JPS63151870A - Insulation resistance measurement with phase compensation - Google Patents

Insulation resistance measurement with phase compensation

Info

Publication number
JPS63151870A
JPS63151870A JP29970586A JP29970586A JPS63151870A JP S63151870 A JPS63151870 A JP S63151870A JP 29970586 A JP29970586 A JP 29970586A JP 29970586 A JP29970586 A JP 29970586A JP S63151870 A JPS63151870 A JP S63151870A
Authority
JP
Japan
Prior art keywords
signal
phase
measurement
output
frequency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP29970586A
Other languages
Japanese (ja)
Other versions
JPH0721520B2 (en
Inventor
Tatsuji Matsuno
松野 辰治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Communication Equipment Co Ltd
Original Assignee
Toyo Communication Equipment Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Communication Equipment Co Ltd filed Critical Toyo Communication Equipment Co Ltd
Priority to JP29970586A priority Critical patent/JPH0721520B2/en
Publication of JPS63151870A publication Critical patent/JPS63151870A/en
Publication of JPH0721520B2 publication Critical patent/JPH0721520B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Measurement Of Resistance Or Impedance (AREA)
  • Emergency Protection Circuit Devices (AREA)

Abstract

PURPOSE:To obtain correct results of measurement by correcting phase deviations among measuring signals without requiring costly parts, by inserting a capacitor between an electric circuit to be measured and a ground point of a ground wire to connect and disconnect the connection repeatedly at a fixed cycle. CONSTITUTION:A measuring low frequency signal voltage generated at a phase control circuit PC is applied to a ground wire LE and an output of a current transformer ZCT mounted on the ground wire LE is applied to synchronous detectors MULT1 and MULT2 through a filter FIL. A capacitor C is connected in parallel to the ground wire LE and controlled with the circuit PC through a switch SW. A low frequency signal generated at the circuit PC is further inputted into the detectors MULT1 and MULT2 shifted by 90 deg. in the phase from the former. An output of the detector MULT1 is divided in two and a part thereof is inputted into a subtractor SUB while the other part thereof is inputted into a detector MULT3 to make a signal which is compared with a switching signal output from the circuit PC as reference signal. In addition, an output of the detector MULT3 is inputted into a multiplier MT to be multiplied by an output of the detector MULT2 and the results are inputted into the other end of the subtractor SUB to obtain a desired signal OUT.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は活線状態で電路等の絶縁抵抗を測定する装置の
温度変化或は回路特性の変化等に対する補償方法に関す
る。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a method of compensating for changes in temperature, changes in circuit characteristics, etc. of a device that measures the insulation resistance of an electric circuit or the like in a live line state.

(従来技術) 従来、漏電等の電路に於けるトラブルの早期発見の為に
例えば第4図に示す如き電路の絶縁抵抗測定方法を用い
電路状態を監視するのが一般的であった。
(Prior Art) Conventionally, it has been common practice to monitor the condition of an electrical circuit using a method of measuring the insulation resistance of the electrical circuit, as shown in FIG.

これはZなる負荷を有する受電変圧器Tの第2穐接地線
Lvを、商用電源周波数とは異なる周波数f1なる測定
用低周波信号発振器O8Cに接続されたトランスOTに
貫通せしめるか。
Does this mean that the second grounding wire Lv of the power receiving transformer T having a load Z is passed through the transformer OT connected to the measuring low frequency signal oscillator O8C having a frequency f1 different from the commercial power supply frequency?

或いは前記接地線Lxに直列に前記発振器を挿入接続す
る等して電路1及び電路2に測定用低周波信号電圧を印
加し、前記接地線Lmを貫通せしめた変流器ZCTによ
って電路と大地間に存在する絶縁抵抗RO及び対地浮遊
容量QOを介して前記接地線に帰還する前記測定用低周
波信号の漏洩電流を検出しこれを増幅器AMPで増幅し
たのち、フィルタFILによって周波数f1の成分のみ
を選択し、これを例えば前記発振器O8Cの出力信号を
用いて掛算器MLILTで同期検波して漏洩電流中の有
効分即ち、印加低周波電圧と同相の成分を検出すること
により電路の絶縁抵抗を測定するより構成したものであ
った。
Alternatively, by inserting and connecting the oscillator in series with the grounding line Lx, a low frequency signal voltage for measurement is applied to the electric line 1 and the electric line 2, and a current transformer ZCT passing through the grounding line Lm is used to connect the electric line and the earth. After detecting the leakage current of the measurement low frequency signal that returns to the ground line through the insulation resistance RO and ground stray capacitance QO existing in the ground line and amplifying it with the amplifier AMP, only the frequency f1 component is detected using the filter FIL. The insulation resistance of the electrical circuit is measured by detecting the effective component in the leakage current, that is, the component in phase with the applied low-frequency voltage, by synchronously detecting it with a multiplier MLILT using, for example, the output signal of the oscillator O8C. It was more structured than written.

本発明の理解を助けるためにその測定理論を更に説明す
る。
To help understand the present invention, the measurement theory thereof will be further explained.

前記接地線Lgに印加される測定用低周波信号電圧を例
えば正弦波としてBs1nω11(ω1=2πfl)と
すれば、接地点Eを介して接地線LEに帰還する周波数
f1の漏洩電流工は と表わされ、印加する交流電圧と同相の成分。
If the measurement low-frequency signal voltage applied to the grounding line Lg is, for example, a sine wave and Bs1nω11 (ω1=2πfl), then the leakage current of frequency f1 that returns to the grounding line LE via the grounding point E is as follows. component that is in phase with the applied AC voltage.

