JPS6317502A - Ptc resistance element - Google Patents
Ptc resistance elementInfo
- Publication number
- JPS6317502A JPS6317502A JP16081886A JP16081886A JPS6317502A JP S6317502 A JPS6317502 A JP S6317502A JP 16081886 A JP16081886 A JP 16081886A JP 16081886 A JP16081886 A JP 16081886A JP S6317502 A JPS6317502 A JP S6317502A
- Authority
- JP
- Japan
- Prior art keywords
- ceramic
- ptc
- electrode
- stress
- resistance
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 229910052721 tungsten Inorganic materials 0.000 claims description 11
- 229910052750 molybdenum Inorganic materials 0.000 claims description 9
- 239000000919 ceramic Substances 0.000 description 29
- 230000035882 stress Effects 0.000 description 15
- 238000005219 brazing Methods 0.000 description 13
- 229910052751 metal Inorganic materials 0.000 description 13
- 239000002184 metal Substances 0.000 description 13
- 239000000463 material Substances 0.000 description 12
- 229910052760 oxygen Inorganic materials 0.000 description 7
- 229910052720 vanadium Inorganic materials 0.000 description 7
- 230000000052 comparative effect Effects 0.000 description 6
- 238000000034 method Methods 0.000 description 6
- 239000000654 additive Substances 0.000 description 4
- 229910052802 copper Inorganic materials 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 230000007423 decrease Effects 0.000 description 3
- 150000002739 metals Chemical class 0.000 description 3
- 229910052759 nickel Inorganic materials 0.000 description 3
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 2
- 230000000996 additive effect Effects 0.000 description 2
- 229910002113 barium titanate Inorganic materials 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 2
- 230000008602 contraction Effects 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- 229910052742 iron Inorganic materials 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 230000002265 prevention Effects 0.000 description 2
- 230000035939 shock Effects 0.000 description 2
- 229910052718 tin Inorganic materials 0.000 description 2
- 238000000498 ball milling Methods 0.000 description 1
- 230000003139 buffering effect Effects 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 239000007772 electrode material Substances 0.000 description 1
- 238000010030 laminating Methods 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 229910000679 solder Inorganic materials 0.000 description 1
- 230000008646 thermal stress Effects 0.000 description 1
- 229910052726 zirconium Inorganic materials 0.000 description 1
Landscapes
- Thermistors And Varistors (AREA)
Abstract
(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.
Description
【発明の詳細な説明】
〔発明の目的〕
(産業上の利用分野)
本発明はPTC抵抗体に関し、さらに詳しくは通常の通
電時における電気抵抗が小さく、かつ耐熱衝撃性に優れ
たPTC抵抗体に関する。[Detailed Description of the Invention] [Object of the Invention] (Industrial Application Field) The present invention relates to a PTC resistor, and more specifically, a PTC resistor that has low electrical resistance during normal energization and has excellent thermal shock resistance. Regarding.
(従来の技術)
近年B a T i O3やBaTi0.に少量の添加
物を含有したもの等の金属酸化物がセラミックPTC抵
抗体として用いられている。 このB a T i O
s系のセラミックPTC抵抗体は温度の上昇により比抵
抗が101〜102(0,1)程度から10嶽Ω、備)
程度に急激に増大するものでサーミスタとして使用され
ている。 しかしBaTiO3系のセラミックPTC抵
抗体は比抵抗が101〜10責Ω、m)程度の範囲にP
TC特性があるためそれ以下のPTC特性を必要とする
過電流防止用等のサーミスタに使用することは困難であ
った。(Prior art) In recent years, BaTiO3 and BaTi0. Metal oxides, such as those containing small amounts of additives, have been used as ceramic PTC resistors. This B a T i O
The specific resistance of the S-based ceramic PTC resistor decreases from about 101 to 102 (0,1) to 10 Ω due to a rise in temperature.
It increases rapidly and is used as a thermistor. However, BaTiO3-based ceramic PTC resistors have specific resistances in the range of 101 to 10Ω, m).
Because it has TC characteristics, it has been difficult to use it in thermistors for overcurrent prevention, etc., which require PTC characteristics lower than the TC characteristics.
