繰り返し周
期T又は時間間隔τでランダムに変化させ該電流の流れ
る接続線を上記零相変流器に貫通させることを特徴とす
る特許請求の範囲1記載の絶縁測定装置の位相補償方法
。 5、前記低周波信号電圧より90°シフトした電圧で同
期検波することにより得られる出力中に含まれる周波数
1/Tの周波数成分が零に近づくように同期検波器に印
加する前記周波数f_1の漏洩電流成分の位相を自動的
に調整するごとくしたことを特徴とする特許請求の範囲
1記載の絶縁抵抗測定装置の位相補償方法。
[Claims] 1. A low-frequency signal voltage having a frequency f_1 different from the commercial frequency is applied to the electric line via the grounding wire of the transformer by electromagnetic induction or series coupling, and a zero-phase signal is coupled to the grounding wire. In the apparatus for measuring the insulation resistance between the electric line and the ground from the output obtained by synchronously detecting the leakage current component of the frequency f_1 contained in the output of the current transformer with the low frequency signal voltage, the insulation resistance between the electric line and the earth is measured. The value of a predetermined resistor inserted in
° The low frequency signal is applied to the synchronous detector so that the frequency component of frequency 1/T included in the output obtained by synchronous detection with a phase-shifted voltage approaches zero. 1. A phase compensation method for an insulation resistance measuring device, characterized in that a voltage and a phase of a voltage whose phase is shifted by 90 degrees from the low frequency signal voltage are automatically adjusted. 2. From the output obtained by synchronously detecting the leakage current component with the low frequency signal voltage, an increase due to the value of the resistance randomly changed at the repetition period T or the time interval τ is corrected at the time interval τ. 2. A phase compensation method for an insulation resistance device according to claim 1, characterized in that the insulation resistance between the electrical circuit and the ground is measured by: 3. Applying the low frequency voltage to a predetermined resistor, randomly changing the value of the resistor with a repetition period T or time interval τ, and passing the connecting wire connected to the resistor through the zero-phase current transformer. A phase compensation method for an insulation resistance measuring device according to claim 1, characterized in that: 4. The present invention is characterized in that the magnitude of the current in phase with the low-frequency voltage is randomly varied at a repetition period T or time interval τ, and a connection line through which the current flows is passed through the zero-phase current transformer. A phase compensation method for an insulation measuring device according to scope 1. 5. Leakage of the frequency f_1 applied to the synchronous detector so that the frequency component of frequency 1/T included in the output obtained by synchronous detection with a voltage shifted by 90 degrees from the low frequency signal voltage approaches zero. 2. A phase compensation method for an insulation resistance measuring device according to claim 1, wherein the phase of the current component is automatically adjusted.
JP61171325A 1986-07-21 1986-07-21 Insulation resistance measuring device phase compensation method Expired - Lifetime JPH0731219B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61171325A JPH0731219B2 (en) 1986-07-21 1986-07-21 Insulation resistance measuring device phase compensation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61171325A JPH0731219B2 (en) 1986-07-21 1986-07-21 Insulation resistance measuring device phase compensation method

Publications (2)

Publication Number Publication Date
JPS6327767A true JPS6327767A (en) 1988-02-05
JPH0731219B2 JPH0731219B2 (en) 1995-04-10

Family

ID=15921148

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61171325A Expired - Lifetime JPH0731219B2 (en) 1986-07-21 1986-07-21 Insulation resistance measuring device phase compensation method

Country Status (1)

Country Link
JP (1) JPH0731219B2 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61155869A (en) * 1984-12-28 1986-07-15 Toyo Commun Equip Co Ltd Measuring method of phase-compensated insulation resistance

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61155869A (en) * 1984-12-28 1986-07-15 Toyo Commun Equip Co Ltd Measuring method of phase-compensated insulation resistance

Also Published As

Publication number Publication date
JPH0731219B2 (en) 1995-04-10

Similar Documents

Publication Publication Date Title
US4851761A (en) Method for measuring insulation resistance of electric line
US4857855A (en) Method for compensating for phase of insulation resistance measuring circuit
JPS6327767A (en) Position compensation method in insulating resistance measuring apparatus
JPS60186765A (en) Compensating method of measuring device for insulation resistance
JPH0473553B2 (en)
JP2696513B2 (en) Electrical capacitance measurement method for ground
JPS62254617A (en) Method of measring insulation resistance
JPS63151870A (en) Insulation resistance measurement with phase compensation
JPS63175772A (en) Phase compensating method for insulation resistance measuring instrument
JP2646089B2 (en) Method for measuring insulation resistance of low-voltage circuit
JPS63150673A (en) Insulation resistance measuring method for phase-compensated cable
JPS58127172A (en) Insulation resistance measuring apparatus for electric line with suppressed stray capacity
JPS6327768A (en) Insulating resistance measuring method
JP2614447B2 (en) Insulation resistance measurement method that compensates for the effect of ground resistance
JP2617325B2 (en) Insulation resistance measurement method
JPS63124966A (en) Measuring method for insulation resistance
JPS6366473A (en) Phase adjustment of insulation resistance measuring apparatus
JPS63153478A (en) Measuring method for insulation resistance
JPH0713648B2 (en) Phase correction method in insulation resistance measuring device
JP2612719B2 (en) Simple insulation resistance measurement method for electrical circuits
JP2764582B2 (en) Simple insulation resistance measurement method
JPS6159267A (en) Method for measuring insulating resistance of electric circuit
JPS5810666A (en) Measuring method for insulation resistance
JPH01105186A (en) Detecting method for defective electric insulation position
JPH0721523B2 (en) Insulation resistance measurement method that compensates for fluctuations in circuit constants

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term