即ち上記(1)式の右辺第1項の成分に比例した値を同
期検波等の手段で検出すればこの値は絶縁抵抗Roに逆
比例したものとなるから、これによって電路の絶縁抵抗
値を求めることができる。
In other words, if a value proportional to the first term on the right-hand side of equation (1) is detected using a means such as synchronous detection, this value will be inversely proportional to the insulation resistance Ro. You can ask for it.

しかしこのように前記接地線に帰還する漏洩電流を変流
器ZCTで検出し、更に変流器出力に含まれる周波数f
lの漏洩電流成分をフィルタFILで選択出力する従来
の方法では1通常変流器→増幅器→フィルタの系で周波
数flの漏洩電流の位相がずれるから、これらの同期検
波出力からRoに逆比例した値を得るためにはこの位相
ずれを補償する必要がある。このために同図に示す如く
同期検波器MLILTの第1の入力端又は第2の入力端
に移相器PSを挿入し、これによって上記位相ずれを補
正して互いの同期をとっていた。即ちとの移相器PSを
設けることによシ対地浮遊容fcoがない状態(Co=
0)にて、同期検波器の第1.第2の入力端に印加され
る電圧の位相差が零となるように前もって設定しておく
ものであった。
However, in this way, the leakage current that returns to the ground wire is detected by the current transformer ZCT, and the frequency f included in the current transformer output is
In the conventional method of selectively outputting the leakage current component of l using a filter FIL, the phase of the leakage current of frequency fl is shifted in the system of 1 normal current transformer → amplifier → filter, so the output of these synchronous detections is inversely proportional to Ro. In order to obtain the desired value, it is necessary to compensate for this phase shift. For this purpose, as shown in the figure, a phase shifter PS is inserted into the first input terminal or the second input terminal of the synchronous detector MLILT, thereby correcting the phase shift and achieving mutual synchronization. That is, by providing a phase shifter PS with
0) of the synchronous detector. The phase difference between the voltages applied to the second input terminal was set in advance to be zero.

しかしながら上述の如き従来の位相補償方法・では変流
器ZCT 、フィルタFII、 、移相器PS等の位相
特性は温度変化または使用部品特性の経年変化等によっ
て変動するため、この結果最初の調整値との位相誤差が
発生し、正しい測定結果を提供できなくなる欠点があっ
た。また更に変流器は一次電流が大きくなると位相特性
が変動する場合があるためこの影響によっても誤差が生
ずる欠点があった。これらに対処するために従来は特性
変動の少ない極めて高品質な変流器或いはフィルタ等を
採用することによって位相誤差の影響を極力小さくする
と共に変流器の一次電流を極力小さくするよう配慮して
いたが、それでもその影響を完全に除去することは困難
であった。
However, in the conventional phase compensation method as described above, the phase characteristics of the current transformer ZCT, filter FII, phase shifter PS, etc. fluctuate due to temperature changes or secular changes in the characteristics of used parts. This has the drawback that a phase error occurs between the two, making it impossible to provide accurate measurement results. Furthermore, current transformers have the disadvantage that their phase characteristics may vary as the primary current increases, and errors may also occur due to this influence. In order to deal with these problems, conventional methods have been to minimize the influence of phase errors by using extremely high-quality current transformers or filters with little variation in characteristics, and to minimize the primary current of the current transformer. However, it was still difficult to completely eliminate that influence.

(発明の目的) 本発明は以上説明したような従来の絶縁抵抗測定方法の
欠点を除去するためになされたものであって、高価な部
品を必要とせず安価に測定信号の位相ずれを常時補正し
、常に正確な測定結果をもたらしうる絶縁抵抗測定方法
を提供することを目的とする。
(Object of the Invention) The present invention has been made in order to eliminate the drawbacks of the conventional insulation resistance measurement method as explained above, and is capable of constantly correcting the phase shift of the measurement signal at low cost without requiring expensive parts. The purpose of the present invention is to provide an insulation resistance measurement method that can always provide accurate measurement results.