そこで、 B a T i Oa基以外のセラミックP
TC抵抗体としてV2O,を主成分とし、 これにCr
。Therefore, ceramic P other than B a T i Oa group
The main component of the TC resistor is V2O, and Cr
.
Afi等の少量添加物を含有してなるV2O,セラミッ
クPTC抵抗体が考えられている。このv、0゜セラミ
ックPTC抵抗体は温度の上昇により比抵抗が104(
Ω、am)程度から1(Ω、am)程度に急激に増大す
るというように極めて低い値の変動範囲をもつため、比
抵抗の低いPTC特性を必要とする過電流防止用等のサ
ーミスタに使用することが可能である6
ところでこのV2O,系PTC抵抗体の電極のとり出し
方の一つの方法として次のような方法が考えられている
。即ち、電極と■20.セラミックスとを界面に活性な
元素(例えばTi、Zrなど)を介してAgロウ付けを
行う方法である。この方法を用いれば電気的に良好な接
合を得ることが可能であり又機械的にも比較的良好な接
合を得ることができる。V2O, ceramic PTC resistors containing small amounts of additives such as Afi have been considered. This v, 0° ceramic PTC resistor has a specific resistance of 104 (
Because it has an extremely low fluctuation range, rapidly increasing from about Ω, am) to about 1 (Ω, am), it is used in overcurrent prevention thermistors that require PTC characteristics with low resistivity. By the way, the following method has been considered as one way to take out the electrodes of this V2O-based PTC resistor. That is, the electrode and ■20. This is a method of brazing Ag with ceramics via an active element (for example, Ti, Zr, etc.) at the interface. By using this method, it is possible to obtain a good electrical bond, and a relatively good bond mechanically as well.
しかしながら上記v20.セラミックの熱膨張率は5〜
8X10’″fideg−1とCu等の金属に比べて小
さいため、これら金属を電極に用いた場合材料によって
は、その熱膨張率差に起因する応力発生によって、Ag
ロウ付後の冷却、あるいは素子完成後の昇温時等に電極
接合部のクラック発生、電極の剥離等が発生する場合が
あった。However, the above v20. The coefficient of thermal expansion of ceramic is 5~
8X10''' fideg-1 is smaller than metals such as Cu, so when these metals are used for electrodes, stress due to the difference in thermal expansion coefficient may cause Ag
During cooling after brazing or during temperature rise after completion of the device, cracks may occur at the electrode joints, electrodes may peel off, etc.
このため、電極材料として、MOあるいはWのようなV
、O,セラミックにちがい熱膨張率を示す金属を接合す
る方法が考案され、Cu等を用いた場合に比べ強固な電
極を得るにいたっている。For this reason, V such as MO or W is used as an electrode material.
, O, A method of joining metals that exhibit a coefficient of thermal expansion unlike ceramics has been devised, and a stronger electrode has been obtained than when using Cu or the like.
e・
しかるに、V2O3セラミックにおいては、そのPTC
抵抗変化に伴ない結晶の格子定数変化を示し、これによ
ってV、O,セラミックの熱膨張に不連続な収縮あるい
は膨張を示すことが知られている。V2O3セラミック
を用いたPTC抵抗体に、大電流を通電した時のような
急激な昇温時には、素子動作に伴ないこの不連続な寸法
変化に起因する応力が電極接合面に発生するが、電極板
にMo yWのような硬い金属を用いた場合、 Agロ
ウ層の厚さが不十分であるとこの応力が吸収・緩和され
ず、電極の剥離を生じる場合があった。e・ However, in V2O3 ceramic, its PTC
It is known that the lattice constant of the crystal changes as the resistance changes, and as a result, the thermal expansion of V, O, and ceramics causes discontinuous contraction or expansion. When the temperature of a PTC resistor using V2O3 ceramic increases rapidly, such as when a large current is applied, stress is generated at the electrode bonding surface due to this discontinuous dimensional change as the element operates. When a hard metal such as MoyW is used for the plate, if the thickness of the Ag solder layer is insufficient, this stress cannot be absorbed or relaxed, and the electrode may peel off.
