JPS6366473A - Phase adjustment of insulation resistance measuring apparatus - Google Patents

Phase adjustment of insulation resistance measuring apparatus

Info

Publication number
JPS6366473A
JPS6366473A JP21188986A JP21188986A JPS6366473A JP S6366473 A JPS6366473 A JP S6366473A JP 21188986 A JP21188986 A JP 21188986A JP 21188986 A JP21188986 A JP 21188986A JP S6366473 A JPS6366473 A JP S6366473A
Authority
JP
Japan
Prior art keywords
phase
component
low frequency
insulation resistance
circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP21188986A
Other languages
Japanese (ja)
Other versions
JPH0713647B2 (en
Inventor
Tatsuji Matsuno
松野 辰治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Communication Equipment Co Ltd
Original Assignee
Toyo Communication Equipment Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Communication Equipment Co Ltd filed Critical Toyo Communication Equipment Co Ltd
Priority to JP61211889A priority Critical patent/JPH0713647B2/en
Publication of JPS6366473A publication Critical patent/JPS6366473A/en
Publication of JPH0713647B2 publication Critical patent/JPH0713647B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Measurement Of Resistance Or Impedance (AREA)

Abstract

PURPOSE:To measure insulation resistance accurately, by automatically adjusting variations in phase characteristic of an insulation resistance measuring circuit. CONSTITUTION:A capacitor C and a switch SW are provided between an electric circuit 2 to be measured and the earth E and opened or closed at a specified cycle T. An output of a low frequency oscillator OS is applied to a synchronous detector MULT1 through an automatic phase shift control circuit PC and an output of the detector MULT1 is inputted into a multiplier MULT2 through a BPF-BP1 adapted to pass 1/T frequency alone. Furthermore, a part of an input of the detector MULT1 is supplied to a synchronous detector MULT3, an output of which is inputted into a multiplier MULT2 via a BPF-BP2 adapted to pass 1/T frequency. An output of the multiplier is passed through an LPF-LF1 to obtain a DC component signal, by which the circuit PC is controlled. Thus, variations are automatically adjusted with the circuit PC in the phase of a low frequency voltage to be applied to the detector MULT1 and of a voltage to be applied to the detector MULT3 as shifted by 90 deg. from the low frequency voltage through a 90 deg. phase shifter PSS thereby enabling stable and accurate measurement of the insulation resistance.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は活線状態で電路等の絶縁抵抗を測定する装置に
於ける温度変化或は回路定数の経年変化等に対する調整
方法に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a method of adjusting a device for measuring insulation resistance of an electrical circuit or the like in a live line state against temperature changes or secular changes in circuit constants.

(従来技術) 従来、漏電等の電路に於けるトラブルの早期発見の為に
例えば第5図に示す如き電路の絶縁抵抗測定方法を用い
電路状態を監視するのが一般的であった。
(Prior Art) Conventionally, it has been common practice to monitor the condition of an electrical circuit using a method of measuring the insulation resistance of the electrical circuit, as shown in FIG.

これはZなる負荷を有する受電変圧器Tの第2種接地線
LE ic 、商用tl1周波数と別違の周波数fxな
る測定用低周波信号発振器O8Cを接続したトランスO
Tを挿入するか、或いは前記接地f@Lv、に直列に前
記発揚器O8Cを挿入接続するか又は前記電路1.2を
前記発振器を接続したトロイダルコアトランスに貫通す
る等して電路l及び電路2に徂1定用低周波電圧を印加
し、前記接地線LEを貫通せしめた零相変流器ZCT 
K、よって、電路と大地間に存在する絶縁抵抗RO及び
対地浮遊容量Coを介して前記接地線に帰還する前記測
定用低周吸信号の漏洩電流を検出し、これを増幅器AM
Pで増幅したのち、フィルタFILによって周波数f1
の成分のみを選択し、これを例えば前記発振器O8Cの
出力信号を用いて掛算器MULTで同期検波して漏洩電
流分中の有効分(01)Tl) (即ち、印加低周波電
圧と同相の成分)を検出するととKより電路の絶縁抵抗
を測定するよう構成したものであった。
This is the second type grounding wire LE ic of the power receiving transformer T with a load Z, and the transformer O connected to the measuring low frequency signal oscillator O8C with a frequency fx different from the commercial tl1 frequency.
T, or by inserting and connecting the oscillator O8C in series with the ground f@Lv, or by passing the electric line 1.2 through the toroidal core transformer connected to the oscillator, the electric line L and the electric line are connected. A zero-phase current transformer ZCT in which a constant low frequency voltage is applied to 2 and the grounding wire LE is passed through it.
Therefore, the leakage current of the measurement low frequency absorption signal that returns to the ground line via the insulation resistance RO and the ground stray capacitance Co existing between the electric path and the ground is detected, and this is detected by the amplifier AM.
After being amplified by P, the frequency f1 is
Select only the component and synchronously detect it with the multiplier MULT using the output signal of the oscillator O8C, for example, to obtain the effective component (01)Tl in the leakage current (i.e., the component in phase with the applied low frequency voltage) ) was detected, the insulation resistance of the electrical circuit was measured from K.

本発明の理解を助けるためにその測定理論を更に説明す
る。
To help understand the present invention, the measurement theory thereof will be further explained.

前記接地線LKに印加される測定用信号電圧を例えば正
弦波としてVsiaω11(ω1=2πfl)とすれば
、接地点Eを介して接地線LEK帰還する周波数f1の
漏洩電流工は と表わされ、印加する交流電圧と同相の成分。
If the measurement signal voltage applied to the grounding line LK is, for example, a sine wave and Vsiaω11 (ω1 = 2πfl), then the leakage current of frequency f1 that returns to the grounding line LEK via the grounding point E is expressed as: A component that is in phase with the applied AC voltage.