(発明の概要) 本発明はこの目的達成のため、前記被測定電路と接地線
の接地点間に所定値のリアクタンス素子例えばコンデン
サを挿入すると共に、この接続を繰返し周期Tの信号で
断接をくシ返すか、又は前記測定用低周波電圧と90°
位相の推移した所定値の大きさの電流を繰返し周期Tの
信号で変化させ、この電流の流れる導線を変流器波数f
lならびにそれに係わる漏洩電流を検出し、これを前記
測定用低周波電圧から得た電圧を用いて第1の同期検波
器で同期検波して第1の信号を得る。また上記漏洩電流
を前記測定用低周波電圧と90°位相の推移し鴫電圧を
用いてW!2の同期検波器で同期検波し第2の信号を得
る。更に前記第1の信号中に含まれる周波数1/Tの成
分を検出し前記繰返し周期Tの信号を用いて第3の同期
検波器で同期検波し第3の信号を得、更に上記第1.第
2の信号を得るための第1.第2の同期検波器に印加す
る前記測定用低周波信号電圧から得たそれぞれの信号の
位相を自動的に調整する。また同時に第2の信号と第3
の信号の積をとりとれを定数倍した後前記第1の信号に
加算する。かくして得られた加算結果を用いて電路の絶
縁抵抗を測定するよう構成する。
(Summary of the Invention) In order to achieve this object, the present invention inserts a reactance element of a predetermined value, such as a capacitor, between the electrical circuit to be measured and the grounding point of the grounding line, and repeatedly connects and disconnects this connection using a signal with a period T. Flip it over or at 90° with the low frequency voltage for measurement.
A current having a predetermined value with a phase shift is changed by a signal with a repetition period T, and the conductor through which this current flows is set to the current transformer wave number f.
l and related leakage current are detected, and this is synchronously detected by a first synchronous detector using a voltage obtained from the measurement low frequency voltage to obtain a first signal. In addition, the above leakage current is determined by using a voltage that has a phase change of 90 degrees with the low frequency voltage for measurement. A second synchronous detector performs synchronous detection and obtains a second signal. Furthermore, a component with a frequency of 1/T contained in the first signal is detected, and a third synchronous detector performs synchronous detection using the signal with the repetition period T to obtain a third signal, and a third signal is obtained. the first to obtain the second signal. The phase of each signal obtained from the measurement low frequency signal voltage applied to the second synchronous detector is automatically adjusted. At the same time, the second signal and the third
The product of the signals is multiplied by a constant and then added to the first signal. The configuration is such that the insulation resistance of the electrical circuit is measured using the addition result obtained in this manner.

(実施例) 以下図示した実施に基づいて本発明の詳細な説明するが
、その前に本発明の理解を助ける為従来の方法及びその
欠点を少しく詳細に説明する。
(Example) The present invention will be described in detail below based on the illustrated embodiment, but before that, a conventional method and its drawbacks will be described in some detail to help understand the present invention.

第4図に於いて第(1)式にて示される周波数flの漏
洩電流成分工が変流器ZCT 、増幅器AMP、フィル
タFILO系を通過する際発生する位相ずれを0とすれ
ばフィルタFIL出力11は・・・・・・・・・(2) となシ、これは同期検波、器MLILTの第1の入力端
に印加される。
In Fig. 4, if the phase shift that occurs when the leakage current component of frequency fl shown by equation (1) passes through the current transformer ZCT, amplifier AMP, and filter FILO system is set to 0, then the filter FIL output 11 is...(2) This is applied to the first input terminal of the synchronous detection device MLILT.

また同期検波器の第2の入力端に印加される電圧を例え
ば一定振幅のa。sin (ωIt十θ1)とすれば、
同期検波器の出力りは D = I 1x aosin(ω11+$1)  ・
・・・・・・・・(3)(□は角周波数01以上の 成分を除去することを意味す る) ・・・・・・・・・(4) 従って0=01のときの出力Doは となり l ■* aQは一定となるから絶縁抵抗R。
Further, the voltage applied to the second input terminal of the synchronous detector is set to, for example, a constant amplitude a. If sin (ωIt + θ1), then
The output of the synchronous detector is D = I 1x aosin (ω11 + $1) ・
・・・・・・・・・(3) (□ means to remove components with angular frequency of 01 or higher) ・・・・・・・・・(4) Therefore, when 0=01, the output Do is Then, l ■* Since aQ is constant, the insulation resistance R.

に逆比例した値を測定することができる。したがりて位
相ずれθ−01が零でない時の上記り。
A value that is inversely proportional to can be measured. Therefore, the above is true when the phase shift θ-01 is not zero.

に対するDの誤差Eは = 1−cos(a−01)−ωt CoRo sin
 (θ−01)−・−・・ (6)となる。
The error E of D for is = 1-cos(a-01)-ωt CoRo sin
(θ−01)−・−・・(6).

しかしながら今9例えば位相ずれをθ−01=1(度)
とすれば(6)式にてft=25Hzで、RO:20に
Ω、C0=5μFとするときG)ICORO”15.7
とkるから誤差εは27.4%となり著しく測定誤差が
大きくなることが分る。
However, now 9, for example, the phase shift is θ-01 = 1 (degree)
Then, in equation (6), when ft = 25Hz, RO: 20 is Ω, and C0 = 5μF, G) ICORO”15.7
Therefore, the error ε is 27.4%, which means that the measurement error becomes significantly large.

本発明゛は上述の如き位相ずれに伴う誤差の発生を極力
抑える方法を提案するものである。
The present invention proposes a method for minimizing the occurrence of errors caused by the above-mentioned phase shift.

第1図は本発明に係る絶縁抵抗測定方法の一実施例を示
す回路図である。
FIG. 1 is a circuit diagram showing an embodiment of the insulation resistance measuring method according to the present invention.

同図に於いて接地線LEに9位相制御回路PCで発生さ
れた周波数f1なる低周波電圧を位相特性変動の小さい
電力増幅器PAMPで増幅した後トランスOTを介して
V sinωItなる電圧を電路に印加する。この際接
地線LEに直列挿入するトランスOTの出力インピーダ
ンスは十分に低く選ぶ。又接地線Lzには変流器ZCT
を結合しその出力を1周波数f1を含む成分を通しかつ
商用周波成分を除去するフィルタFILに印加すること
により前記(2)式に相当する出力を得、これを2つの
同期検波器M[JLTl、MULT2夫々のWJlの入
力端に印加する。
In the figure, a low frequency voltage with a frequency f1 generated by a nine-phase control circuit PC is amplified on the ground line LE by a power amplifier PAMP with small phase characteristic fluctuation, and then a voltage of V sinωIt is applied to the electric line via a transformer OT. do. At this time, the output impedance of the transformer OT inserted in series with the grounding line LE is selected to be sufficiently low. Also, a current transformer ZCT is connected to the grounding wire Lz.
are combined and the output is applied to a filter FIL that passes a component including one frequency f1 and removes a commercial frequency component to obtain an output corresponding to the above equation (2). , MULT2 are applied to the input terminals of WJ1.