(発明が解決しようとする問題点)
上記のように、V2O,セラミックに金属電極を接合し
たPTC抵抗体においては、V、 O,の定常的な熱膨
張率と金属の熱膨張率の差に起因して発生する界面応力
とV、O,の不連続収縮あるいは不連続膨張によって生
じる素子動作時の突発的な界面応力の2種の電極界面応
力が発生し、V2O1セラミツクスに強固な電極接合を
行ない、電気的。(Problems to be Solved by the Invention) As mentioned above, in a PTC resistor in which a metal electrode is bonded to a V2O ceramic, due to the difference between the steady thermal expansion coefficients of V and O and the thermal expansion coefficient of the metal. Two types of electrode interfacial stress are generated: the interfacial stress caused by this, and the sudden interfacial stress caused by discontinuous contraction or expansion of V, O, during device operation, which creates a strong electrode bond to V2O1 ceramics. Conduct, electric.
機械的に安定したPTC抵抗体を得るには、この2つの
界面応力の発生を防止あるいは緩和をおこなう必要があ
る。In order to obtain a mechanically stable PTC resistor, it is necessary to prevent or alleviate the occurrence of these two interface stresses.
(問題点を解決するための手段)
発明者らは、上記問題点に鑑み、V、O,セラミックに
接合する電極の材料及び構成について鋭意検討を重ねた
結果、以下の発明を成すに至った。(Means for Solving the Problems) In view of the above problems, the inventors conducted intensive studies on the materials and configurations of electrodes to be bonded to V, O, and ceramics, and as a result, they came up with the following invention. .
即ち、本発明は、(Vx−xXx)gos (ただし0
≦x≦0.02. XはCr、 A Q 、 Scのう
ちの少なくとも一種)の基本組成に対し、Fe、 Ni
、 Co、 Cu。That is, the present invention provides (Vx-xXx)gos (where 0
≦x≦0.02. X is Fe, Ni
, Co, Cu.
Snの少なくとも一種を20重量%以下含有し、 さら
にW、Moから選ばれた少なくとも一種を20重量%以
下含有するPTC抵抗素体にAgロウを用いてMoまた
はWを電極板として添着したPTC抵抗体においてAg
ロウ層の厚さが0.01〜2.0mの範囲にあり応力緩
衝層としての役割をもかねそなえたことを特徴とするP
TC抵抗体であり、かつ応力緩衝層がMo、Wからなる
電極板の厚さの1/3以下であることを特徴とするPT
C抵抗体である。A PTC resistor in which Mo or W is attached as an electrode plate using Ag wax to a PTC resistor element containing 20% by weight or less of at least one kind of Sn and 20% by weight or less of at least one selected from W and Mo. Ag in the body
P characterized in that the wax layer has a thickness in the range of 0.01 to 2.0 m and also functions as a stress buffer layer.
A PT which is a TC resistor and whose stress buffer layer is 1/3 or less of the thickness of an electrode plate made of Mo or W.
It is a C resistor.
ここでXはV、O,セラミックのPTC抵抗特性を発生
させる添加物でありXが0.02を超えるとPTC抵抗
特性が消失するものである。またFa。Here, X is V, O, or an additive that generates the PTC resistance characteristic of ceramic, and if X exceeds 0.02, the PTC resistance characteristic disappears. Also Fa.
Ni、Co、Cu、Snから選ばれた少なくとも一種は
、V2O,セラミックの焼結性を向上させる添加物で、
この添加量が20重量%を超えると、V2O3セラミッ
クのPTC抵抗特性における抵抗変化率が低下し望まし
くない。At least one selected from Ni, Co, Cu, and Sn is V2O, an additive that improves the sinterability of ceramic,
If the amount added exceeds 20% by weight, the rate of change in resistance in the PTC resistance characteristics of the V2O3 ceramic decreases, which is undesirable.
ここで、上記V2O3セラミックにFe、Co、Ni。Here, Fe, Co, and Ni are added to the V2O3 ceramic.