即ち上記(1)式の右辺第1項の成分に比例した値を同
期検波等の手段で検出すればこの値は絶縁抵抗ROに逆
比例したものと力るから、これによって電路の絶縁抵抗
値を求めることができる。
In other words, if a value proportional to the first term on the right side of equation (1) above is detected by means such as synchronous detection, this value will be inversely proportional to the insulation resistance RO, and this will determine the insulation resistance value of the electrical circuit. can be found.

しかしこのように前記接地線に帰還する漏洩電流な零相
変流器ZCTで検出し、これに含まれる周波数f1の漏
洩電流成分をフィルタFILで選択出力する従来の方法
では9通常零相変流器→増幅器→フィルタの系で周波数
f1の漏洩電流の位相がずれるから、これらの同期検波
出力からROに逆比例した値を得るためにはこの位相ず
れを補償する必要がある。このために従来同図に示す如
く同期検波器MLILTの第1の入力端に又は、第2の
入力端に移相器PSを挿入することによって上記位相ず
れを補正し互いの同期をとっていた。即ちこの移相器P
Sを設けることにより対地浮遊容tCOがない状態(C
However, in the conventional method in which the leakage current returning to the ground wire is detected by the zero-phase current transformer ZCT, and the leakage current component of the frequency f1 included in this is selected and outputted by the filter FIL, 9 normal zero-phase current transformers Since the phase of the leakage current at frequency f1 is shifted in the system of amplifier→amplifier→filter, it is necessary to compensate for this phase shift in order to obtain a value inversely proportional to RO from these synchronous detection outputs. For this purpose, conventionally, as shown in the figure, a phase shifter PS was inserted into the first input terminal or the second input terminal of the synchronous detector MLILT to correct the phase shift and achieve mutual synchronization. . That is, this phase shifter P
By providing S, there is no floating capacity tCO to the ground (C
.

=0)にて、同期検波器の第1.yIJ2の入力端に印
加される電圧の位相差が零となるように前もって設定し
ておくものであっ九。
= 0), the first . It is set in advance so that the phase difference between the voltages applied to the input terminal of yIJ2 is zero.

しかしながら上述の如き従来の方法では零相変流器ZC
T 、フィルタFIL 、移相器PS等の位相特性は温
度変化または使用部品特性の経年変化等によって変動す
るため、この結果最初の調整値との位相誤差が発生し、
正しい測定結果を提供できなくなる欠点があった。これ
らに対処する光めに従来は特性変動の少ない極めて高品
質な零相変流器或いはフィルタ等を採用することにより
て位相誤差の影響を極力小さくしていたが、それでもそ
の影響を完全に除去することは困難であった。
However, in the conventional method as described above, the zero-phase current transformer ZC
Since the phase characteristics of T, filter FIL, phase shifter PS, etc. fluctuate due to temperature changes or secular changes in the characteristics of the parts used, this results in a phase error with the initial adjustment value.
There was a drawback that accurate measurement results could not be provided. Conventionally, to deal with these problems, the influence of phase errors has been minimized as much as possible by using extremely high-quality zero-phase current transformers or filters with little characteristic variation, but even so, it has not been possible to completely eliminate the influence. It was difficult to do so.

(発明の目的) 本発明は以上説明したような従来の絶縁抵抗測定方法の
欠点を除去するため罠なされたものであって、高価な部
品を必要とせず安価に測定信号の位相ずれを常時補正し
、常に正確な測定結果ケもたらしうる絶縁抵抗測定装置
の位相調整方法を提供することを目的とする。
(Object of the Invention) The present invention has been made to eliminate the drawbacks of the conventional insulation resistance measurement method as explained above, and is capable of constantly correcting the phase shift of the measurement signal at low cost without requiring expensive parts. However, it is an object of the present invention to provide a phase adjustment method for an insulation resistance measuring device that can always provide accurate measurement results.

(発明の概要) 本発明はこの目的を達成するため原理的には前記被測定
電路と大地間に強制的に所定値のりアクタ/ス素子(例
えばコンデンサ等)を挿入し前記低周波電圧と90°位
相の異なる電流を流すと共に、この電流を一定周期T又
は所定間隔Tでランダムに断接をくり返し、箪1の同期
検波器出力中に含まれる周波数1/Tの周波数成分と、
前記周波数f=の漏洩1!流成分を前記低周R電圧より
90°位相のシフトした電圧で第2の同期検波器にて同
期検波することにより得られる出力中に含まれる周波数
1/Tの周波数成分との積をとりその直流分が零に近づ
くように前記第1の同期検波器に印加する前記低周波電
圧ならびに第2の同期検波器に印加する前記低周波電圧
より90°位相のシフトと゛した電圧の位相を自動的に
調整するように構成するものである。
(Summary of the Invention) In order to achieve this object, the present invention, in principle, forcibly inserts an actuator element (such as a capacitor) with a predetermined value between the electrical circuit to be measured and the ground, so that the low frequency voltage ° While flowing currents with different phases, this current is randomly connected and disconnected at a constant period T or a predetermined interval T, and the frequency component of the frequency 1/T included in the output of the synchronous detector of the cabinet 1,
Leakage of said frequency f=1! The product of the current component and the frequency component of frequency 1/T included in the output obtained by synchronously detecting the current component with a voltage whose phase is shifted by 90 degrees from the low frequency R voltage with a second synchronous detector is calculated. Automatically adjust the phase of the voltage with a 90° phase shift from the low frequency voltage applied to the first synchronous detector and the low frequency voltage applied to the second synchronous detector so that the DC component approaches zero. It is configured to adjust to.

(実施例) 先ず本発明に係る測定方法を説明する前にその理解を助
ける為従来の方法及びその欠点を少しく詳細に説明する
(Example) First, before explaining the measuring method according to the present invention, the conventional method and its drawbacks will be explained in some detail to help the understanding.