又接地線Lvに並列にコンデンサOff:スイッチSW
を介して接続し、このスイッチSWの開閉を位相制御回
路PCによって制御せしめる。
Also, a capacitor OFF: switch SW is connected in parallel to the grounding wire Lv.
The opening and closing of this switch SW is controlled by a phase control circuit PC.

更に、これら2つの同期検波器MULT1及びMULT
2夫々の他方入力端には前記位相制御回路PCに於いて
発生する低周波信号f1を入力するが、うち同期検波器
MULT2には90°移相器PSOを介挿することによ
って90°位相をシフトする。
Furthermore, these two synchronous detectors MULT1 and MULT
The low frequency signal f1 generated in the phase control circuit PC is inputted to the other input terminal of each of the two input terminals, and a 90° phase shifter PSO is inserted into the synchronous detector MULT2. shift.

このようにして得た2つの同期検波出力のうち、 Mt
JLTxの出力を2分し、一方を減算器5LIBの一入
力端に又、他方をフィルタBPを介して第3の同期検波
器MULT3の比較信号となす。
Of the two synchronous detection outputs obtained in this way, Mt
The output of JLTx is divided into two, and one is applied to one input terminal of subtracter 5LIB, and the other is used as a comparison signal for third synchronous detector MULT3 via filter BP.

又第3の同期検波器MtJLT3の基準信号としては前
記位相制御回WIIPCが発生するスイッチング信号出
力を入力する。
Furthermore, the switching signal output generated by the phase control circuit WIIPC is input as the reference signal of the third synchronous detector MtJLT3.

更に、該MULTaの出力は係数回路COFを経て掛算
器MTに入力し核部に於いて前記第2の同期検波器MU
LT2の出力と乗じその結果を前記減算器SOBの他方
端に入力して所望信号01JTを得る。
Further, the output of the MULTa is inputted to the multiplier MT via the coefficient circuit COF, and is input to the second synchronous detector MU in the core part.
The output of LT2 is multiplied and the result is input to the other end of the subtracter SOB to obtain the desired signal 01JT.

又、接地線Lvと並列に接続したコンデンサCとスイッ
チ8Wの直列回路に於けるスイッチSWは前記位相制御
回路PCKよってその0N−OFFy!−制御するよう
構成する。この構成に於いて以下その動作を説明する。
Further, the switch SW in the series circuit of the capacitor C and the switch 8W connected in parallel with the grounding line Lv is turned ON-OFFy! by the phase control circuit PCK. - Configuring to control. The operation of this configuration will be explained below.

今、前記スイッチSWをオンした場合を考えれば接地線
LvにはωtcVcosω1t なる電流が追加されて
流れることにな)、接地線に流れる印加低周波成分の漏
洩電流Ioは ゛ ・・・・・・・・・ (7) となる。したがってフィルタFILの出カニ2は(2)
式の関係から ■ I ! = −5ia (’a’ 1 t+σ)+(C
o+C)ωtVcoso   − (ω1t+θ)  ・・・・・・・・・ (8)となり
、このときの同期検波器MULT1の出力DIは、(4
)式の関係から sin (θ−θ1)  ・・・・・・・・・(91と
なる。
Now, if we consider the case where the switch SW is turned on, an additional current ωtcVcosω1t will flow through the grounding line Lv), and the leakage current Io of the applied low frequency component flowing through the grounding line will be ゛... ... (7) becomes. Therefore, output 2 of filter FIL is (2)
From the relationship of the formula ■ I! = −5ia ('a' 1 t+σ)+(C
o+C)ωtVcoso − (ω1t+θ) (8), and the output DI of the synchronous detector MULT1 at this time is (4
) According to the relationship of the equation, sin (θ−θ1) (91) is obtained.

ここで、前記スイッチSWを周期T(ことでT>>−!
!!−)でオン・オフすれば、(9)式の第2項ω1 に含まれるCの値が周期Tで変るため同期検波器MUL
TIの出力Dlには周波数1/Tの成分が生ずることに
碌るこの際(9)式からも分るように0;01のときは
、第2項は零となるから周波数1/Tの成分は発生し々
い。更にこの第1の同期検波器ML)LTIの出力を周
波数1/Tの成分のみをとシ出す前記フィルタ’BPに
印加すれば該フィルタBPの出力Aは 、2π A=−kcωlV a osln (、t+ψ)sin
 (θ−θl〕・・・・・・・・・叫 と表すことができる。ここでkは定数、ψはフィルタB
Pの特性等から定まる位相である。
Here, the switch SW is operated at a period T (that is, T>>-!
! ! ), the value of C included in the second term ω1 of equation (9) changes with the period T, so the synchronous detector MUL
In this case, as can be seen from equation (9), when 0;01, the second term becomes zero, so the frequency 1/T component is generated in the output Dl of the TI. Ingredients frequently occur. Furthermore, if the output of the first synchronous detector ML)LTI is applied to the filter 'BP which extracts only the frequency 1/T component, the output A of the filter BP becomes 2π A=-kcωlV a osln (, t+ψ) sin
It can be expressed as (θ-θl)...where k is a constant and ψ is the filter B
This is the phase determined from the characteristics of P, etc.

次にこのフィルタBPの出力を第3の同期検波器MUL
T3の一方の入力端に印加し、他の入力端に位相制御回
路PCにて発生するス1ツチSW′Itオン・オフする
周期Tの繰返し信号を印加すれば、該同期検波器Mt)
LT3の出力Soは、 2π S o = A xsta−t   =−・al)と表
す事ができ、これは又 S 6 =−k。cosψ5sii(Ij−01)  
−・・−・−−−−02となる。
Next, the output of this filter BP is sent to a third synchronous detector MUL.
By applying to one input terminal of T3, and applying to the other input terminal a repetitive signal with a period T that turns on and off the switch SW'It generated by the phase control circuit PC, the synchronous detector Mt)
The output So of LT3 can be expressed as 2π So = Axsta-t =-・al), which is also S 6 =-k. cosψ5sii (Ij-01)
−・・−・−−−−02.

ここで k。=丁Cω1va0であり定数である。Here k. = Cω1va0, which is a constant.

したがって191〈π/2,1θ−θII<π/2であ
るならば0〉alのとき5o(0,又はθくalのとき
SO〉0となシSoの入力された位相制御回路PCでは
位相制御信号Soを用いて位相の調整方向を判定するこ
とができ、この判定結果を用いて位相01を調整してS
oが零に近づくように制御すれば0−01→0に近づけ
ることができる。
Therefore, if 191〈π/2, 1θ−θII〉π/2, then 5o(0) when 0〉al, or SO〉0 when θ〉al.In the phase control circuit PC to which So is input, the phase The direction of phase adjustment can be determined using the control signal So, and the phase 01 is adjusted using this determination result to
If o is controlled so that it approaches zero, it can be made closer to 0-01→0.

この位相制御回路PCは既存の技術で実現できるので詳
述を省略する。
This phase control circuit PC can be realized using existing technology, so a detailed description thereof will be omitted.

ところで、同期検波器M[JLT2の第2の入力端に印
加する電圧は同期検波器MULTIの第2の入力端に印
加する電圧a。sin (ω1t+θ1)が90’移相
したものであるからこれを今a。cos(ω1t+θl
)とすれば、同期検波器MLILT2の出力Hはスづツ
チSWがオフのとき。
By the way, the voltage applied to the second input terminal of the synchronous detector M[JLT2 is the voltage a applied to the second input terminal of the synchronous detector MULTI. Since sin (ω1t+θ1) is phase-shifted by 90', this is now a. cos(ω1t+θl
), the output H of the synchronous detector MLILT2 is when the switch SW is off.

・・・・・・・・・鰺 となる。またスイッチSWがオンのときのMLILT2
の出力H2は ・・・・・・・・・a4 となる。
・・・・・・・・・It becomes a mackerel. Also, when the switch SW is on, MLILT2
The output H2 becomes...a4.

また、同期検波器MULT3の出力を係数回路の出力は
一5in (θ−θ1)となる。(上述の如(K。
Further, the output of the synchronous detector MULT3 and the output of the coefficient circuit are -5 inches (.theta.-.theta.1). (As mentioned above (K.

、cosψ は定数と考えて差しつかえないため)した
がって同期検波器MtlLT2の出刃と係数回路出力と
の積をかけ算器MTで演算し同期検波器MTJLT1の
出力とを引算器5tJBにて引算すればスイッチSWが
オフのときの引算器8tJBの出力0[J’rtは(4
1、C13式から0UTI = D+H11sin (
θ−θり・・・・・・・・・(至) 一方、スイッチSWがオンのときの引算器の出力0LI
T2は(9)、α4式から一0LIT2 = Dt +
Hzsin((j−a s )・・・−・・・・・(ト
) となる。
, cosψ can be considered to be constants) Therefore, the product of the output of the synchronous detector MtlLT2 and the coefficient circuit output is multiplied by the multiplier MT, and the output of the synchronous detector MTJLT1 is subtracted by the subtracter 5tJB. For example, when the switch SW is off, the output 0 [J'rt of the subtracter 8tJB is (4
1. From C13 formula, 0UTI = D+H11sin (
θ−θri・・・・・・(To) On the other hand, when the switch SW is on, the output of the subtracter is 0LI
T2 is (9) from the α4 formula: 10LIT2 = Dt +
Hzsin((j-as)...-(g).

1θ−611<< 1  となるように位相01が前記
方法で調整されているならば、5in(#−θ1)=(
$−01)、cos((θ−’ ” )”1 、sia
” (θ−01):0とおけるから(至)、(至)式で
表わされる出力0[JTはとなる。
If phase 01 is adjusted by the above method so that 1θ-611<< 1, then 5in(#-θ1)=(
$-01), cos((θ-' ”)”1, sia
” (θ-01): Since it can be set as 0, the output 0 [JT expressed by the formula (to) becomes.