第(1)式にて示される周波数f1の漏洩1流成分工が
零相変流器ZCT 、増幅器AMP 、フィルタFIL
の系を通過する際発生する位相ずれを0とすればフィル
タFIL出カニ1はとなり、これは同期検波器MULT
の第1の入力端に印加される。
The leakage first flow component of the frequency f1 shown in equation (1) is zero-phase current transformer ZCT, amplifier AMP, and filter FIL.
If the phase shift that occurs when passing through the system is set to 0, the filter FIL output crab 1 becomes
is applied to the first input terminal of.

また同期検波器の第2の入力端に印加される電圧を例え
ば一定振幅のa。5in(ωt t−Ht )とすれば
、同期検波器の出力即ち有効成分りはD = I t 
xaosin(ωxt+θ1)  ・−・・−・(31
(□は角周波数01以上の成 分を除去することを意味する) ・・・−・・・・・(4) 従って0=01のときの出力DOは となり# v# aQは一定となるから絶縁抵抗ROに
逆比例し念値を測定することができる。したがって位相
ずれθ−θlが零でない時の上記り。
Further, the voltage applied to the second input terminal of the synchronous detector is set to, for example, a constant amplitude a. 5in(ωt t-Ht ), the output of the synchronous detector, that is, the effective component, is D = I t
xaosin(ωxt+θ1) ・−・・−・(31
(□ means to remove components with an angular frequency of 01 or more) ・・・−・・・・・・(4) Therefore, when 0=01, the output DO is # v# Since aQ is constant, it is isolated It is inversely proportional to the resistance RO, and the hypothetical value can be measured. Therefore, the above is true when the phase shift θ−θl is not zero.

に対するDの誤差Eは =1−ωS(θ−θl)−ω5coRosin(θ−0
1) −−−−−−(6)となる。
The error E of D for
1) --------(6).

今1例えばθ−θl=1 (度)のとき(6)式にてf
t=25Hzで、Ro=20にΩ、Co:5#Fとする
ときωtCoRo=15.7となるから誤差eは27.
4俤となり著しく測定誤差が大きくなることが分る。
Now 1. For example, when θ−θl=1 (degrees), in equation (6), f
When t=25Hz, Ro=20, Ω, and Co:5#F, ωtCoRo=15.7, so the error e is 27.
It can be seen that the measurement error becomes 4 yen, and the measurement error becomes significantly large.

本発明は上述の位相ずれに伴う誤差の発生を極力抑える
方法を提案するものである。
The present invention proposes a method for suppressing the occurrence of errors due to the above-mentioned phase shift as much as possible.

第1回は本発明に係る絶縁抵抗測定装置の一実施例を示
す回路図である。これは前記第5図と同じように1周波
数flなる低周波発生用の発振器O8Cを結合した低イ
ンピーダンスのトラ/スOTを前記接地線LEに直列に
挿入することによって前記電路1,2に電圧■なる低周
波信号を印加し、前記接地線LxK帰還する低周波信号
の漏洩信号から、該接地線Lr、に結合した零相変流器
、フィルタFIL及び第1の同期検波器によって前記m
路の絶縁抵抗に逆比例した同相(有効)成分を抽出する
ものであるが、本実施例では更に以下の装置を付加する
The first part is a circuit diagram showing an embodiment of the insulation resistance measuring device according to the present invention. This can be done by inserting a low impedance transformer/transfer OT coupled with an oscillator O8C for generating a low frequency of one frequency fl in series in the grounding line LE, as shown in FIG. (2) A low frequency signal of
The purpose is to extract an in-phase (effective) component that is inversely proportional to the insulation resistance of the path, and in this embodiment, the following device is additionally added.

即ち、前記接地線Lmの電路2との接続点と大地の接地
点Eとの間に、コンデンサCとスイッチSWとの直列回
路を挿入するとともに、該スイッチSWg所要周期Tに
て0N−OFF”せしめる。又、前記低周波発振器O8
Cの出力の一部を前記同期検波器MULT1に印加する
際、前記移Tt1”6 P Sに置換して自動移相制御
回路PCを介して行うとともに、前記同期検波器ML!
LT1の出力D1を1/Tなる周波数のみを通過するバ
ンドパスフィルタBPlを介してmけgsMIJ L 
T 2の一入力端に入力する。
That is, a series circuit of a capacitor C and a switch SW is inserted between the connection point of the grounding line Lm with the electric circuit 2 and the grounding point E, and the switch SWg is turned 0N-OFF at the required period T. Also, the low frequency oscillator O8
When applying a part of the output of C to the synchronous detector MULT1, it is applied via the automatic phase shift control circuit PC by replacing it with the shift Tt1''6PS, and at the same time, the output of the synchronous detector ML!
The output D1 of LT1 is passed through a bandpass filter BPl that passes only the frequency 1/T.
Input to one input terminal of T2.

更に、前記同期検波器MULTIの入力、即ちフィルタ
FILの出力の一部を第2の同期検波器MULT3の一
人力となし、該部出力を1/T周波数を通過する第2の
バンドパスフィルタBPxを経て前記掛は算器MUL’
L”2の他方入力とするとともに、該部は算器MULT
2の出力をローパスフィルタLF1t(通過せしめろこ
とによって得た直流成分信号で前記自動移相制御回路P
Cを制御し、かつ該自動移相制御回路PCの一部を90
°移相器PSSを介して前記第2の同期検波器M U 
L T 3の他方入力となす如く接続構成したものであ
る。
Further, a part of the input of the synchronous detector MULTI, that is, the output of the filter FIL is inputted to a second synchronous detector MULT3, and the output of the synchronous detector MULT3 is passed through a second band-pass filter BPx that passes the 1/T frequency. The above multiplication is calculated by the calculator MUL'
In addition to the other input of L"2, this section is connected to the calculator MULT.
The automatic phase shift control circuit P uses the DC component signal obtained by passing the output of 2 through the low-pass filter LF1t.
90, and a part of the automatic phase shift control circuit PC.
° The second synchronous detector M U via the phase shifter PSS
The connection configuration is such that it is connected to the other input of L T 3.