一方、従来のように同期検波器MLILTIの出力を単
に用いた場合10−011<<1ならばスイッチオフの
とき(4)式から 又ス1ツチオンのとき(9)式から ・・・・・・・・・叫 となシ1位相誤差(θ−θl)の影響を受は大地静電容
量Coが太きいとき0−θ1を十分に小さくしないかぎ
シ(11式の出力OUTよシ誤差が太きくなることが分
る。
On the other hand, if the output of the synchronous detector MLILTI is simply used as in the conventional case, if 10-011<<1, then from equation (4) when the switch is off, and from equation (9) when the switch is on...・・・・It is important to not make 0-θ1 sufficiently small when the ground capacitance Co is large because it is affected by the phase error (θ-θl). I know it's getting thicker.

上記の如く本発明の位相補償方法によれば従来の方法よ
シ位相誤差の影響を受けにくいことが明らかであろう。
As described above, it is clear that the phase compensation method of the present invention is less susceptible to the influence of phase errors than the conventional method.

以上の説明では1位相調整のために位相制御信号Soを
用いたがとれに代る信号として次の信号を用いることも
できる。
In the above explanation, the phase control signal So is used for one phase adjustment, but the following signal can also be used as an alternative signal.

即ち、前記Soと同期検波器ML]LT2の出力中に含
まれる周波数1/Tの周波数成分を別途設けたフィルタ
で検出し前記繰返し周期Tの信号で別途同期検波するこ
とにょシ得た信号との積をとるときによシ得られる信号
であってもよい。更に別の方法として、前記同期検波器
MULTIとMULT2  の出力中に含まれる周波数
1/Tの成分を検出し、それぞれの積を求め、その直流
分を用いても同様な結果が得られるが詳述は省略する。
That is, the signal obtained by detecting the frequency component of the frequency 1/T contained in the output of the So and the synchronous detector ML with a separately provided filter and performing separate synchronous detection with the signal of the repetition period T. It may also be a signal obtained when taking the product of . Still another method is to detect the frequency 1/T component contained in the outputs of the synchronous detectors MULTI and MULT2, find the product of each, and use the DC component to obtain the same result. The description will be omitted.

更に、上述の説明ではコンデンサCを電路と接地点間に
挿入する場合を述べたが1本発明はこれに限定する必要
はなく例えば非接地電路と接地点間に挿入してもよい。
Further, in the above description, a case has been described in which the capacitor C is inserted between an electric line and a ground point, but the present invention is not limited to this, and may be inserted between an ungrounded electric line and a ground point, for example.

ただし、この場合はコンデンサCに商用電源が印加され
るためコンデンサC及びスイッチS Wに流れる電流は
著しく大きくなるからこれに耐え得るものを使用する必
要がある。
However, in this case, since commercial power is applied to capacitor C, the current flowing through capacitor C and switch SW becomes significantly large, so it is necessary to use a capacitor that can withstand this.

第2図は本発明の変形実施例を示す主要部分のブロック
図であシ、前記コンデンサCならびにス1ツチ5w1F
!:介して測定用低周波信号電圧より 900位相の推
移した電流を変流器ZCTの一次側に流すために印加ト
ランスOTの代シに第2の2次巻線を設けfCOT’を
用い、これよシ得られる測定用低周波信号電圧を印加す
る如くしたものである。この例によればW、1図の実施
例の如く、接地線LmにコンデンサC,スイッチSWを
接続する必要がないため設置工事を簡易化することがで
きる。
FIG. 2 is a block diagram of the main parts showing a modified embodiment of the present invention, including the capacitor C and the switch 5w1F.
! : In order to flow a current with a phase shift of 900 from the low-frequency signal voltage for measurement to the primary side of the current transformer ZCT, a second secondary winding is provided in place of the applying transformer OT, and fCOT' is used. A low frequency signal voltage for measurement that can be easily obtained is applied. According to this example, there is no need to connect the capacitor C and the switch SW to the ground wire Lm as in the embodiment shown in FIG. 1, so that the installation work can be simplified.

なお動作については、第1図の説明で述べたものと全く
同じである。
Note that the operation is exactly the same as that described in the explanation of FIG.

第3図は他の実施例を示しておシ、コンデンサC,スイ
ッチSWを印加トランスOTの1次側に接続したもので
あシ、1次側の電圧が2次側の電圧より高い場合、その
比率分だけコンデンサCの容量を小さくすることによ#
)第1図の実施例で述べた動作を同じにしたものである
FIG. 3 shows another embodiment in which a capacitor C and a switch SW are connected to the primary side of an application transformer OT, and when the voltage on the primary side is higher than the voltage on the secondary side, By reducing the capacitance of capacitor C by that ratio, #
) The operation described in the embodiment of FIG. 1 is the same.

またコンデンサに接続された導線を変流器に貫通させる
のではなく、複数回巻線しても、その分コンデンサの容
量を小さくすることも可能である。・ なお、コンデンサに印加する電圧は(7)式で示した如
くVとしたが、これに制約されないことは明らかであシ
、他の電圧であっても動作上は何ら問題ない。
Furthermore, the capacitance of the capacitor can be reduced by winding the conductive wire connected to the capacitor multiple times instead of passing it through the current transformer.・Although the voltage applied to the capacitor is set to V as shown in equation (7), it is clear that this is not restrictive, and there is no problem in operation even if other voltages are used.

また1位相制御回路から出力され位相同期回路の第2の
入力端に印加される位相は同位相となるように前もって
調整し、温度等による位相ずれのみを上述の自動位相制
御にて補償するようにすれば位相同期の時間を短縮する
ことができる。
In addition, the phases output from the 1-phase control circuit and applied to the second input terminal of the phase locking circuit are adjusted in advance so that they are in the same phase, and only the phase shift due to temperature etc. is compensated for by the automatic phase control described above. By doing so, the time for phase synchronization can be shortened.

さらに上記説明では測定用低周波信号電圧と90°位相
の異なる電流を流すために、コンデンサ素子を用いたが
、必ずしもこれに限定されるものでなく他の回路網(例
えば、インダクタンスとコンデンサとを組合せた回路)
を用いてもよいしまた。他の電気回路で発生してもよい
ことは明らかである。
Furthermore, in the above explanation, a capacitor element was used to flow a current with a phase 90° different from the low frequency signal voltage for measurement, but this is not necessarily the case, and other circuit networks (for example, inductance and capacitor combined circuit)
You may also use . Obviously, it may also occur in other electrical circuits.

また上記説明では測定用低周波信号電圧を正弦波として
説明したが、これに限定されるものではなく例えば矩形
波であってもよくその基本波成分或いは高調波成分を用
いてもよい。
Further, in the above description, the low frequency signal voltage for measurement has been explained as a sine wave, but it is not limited to this, and it may be a rectangular wave, for example, and its fundamental wave component or harmonic component may be used.

なお上記説明においては位相調整をするに当、9 、 
同期検irfMtlLT1 、ML)LT2 f)fJ
42 O人力に印加される信号の位相を調整する如くし
たが、同期検波器MtlLTt 、MtlLT2  の
第1の入力に印加される信号の位相を調整しても同一の
結果が得られることは明らかである。
In addition, in the above explanation, when performing phase adjustment, 9,
Synchronous detection irfMtlLT1, ML)LT2 f) fJ
Although the phase of the signal applied to the synchronous detector MtlLTt and MtlLT2 is adjusted in the above example, it is clear that the same result can be obtained by adjusting the phase of the signal applied to the first input of the synchronous detectors MtlLTt and MtlLT2. be.

また上記実施例では単相2線式電路の場合で示したが、
単相3線式電路、3相3線式電路であってもよい。
In addition, although the above example shows the case of a single-phase two-wire electric circuit,
It may be a single-phase three-wire electric circuit or a three-phase three-wire electric circuit.

(発明の効果) 以上説明したごとく1本発明は絶縁抵抗測定るものであ
るから極めて安定な測定方法を実現するうえで著効を奏
するものである。
(Effects of the Invention) As explained above, since the present invention measures insulation resistance, it is extremely effective in realizing an extremely stable measuring method.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示すブロック図、第2図及
び第3図は本発明の他の実施例を示す部分的ブロック図
1w、4図は従来の絶縁抵抗を測定する方法を示すブロ
ック図である。 T・・・・・・・・・トランス、   1,2・・・・
・・・・・電路。 LI!・・・・・・・・・接地線、   E・・・・・
・・・・接地点。 ZC’l’・・・・・・・・・変流器、    AMP
・・・・・・・・・増幅器FIL・・・・・・・・・フ
ィルタ。 MtlLTl、2.3・・・・・・・・・同期検波回路
。 O20・・・・・・・・・発振器、    0TOT’
・・・・・・・・・印加トランス、   PS・・・・
・・・・・移相器。 SW・・・・・・・・・スイッチ、    MT・・・
・・・・・・かけ算器PC・・・・・・・・・位相制御
回路。 BP −74k l 、    PSO−−−90’移
相器、    SUB・・・・・・・・・引算器。 COP・・・・・・・・・係数回路、    P A 
M P・・・・・・・・・電力増幅器。 特許出願人  東洋通信機株式会社 男  1  口
FIG. 1 is a block diagram showing one embodiment of the present invention, and FIGS. 2 and 3 are partial block diagrams showing other embodiments of the present invention. FIG. T......Trans, 1,2...
...Electric circuit. LI!・・・・・・・・・Ground wire, E・・・・・・
...Grounding point. ZC'l'・・・・・・・・・Current transformer, AMP
......Amplifier FIL...Filter. MtlLTl, 2.3... Synchronous detection circuit. O20・・・・・・Oscillator, 0TOT'
......Input transformer, PS...
...Phase shifter. SW......Switch, MT...
・・・・・・Multiplier PC・・・・・・・・・Phase control circuit. BP-74k l, PSO---90' phase shifter, SUB------ subtractor. COP・・・・・・Coefficient circuit, P A
M P・・・・・・Power amplifier. Patent applicant: Toyo Tsushinki Co., Ltd. 1 unit

Claims (1)