このように構成した電路の絶縁抵抗が11定装置の動作
、殊に位相調整方法について以下詳細に説明する。
The operation of the device having the insulation resistance of the electrical circuit constructed in this way, in particular the phase adjustment method, will be described in detail below.

同図に於いて、前記接地線LEと並列に接続したスイッ
チSWをONとすれば、前記接地線LxにはωlcVω
5altなる電流が追加されて流れることになり、この
とき接地線に流れる印加低周波成分の漏洩電流Ioは ・・・・・・・・・(7) となる。したがって零相変流器ZCT 、増幅器AMP
及びフィルタFILO系で発生する位相ずれを考慮する
とフィルタFILの出カニ2は(2)式の関係から (ω11+θ)・・・・・・・・・(8)となり、この
ときの同期検波器MULTIの出力Dlは、(4)式の
関係から sin (0−θ1) ・−・−(91となる。
In the figure, when the switch SW connected in parallel with the grounding line LE is turned on, the grounding line Lx has ωlcVω.
An additional current of 5alt will flow, and at this time, the leakage current Io of the applied low frequency component flowing through the grounding wire will be (7). Therefore, zero-phase current transformer ZCT, amplifier AMP
Considering the phase shift generated in the filter FILO system, the output 2 of the filter FIL becomes (ω11+θ) (8) from the relationship of equation (2), and the synchronous detector MULTI at this time The output Dl becomes sin (0-θ1) ·−·−(91) from the relationship of equation (4).

今、前記スイッチSWを周期T(ここでT)まれるCの
項が周期Tで有・無を繰り返すため同期検波器MULT
Iの出力Dtには周波数1/Tの成分が生ずることにな
る((9)式からも分るようにθ=01のときは、藁2
項は零となるから周波数1/Tの成分は発生しないこと
になる)。
Now, since the term C that is passed through the switch SW with a period T (T here) repeats presence and absence with a period T, the synchronous detector MULT
A component of frequency 1/T will be generated in the output Dt of I (as can be seen from equation (9), when θ=01, straw 2
Since the term becomes zero, the component of frequency 1/T will not occur).

ところで同期検波器MULT 1の出力を周波数1/T
のみをとり出すフィルタ13P1に印加すれげ該フィル
タBPIの出力Aは次式−にて表わされる。
By the way, the output of the synchronous detector MULT 1 has a frequency of 1/T.
The output A of the filter BPI is expressed by the following equation.

・・・・・・・・・叫 但し、ここでkは定数、ψはフィ/’/夕特性等から定
まる位相である。
. . . However, here, k is a constant, and ψ is a phase determined from the phi/′/t characteristic.

一方、@記フィルタFILの出方から分岐した出力は@
2の同期検波器〜1TJLTaに入力するが、核部に於
ける同期信号は前記第1の同期検波器MULT lに対
する信号a 5in(ωtt+01)を90°移相器P
SSを通過せしめて得たものであるからa。■S(ω1
t−IJ1)となる。従って該第2の同期検波器Mtl
LT3の出力即ち無効成分D2はDz=Izxaoco
s(ωst+e)1)−・−・−・−011伺、この式
に於いては前記(3)式と同様に角周波数01以上の成
分を除去することを意味するもので、その結果上式は cos(θ−θl)  ・・・・・・・・・ (財)と
表わされるが、上述し友如くこの式のCの項は周期Tで
有無を繰り返すため、同期検波器MULT3の出力を周
波数l/Tの成分のみをとり出すフィルタBP2に印加
すれば、該フィルタBP2の出力Bは ・・・・・・・・・口) と表すことができる。ここでに、ψけ(至)式の関係と
同じである。このようにして得たバンドパスフィルタB
P2の出力Bi2式と前記バンドパスフィルタBPIの
出力AC[l1式とを掛算回路MULT2の入力端にそ
れぞれ印加すれば、該掛算回路M[JLT 2の出力D
3は D3=AXB ・5in(θ−θl) となる。したがって掛算回路MULT2の出力をローパ
スフィルタLFに印加することにより得る直流分D4F
i と表わすことができる。
On the other hand, the output branched from the output of the @filter FIL is @
The synchronization signal in the core part is input to the synchronous detector 2 to 1TJLTa, and the synchronous signal in the core part is the signal a 5in (ωtt+01) for the first synchronous detector MULT1, which is input to the 90° phase shifter P.
Because it was obtained by passing the SS, a. ■S(ω1
t-IJ1). Therefore, the second synchronous detector Mtl
The output of LT3, that is, the reactive component D2 is Dz=Izxaoco
s(ωst+e)1)−・−・−・−011, this equation means to remove the components with angular frequency of 01 or higher, similar to the above equation (3), and as a result, the above equation is expressed as cos(θ-θl) . If it is applied to a filter BP2 that extracts only the frequency l/T component, the output B of the filter BP2 can be expressed as . Here, the relationship is the same as the ψ (to) expression. Bandpass filter B obtained in this way
If the output Bi2 equation of P2 and the output AC[l1 equation of the bandpass filter BPI are applied to the input terminals of the multiplication circuit MULT2, the output D of the multiplication circuit M[JLT2
3 becomes D3=AXB・5in(θ−θl). Therefore, the DC component D4F obtained by applying the output of the multiplication circuit MULT2 to the low-pass filter LF
It can be expressed as i.

そこで、前記自動位相制御回路PCによって2つの同期
検波器MOLTlとMUL’[’3に入力せしめる同期
基準信号a。sin (ω1t+θ1) 、 3oco
s(ω1t+θ1)の位相01を調整し前記ローパスフ
ィルタLF出力D4が零となる如く、即ちθ=θlとな
るようにすれば前記(4)式にて表わされる前記第1の
同期検波器MtJLT lの出力01)T2のDに於け
る第2項は零となって正確な検出信号を得ることができ
る。
Therefore, the synchronization reference signal a is inputted to the two synchronization detectors MOLT1 and MUL'['3 by the automatic phase control circuit PC. sin (ω1t+θ1), 3oco
If the phase 01 of s(ω1t+θ1) is adjusted so that the low-pass filter LF output D4 becomes zero, that is, θ=θl, the first synchronous detector MtJLTl expressed by the equation (4) can be obtained. The second term in D of output 01) T2 becomes zero, and an accurate detection signal can be obtained.

湖、ここで必要な自動位相調整回路PCに於いては第1
図中の閉ループ、即ち第1の同期検aiMULT 1.
 第1のバンドパスフィルタDPI、掛は算器MULT
 2及びローパスフィルタLFと90’移相器pss 
、ボ2の同期検波器MULT3、第2のバンドパスフィ
ルタBP2.@け算器MIJLT2及びローパスフィル
タLFを介して得る直流成分D4が零になるよう2つの
同期検波器へ供給する前記低周波発振器O8Cの出力信
号の位相を自動的に調整するものであればよく、この自
動位相調整回路は既存の技術によって容易に実現できる
からその説明は省略する。
Lake, the automatic phase adjustment circuit required here is the first in the PC.
The closed loop in the figure, that is, the first synchronous detection aiMULT 1.
First band pass filter DPI, multiplication unit MULT
2 and low-pass filter LF and 90' phase shifter pss
, a synchronous detector MULT3 of BO2, a second bandpass filter BP2 . @Any device that automatically adjusts the phase of the output signal of the low frequency oscillator O8C supplied to the two synchronous detectors so that the DC component D4 obtained via the multiplier MIJLT2 and the low-pass filter LF becomes zero may be used. , this automatic phase adjustment circuit can be easily realized using existing technology, so its explanation will be omitted.

尚更に、上記説明では単にコンデ/すCを周期Tでオン
・オフしたが、コンデンサCの値を周期Tで連続的に(
例えば、正弦状K)変化させる等しても上記位相制御方
法を適用することができ、このときコンデンサCの代り
に可変容量素子を用いればよい。
Furthermore, in the above explanation, the capacitor C was simply turned on and off with a period T, but the value of the capacitor C was changed continuously with a period T (
For example, the above phase control method can be applied to a sinusoidal change (K), and in this case, a variable capacitance element may be used instead of the capacitor C.

またある一定期間上記位相調整を実施しθ−σl=0と
なったらθ!を固定し、また一定期間後ランダムに位相
調整を行うごとく上述の位相調整を間欠的に行うよう構
成してもよい。
Also, if the above phase adjustment is performed for a certain period of time and θ−σl=0, θ! It may be configured such that the above-mentioned phase adjustment is performed intermittently, such that the phase adjustment is fixed and the phase adjustment is performed randomly after a certain period of time.

又上述の説明ではコンデンサCを接地電路と大地間に挿
入する場合を述べたが1本発明はこれに限定する必要は
なく例えば非接地電路と大地間に挿入してもよい。ただ
し、この場合はコンデンサCに商用電源が印加されるた
めコンデ/すC及びスづツチSWに流れる電流は著しく
大きくなるからこれに耐え得るものを使用する必要があ
る。
Further, in the above description, a case has been described in which the capacitor C is inserted between a grounded electric line and the earth, but the present invention is not limited to this, and may be inserted between an ungrounded electric line and the earth, for example. However, in this case, since commercial power is applied to the capacitor C, the current flowing through the capacitor C and switch SW becomes significantly large, so it is necessary to use a capacitor that can withstand this.

又現実には、電路と大地間に挿入した前記コンデ/すC
に接続線等の影響等により若干の抵抗分が直列に挿入さ
れることがあるがこの場合、印加低周波電圧に対してコ
ンデンサCK流れる電流が正確に900位相推移しなく
なって僅かながら誤差を生ずることがあるがこの誤差は
一般に測定には支障のない程度に微少である。
Also, in reality, the above-mentioned AC/DC inserted between the electrical circuit and the ground
A small amount of resistance may be inserted in series due to the influence of connecting wires, etc., but in this case, the current flowing through the capacitor CK will not change the phase accurately by 900 degrees with respect to the applied low frequency voltage, resulting in a slight error. However, this error is generally so small that it does not interfere with measurement.

第2図は本発明の変形実施例を示すブロック図であって
、電路と大地との間に接続するコンデンサとスイッチと
の直列回路の挿入方法の他の実施例を示すものである。
FIG. 2 is a block diagram showing a modified embodiment of the present invention, and shows another embodiment of a method of inserting a series circuit of a capacitor and a switch connected between an electric path and the ground.

この実施例では、前記接地線Lzに低周波信号を印加す
るために用いたトランスOTの代りに2次巻線を設けた
OT’を用い、該2次巻線にコンデンサCとスイッチS
Wとの直列回路をその一部が前記零相変流器ZCT内を
貫通するよう接続したものである。
In this embodiment, instead of the transformer OT used to apply a low frequency signal to the ground wire Lz, an OT' having a secondary winding is used, and the secondary winding is equipped with a capacitor C and a switch S.
A series circuit with W is connected so that a part thereof passes through the inside of the zero-phase current transformer ZCT.

この例によれば第1図の実施例の如く、接地線LEKコ
ンデンサC,スイッチSWを直接接続する必要がないた
め設置工事を簡易化することができる。
According to this example, unlike the embodiment shown in FIG. 1, there is no need to directly connect the grounding line LEK capacitor C and the switch SW, so that the installation work can be simplified.