【特許請求の範囲】 1、変圧器の接地線を介して電路に商用周波数と異なる
周波数f_1の測定用低周波信号電圧を電磁誘導或は直
列結合等によって印加し、前記電路と前記接地線の接地
点間に挿入した所定のリアクタンス素子の値を繰返し周
期Tで変化させ、前記接地線に結合せしめた変流器出力
中の商用周波数成分の漏洩電流を除去し、前記周波数f
_1の成分を含む漏洩電流を前記測定用低周波信号電圧
で同期検波することにより第1の信号を得、上記漏洩電
流を前記測定用低周波信号電圧とは位相が90°推移し
た電圧で同期検波することにより第2の信号を得ると共
に、前記第1の信号中に含まれる周波数1/Tの周波数
成分を検出して、前記繰返し周期Tの信号で同期検波す
ることにより得た第3の信号が零に近づくように、前記
第1、第2の信号を得るために同期検波器へ印加する前
記測定用低周波電圧ならびに前記測定用低周波電圧より
90°位相の推移した電圧の位相を調整し、前記第2の
信号と前記第3の信号の積の値を定数倍した信号を前記
第1の信号から差し引くことにより得られる信号を用い
て電路の絶縁抵抗を測定する如く構成し、もって測定回
路の位相特性変動を補償したことを特徴とする位相補償
した絶縁抵抗測定方法。 2、特許請求範囲1において、前記第1、第2の信号を
得るために同期検波器に印加する前記漏洩電流の位相を
自動的に調整することを特徴とする特許請求の範囲第1
項記載の位相補償した絶縁抵抗測定方法。 3、前記測定用低周波信号電圧と90°位相の推移した
所定の大きさの電流を繰返し周期Tの信号で変化させ、
該電流の流れる導線を前記変流器に貫通もしくは巻線す
ることを特徴とする特許請求の範囲第1項又は第2項記
載の位相補償した絶縁抵抗測定方法。
[Claims] 1. A low frequency signal voltage for measurement with a frequency f_1 different from the commercial frequency is applied to the electric line via the grounding line of the transformer by electromagnetic induction or series coupling, and the electric line and the grounding line are connected. The value of a predetermined reactance element inserted between the grounding points is varied at a repetition period T to remove the leakage current of the commercial frequency component in the output of the current transformer coupled to the grounding wire, and
A first signal is obtained by synchronously detecting the leakage current containing the component _1 with the measurement low-frequency signal voltage, and the leakage current is synchronized with a voltage whose phase is shifted by 90 degrees from the measurement low-frequency signal voltage. A second signal is obtained by detection, and a third signal obtained by detecting a frequency component with a frequency of 1/T included in the first signal and performing synchronous detection with the signal with the repetition period T. The phase of the low frequency voltage for measurement applied to the synchronous detector to obtain the first and second signals and the voltage whose phase has shifted by 90° from the low frequency voltage for measurement are adjusted so that the signal approaches zero. adjusted and configured to measure the insulation resistance of the electrical circuit using a signal obtained by subtracting from the first signal a signal obtained by multiplying the value of the product of the second signal and the third signal by a constant, A method for measuring insulation resistance with phase compensation, characterized in that phase characteristic fluctuations in a measurement circuit are compensated for. 2. Claim 1, characterized in that the phase of the leakage current applied to the synchronous detector is automatically adjusted in order to obtain the first and second signals.
Insulation resistance measurement method with phase compensation as described in . 3. Changing a current of a predetermined magnitude with a 90° phase shift with the measurement low frequency signal voltage with a signal of a repetition period T,
3. A method for measuring insulation resistance with phase compensation according to claim 1 or 2, characterized in that a conducting wire through which the current flows is passed through or wound around the current transformer.
JP29970586A 1986-12-16 1986-12-16 Insulation resistance measurement method with phase compensation Expired - Lifetime JPH0721520B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29970586A JPH0721520B2 (en) 1986-12-16 1986-12-16 Insulation resistance measurement method with phase compensation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29970586A JPH0721520B2 (en) 1986-12-16 1986-12-16 Insulation resistance measurement method with phase compensation

Publications (2)

Publication Number Publication Date
JPS63151870A true JPS63151870A (en) 1988-06-24
JPH0721520B2 JPH0721520B2 (en) 1995-03-08

Family

ID=17875971

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29970586A Expired - Lifetime JPH0721520B2 (en) 1986-12-16 1986-12-16 Insulation resistance measurement method with phase compensation

Country Status (1)

Country Link
JP (1) JPH0721520B2 (en)

Also Published As

Publication number Publication date
JPH0721520B2 (en) 1995-03-08

Similar Documents

Publication Publication Date Title
US4857830A (en) Method for measuring insulation resistance of electric line
US4851761A (en) Method for measuring insulation resistance of electric line
JPH0473553B2 (en)
JPS60186765A (en) Compensating method of measuring device for insulation resistance
JPS63151870A (en) Insulation resistance measurement with phase compensation
JPS63175772A (en) Phase compensating method for insulation resistance measuring instrument
JPS63150673A (en) Insulation resistance measuring method for phase-compensated cable
JP2696513B2 (en) Electrical capacitance measurement method for ground
JPS6327767A (en) Position compensation method in insulating resistance measuring apparatus
JP2617325B2 (en) Insulation resistance measurement method
JPS63124966A (en) Measuring method for insulation resistance
JPS62254617A (en) Method of measring insulation resistance
JP2646097B2 (en) Simple insulation resistance measurement method
JPH0721523B2 (en) Insulation resistance measurement method that compensates for fluctuations in circuit constants
JP2764582B2 (en) Simple insulation resistance measurement method
JPS63135872A (en) Stray capacitance compensation for insulation resistance of electric circuit
JP2665912B2 (en) Insulation resistance measurement method that compensates for the effect of ground resistance
JP2614447B2 (en) Insulation resistance measurement method that compensates for the effect of ground resistance
JPS63153478A (en) Measuring method for insulation resistance
JPH028529B2 (en)
JPH02198368A (en) Compensating method of phase characteristic of zero phase current transformer
JPS63204161A (en) Phase correction for insulation resistance measuring apparatus
JPS6159267A (en) Method for measuring insulating resistance of electric circuit
JPS63289464A (en) Insulation resistance measurement compensated for phase
JPH0458582B2 (en)

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term