なお動作については、第1図の説明で述べたものと全く
同じである。
Note that the operation is exactly the same as that described in the explanation of FIG.

第3図は同様の部分についての他の実施例を示したもの
で、コンデンサCとスイッチSWとを直列接続した回路
を、前記接地線Lgに低周波を印加するためのトランス
OTの一次側に接続し几ものである。このとき−次側の
電圧が二次側の電圧より高い場合、その比率分だけコン
デンサCの容量を小さいものとすれば前記第1図及びそ
の説明に示した動作と同一にすることができる。
FIG. 3 shows another embodiment of the same part, in which a circuit in which a capacitor C and a switch SW are connected in series is connected to the primary side of a transformer OT for applying a low frequency to the ground line Lg. It is well connected. At this time, when the voltage on the negative side is higher than the voltage on the secondary side, if the capacitance of the capacitor C is made smaller by that ratio, the operation can be the same as that shown in FIG. 1 and its explanation.

伺、コンデ/すCに印加する電圧を(71式に於いてF
ivとしたが本発明の実施にあ九つでは。
Please check the voltage applied to the capacitor/suC (F in formula 71).
iv, but there are only nine steps to implement the present invention.

これに制約されず他の電圧でありても動作上は何ら問題
はない。
There is no problem in operation even if other voltages are used without being restricted by this.

ま九、前記自動位相制御回路PCから2つの同期検波器
MOLT 1とMtJLT3へ入力する同期信号は互い
に正確に90°移相したものとなるようにかつ前記ロー
パスフィルタ出力が零となるように前もりで調整してお
き、その後の温度変化或は経年変化等によって生ずる前
記位相のずれを上述した自動位相制御方法にて補償すれ
ば、位相同期の期間を短縮することができる。
(9) The synchronization signals inputted from the automatic phase control circuit PC to the two synchronous detectors MOLT1 and MtJLT3 should be adjusted so that their phases are precisely 90° shifted from each other, and the output of the low-pass filter is zero. The period of phase synchronization can be shortened by adjusting the phase using a harpoon and then compensating for the phase shift caused by temperature change, aging, etc. using the automatic phase control method described above.

伺、上記説明ではmll定用低周波電圧と90°位相の
異なる電流を流すために、コンデンサ素子を用いたが、
必ずしもこれに限定されるものでなく他の回路114(
例えば、インダクタンスとコンデ/すとを組合せた回路
)を用いてもよいことは明らかである。更に印加低周波
電圧と90゜位相の異なる電流を発生するために発振器
O8Cで90°移相の推移した電圧を発生し、これを抵
抗等を介して周期Tで零相変流器に流し込んでもよい。
In the above explanation, a capacitor element was used to flow a current with a phase difference of 90 degrees from the low frequency voltage for mll regulation.
It is not necessarily limited to this, and other circuits 114 (
For example, it is obvious that a circuit combining an inductance and a capacitor may also be used. Furthermore, in order to generate a current with a phase difference of 90° from the applied low-frequency voltage, the oscillator O8C generates a voltage with a phase shift of 90°, and this is passed through a resistor etc. to a zero-phase current transformer with a period T. good.

又、上記説明においては位相調整をするに当り、同期検
波器の第2の入力に印加される信号の位相を調整する如
くしたが、同期検波器の第1の入力に印加される信号の
位相を調整しても同一の結果が得られることは明らかで
ある。
Furthermore, in the above explanation, when performing phase adjustment, the phase of the signal applied to the second input of the synchronous detector is adjusted, but the phase of the signal applied to the first input of the synchronous detector is adjusted. It is clear that the same result can be obtained by adjusting .

第4図は本発明の他の変形実施例を示すブロック図であ
って、接地線に帰還する漏洩電流検出系に90°移相し
た低周波信号を印加する手段として、低周波発掘器O8
Cから直接90°移相した信号を導出しこれをス1ツチ
SWに挿入しかつ零相変流器ZCT K!通せしめた信
号線に印加するとともに、更に前記自動位相制御回路P
Cを前記第1の同期検波器〜1ULT lの入力端に挿
入するよう構成したものである。
FIG. 4 is a block diagram showing another modified embodiment of the present invention, in which a low frequency excavator O8 is used as means for applying a low frequency signal with a phase shift of 90 degrees to the leakage current detection system that returns to the ground line.
Directly derive a 90° phase-shifted signal from C, insert it into the switch SW, and insert it into the zero-phase current transformer ZCT K! In addition to applying voltage to the signal line passed through, the automatic phase control circuit P
C is inserted into the input terminal of the first synchronous detector to 1ULT1.

この構成によっても前記第1図、第2図及び第3図に示
しtものと同様にローパスフィ〃りLF比出力零になる
ように自動位相制御回路PCを制御すれば同様に正確に
電路の絶縁抵抗を測定することができる。
With this configuration, as well as those shown in FIGS. 1, 2, and 3, if the automatic phase control circuit PC is controlled so that the low-pass feed LF ratio output becomes zero, the electric circuit can be insulated accurately. Resistance can be measured.

また上記説明では低周波信号電圧を正弦波として説明し
たが、これに限定されるものではなく例えば矩形波であ
ってもよくその基本波成分或いは高調波成分を用いても
よい。
Further, in the above description, the low frequency signal voltage was explained as a sine wave, but it is not limited to this, and it may be a rectangular wave, for example, and its fundamental wave component or harmonic component may be used.

又1以上の説明では漏洩信号導出系に印加する90’移
相信号を周期Tで断続する場合を示したが、この断続す
るタ1ミ/グは種々の方法が考えられる。
Further, in the above explanation, the case where the 90' phase shift signal applied to the leakage signal derivation system is intermittent at the period T, but various methods can be considered for this intermittent timing.

第1の方法は常時この断続を繰り返えす方法で、前記ロ
ーハスフィルタLPの直流成分を常圧監視しておきこれ
が零若しくは最小となるように自動位相制御回路を機能
せしめる方法、第2の方法は所定間隔にて間欠的にこれ
を行う方法、或は周波数成分1/Tを含むランダム間隔
にて断続をくりかえし上述した位相調整操作な繰返えす
方法等が考えられるが、これら以外の方法を用いてもよ
いこと自明であろう。
The first method is to constantly repeat this intermittent cycle, and the DC component of the locus filter LP is monitored at normal pressure, and the automatic phase control circuit is operated so that this becomes zero or minimum.The second method is to A method of doing this intermittently at predetermined intervals, or a method of repeating the above-mentioned phase adjustment operation by repeating the above-mentioned phase adjustment operation intermittently at random intervals including the frequency component 1/T can be considered. It is obvious that it may be used.

また上記実施例では単相2線式を路の場合を示したが、
低圧側一端接地した単相3線式を路、3相3線式電路で
あっても同様に本発明を実施することができる。
In addition, in the above embodiment, the case of a single-phase two-wire system was shown, but
The present invention can be carried out in the same manner even in the case of a single-phase three-wire electric circuit or a three-phase three-wire electric circuit in which one end of the low voltage side is grounded.

(発明の効果) 以上説明し念ごとく9本発明は絶縁抵抗測定回路の位相
特性変動を自動的に調整をするよう構成したものである
から常時極めて安定かつ正確な絶縁抵抗測定装置を実現
するうえで著効を奏する。
(Effects of the Invention) As explained above, the present invention is configured to automatically adjust phase characteristic fluctuations of the insulation resistance measuring circuit, so it is possible to realize an insulation resistance measuring device that is extremely stable and accurate at all times. It is very effective.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示すブロック図、第2図、
第3図及び第4図は本発明の他の実施例を示す部分的ブ
ロック図、第5図は従来の絶縁抵抗を測定する方法を示
すブロック図である。 T・・・・・・・・・トランス、   1,2・・・・
・・・・・電路。 Lx・・・・・・・・・接地線、   E・・・・・・
・・・接地点。 ZCT・・・・・・・・・零相変流器、    AMP
・・・・・・・・・増幅器、    FIL・・・・・
・・・・フィルタ。 MULT l 、及びMULT 3・・・・・・・・・
同期検波器。 MULT3・・・・・・・・・掛算器、    PC・
−・・・・・・・自動位相制御回路、    BPl、
BPz・・・・・・・・・フィルタ、    DET・
・・・・・・・・整流回路。
FIG. 1 is a block diagram showing an embodiment of the present invention, FIG.
3 and 4 are partial block diagrams showing other embodiments of the present invention, and FIG. 5 is a block diagram showing a conventional method for measuring insulation resistance. T......Trans, 1,2...
...Electric circuit. Lx・・・・・・Ground wire, E・・・・・・
...Grounding point. ZCT・・・・・・Zero phase current transformer, AMP
・・・・・・・・・Amplifier, FIL・・・・・・
····filter. MULT l, and MULT 3...
Synchronous detector. MULT3・・・・・・Multiplier, PC・
−・・・・・・Automatic phase control circuit, BPl,
BPz・・・・・・Filter, DET・
...... Rectifier circuit.

Claims (1)

【特許請求の範囲】 1、変圧器の接地線等を介して電路に商用周波数と異な
る周波数f_1なる低周波信号電圧を印加し、前記接地
線に帰還する該低周波信号の有効成分を抽出することに
よって前記電路と大地との間の絶縁抵抗を測定する方法
に於いて、前記電路に印加した低周波信号と90°位相
がシフトした信号を前記接地線に帰還する低周信号の漏
洩電流を検出する回路に周期Tで連続的に又は所定間隔
にて若しくは周波数成分1/Tを含むランダム間隔で間
欠的に印加するとともに、前記有効成分中に含まれる周
波数1/Tの成分と、前記有効成分を抽出するのに用い
た基準信号と90°移相した信号に基づいて前記帰還し
た低周波信号の漏洩電流から抽出した無効成分中に含ま
れる周波数1/Tの周波数成分との積を求め該積出力中
の直流分が零となるように前記有効成分ならびに無効成
分を抽出するために用いた基準信号の位相を手動により
又は自動的に調整したことを特徴とする絶縁抵抗測定装
置の位相調製方法。 2、前記接地線に帰還する低周波信号の漏洩電流成分を
検出する回路に前記90°移相した信号を印加する手段
が、前記電路と大地との間に可変リアクタンスを挿入し
、該可変リアクタンスの値を周期Tで連続的に又は所定
間隔にて若しくは周波数成分1/Tを含むランダム間隔
で間欠的に変化せしめたことを特徴とする特許請求の範
囲1項記載の絶縁抵抗測定装置の位相調整方法。 3、前記可変リアクタンスに換置して固定リアクタンス
とスイッチング手段とからなる回路を挿入し、該スイッ
チング手段を周期Tで連続的に又は所定間隔にて若しく
はランダム間隔で間欠的に開閉せしめたことを特徴とす
る特許請求の範囲2項記載の絶縁抵抗測定装置の位相調
整方法。 4、前記接地線に帰還する低周波信号の漏洩電流成分を
検出する手段が該接地線に結合せしめた零相変流器を介
して行うものである場合該零相変流器に貫通せしめた信
号線に前記可変リアクタンス素子又は固定リアクタンス
とスイッチング手段とからなる回路を挿入せしめたこと
を特徴とする特許請求の範囲1、2又は3項記載の絶縁
抵抗測定装置の位相調整方法。 5、前記積出力中の直流分を零とする手段が前記有効成
分ならびに無効成分を抽出するための基準信号の位相を
調整する代りに前記接地線に帰還する低周波信号の漏洩
電流成分の位相を調整したものであることを特徴とする
特許請求の範囲1項乃至4項記載の絶縁抵抗測定装置に
於ける位相調整方法。
[Claims] 1. Applying a low frequency signal voltage having a frequency f_1 different from the commercial frequency to the electric line via a grounding wire of a transformer, etc., and extracting the effective component of the low frequency signal that returns to the grounding wire. In the method of measuring the insulation resistance between the electric circuit and the ground, the leakage current of the low frequency signal that is returned to the ground wire is a signal whose phase is shifted by 90 degrees from the low frequency signal applied to the electric circuit. The voltage is applied to the detection circuit continuously at a period T, or at predetermined intervals, or intermittently at random intervals containing the frequency component 1/T, and the component of the frequency 1/T included in the effective component and the effective Find the product of the reference signal used to extract the component and the frequency component of frequency 1/T included in the reactive component extracted from the leakage current of the feedback low frequency signal based on the 90° phase-shifted signal. The phase of the insulation resistance measuring device, characterized in that the phase of the reference signal used for extracting the effective component and the reactive component is adjusted manually or automatically so that the direct current component in the product output becomes zero. Preparation method. 2. The means for applying the 90° phase-shifted signal to a circuit that detects a leakage current component of a low frequency signal that returns to the ground line inserts a variable reactance between the electric line and the ground, and the variable reactance The phase of the insulation resistance measuring device according to claim 1, characterized in that the value of is changed continuously with a period T, or intermittently at predetermined intervals, or at random intervals including a frequency component 1/T. Adjustment method. 3. A circuit consisting of a fixed reactance and a switching means is inserted in place of the variable reactance, and the switching means is opened and closed continuously with a period T, or intermittently at predetermined intervals or at random intervals. A phase adjustment method for an insulation resistance measuring device according to claim 2, characterized in that: 4. If the means for detecting the leakage current component of the low frequency signal that returns to the grounding wire is carried out through a zero-phase current transformer coupled to the grounding wire, the zero-phase current transformer is penetrated. 4. A phase adjustment method for an insulation resistance measuring device according to claim 1, wherein a circuit comprising said variable reactance element or fixed reactance and switching means is inserted into the signal line. 5. The means for zeroing out the direct current component in the product output adjusts the phase of the leakage current component of the low frequency signal that is returned to the ground line instead of adjusting the phase of the reference signal for extracting the effective component and the reactive component. 5. A phase adjustment method in an insulation resistance measuring device according to any one of claims 1 to 4, wherein
JP61211889A 1986-09-09 1986-09-09 Insulation resistance measuring device phase adjustment method Expired - Lifetime JPH0713647B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61211889A JPH0713647B2 (en) 1986-09-09 1986-09-09 Insulation resistance measuring device phase adjustment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61211889A JPH0713647B2 (en) 1986-09-09 1986-09-09 Insulation resistance measuring device phase adjustment method

Publications (2)

Publication Number Publication Date
JPS6366473A true JPS6366473A (en) 1988-03-25
JPH0713647B2 JPH0713647B2 (en) 1995-02-15

Family

ID=16613315

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61211889A Expired - Lifetime JPH0713647B2 (en) 1986-09-09 1986-09-09 Insulation resistance measuring device phase adjustment method

Country Status (1)

Country Link
JP (1) JPH0713647B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7159355B2 (en) 2003-05-16 2007-01-09 Fuji Kogyo Co., Ltd. Fishing reel mounting structure and movable hood body for fishing pole

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61155869A (en) * 1984-12-28 1986-07-15 Toyo Commun Equip Co Ltd Measuring method of phase-compensated insulation resistance

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61155869A (en) * 1984-12-28 1986-07-15 Toyo Commun Equip Co Ltd Measuring method of phase-compensated insulation resistance

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7159355B2 (en) 2003-05-16 2007-01-09 Fuji Kogyo Co., Ltd. Fishing reel mounting structure and movable hood body for fishing pole

Also Published As

Publication number Publication date
JPH0713647B2 (en) 1995-02-15

Similar Documents

Publication Publication Date Title
KR100896091B1 (en) Measuring instrument for a resistive electric leakage current
US4857830A (en) Method for measuring insulation resistance of electric line
US4851761A (en) Method for measuring insulation resistance of electric line
US4857855A (en) Method for compensating for phase of insulation resistance measuring circuit
JPS6366473A (en) Phase adjustment of insulation resistance measuring apparatus
JPS61155869A (en) Measuring method of phase-compensated insulation resistance
JPS60186765A (en) Compensating method of measuring device for insulation resistance
JP2696513B2 (en) Electrical capacitance measurement method for ground
JPS63204161A (en) Phase correction for insulation resistance measuring apparatus
JPS6327767A (en) Position compensation method in insulating resistance measuring apparatus
JP2614447B2 (en) Insulation resistance measurement method that compensates for the effect of ground resistance
JPS63175772A (en) Phase compensating method for insulation resistance measuring instrument
JPS63315966A (en) Method for measuring insulation resistance of low voltage cable way
JPS58127172A (en) Insulation resistance measuring apparatus for electric line with suppressed stray capacity
JPH0721521B2 (en) Insulation resistance measurement method
JP2750705B2 (en) Insulation resistance measurement method
JPS63135872A (en) Stray capacitance compensation for insulation resistance of electric circuit
JPH03218479A (en) Insulation degradation diagnostic method for cable
JPH0721523B2 (en) Insulation resistance measurement method that compensates for fluctuations in circuit constants
JPS6327768A (en) Insulating resistance measuring method
JPS62254617A (en) Method of measring insulation resistance
JP2612703B2 (en) Insulation resistance measurement method with canceling ground resistance
JPS6159267A (en) Method for measuring insulating resistance of electric circuit
JPS63315967A (en) Method for measuring insulation resistance of cable way
JPH0721520B2 (en) Insulation resistance measurement method with phase compensation

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term