Cu、Snから選ばれた少なくとも一種を加え、 さら
にMo、Wから選ばれた少なくとも一種を20重量%以
下添加することも有効である。It is also effective to add at least one selected from Cu and Sn, and further add 20% by weight or less of at least one selected from Mo and W.
Mo、Wから選ばれた少なくとも一種はv、0゜セラミ
ックの粒径等の焼結体組織を改善し、同セラミックの機
械強度を向上し、また素子動作時の不連続寸法変化を減
少させる効果をもつ添加物であり、その添加量が20重
量%を超えると、この効果がなく、また焼結体の焼結性
も低下するため、望ましくない。At least one selected from Mo and W has the effect of improving the sintered structure such as v and 0° ceramic grain size, improving the mechanical strength of the ceramic, and reducing discontinuous dimensional changes during device operation. If the amount added exceeds 20% by weight, this effect will not be achieved and the sinterability of the sintered body will also deteriorate, which is not desirable.
(作用) 本発明の、Agロウからなる薄い応力緩衝層は。(effect) The thin stress buffering layer of the present invention is made of Ag wax.
その構成物質がMo、Wに比べて柔軟な金属から成って
いるために、■、0.セラミックスのPTC抵抗変化時
の急激な寸法変化を吸収し、もって電極界面に発生する
応力を緩和するものである。またその厚さが電極基体で
あるMOあるいはWの板に比べて十分薄く、かつM o
、 Wに強固に接合しているために、その表面すなわ
ちv203セラミックとの接合界面における熱膨張は、
基体であるMo。Since its constituent material is made of a metal that is more flexible than Mo and W, ■, 0. It absorbs the sudden dimensional change when the PTC resistance of ceramics changes, thereby alleviating the stress generated at the electrode interface. In addition, its thickness is sufficiently thinner than that of the MO or W plate that is the electrode base, and
, Because it is firmly bonded to W, the thermal expansion at its surface, that is, the bonding interface with V203 ceramic, is
The base material is Mo.
Wと同一の振舞を示し、CuあるいはAgを単独で電極
板として使用した時の如き、■20.セラミックとの熱
膨張率差を示さないことがらPTC抵抗変化の前後にお
ける広い温度範囲にわたって熱応力を発生することもな
い、このため、Agロウ層の厚さは、 0 、01 m
〜2 、0 wmの範囲にあり、かつM o 。■20.Shows the same behavior as W, such as when Cu or Ag is used alone as an electrode plate. Since it shows no difference in thermal expansion coefficient from ceramic, it does not generate thermal stress over a wide temperature range before and after the PTC resistance change. Therefore, the thickness of the Ag wax layer is 0.01 m.
~2.0 wm and M o .
W板の厚さの173以下であることが必要で、 これよ
り薄い場合には応力緩衝層としての効果がなく、またこ
れより厚い場合には、v801セラミックとの接合界面
での熱膨張率がv20.セラミックに比べ大きな値とな
り、さらにMo、W板とバイメタルを形成し、電極のそ
り等を生じ、大きな界面応力を発生するため望ましくな
い。The thickness must be 173 or less than the thickness of the W plate. If it is thinner than this, it will not be effective as a stress buffer layer, and if it is thicker than this, the coefficient of thermal expansion at the bonding interface with the V801 ceramic will decrease. v20. This is undesirable because the value is larger than that of ceramic, and furthermore, it forms a bimetal with the Mo and W plates, causing warping of the electrode and generating large interfacial stress.
(実施例) 以下本発明を実施例に基づき詳細に説明する。(Example) The present invention will be described in detail below based on examples.
V、O,、Cr、03.SnO,、WO3粉末を(vI
+ + 9 S ?Cra、、、、、)=o、+5%S
nの組成(Cr含有率は約0.3モル%)に配合し、湿
式ボールミルで45時間粉砕・混合を行なった。得られ
た混合物をH8気流中600℃で2時間、さらに100
0℃で3時間保持して還元した後、アセトン中で湿式ボ
ールミルを5時間行ない粉砕した。V, O, Cr, 03. SnO,, WO3 powder (vI
++9S? Cra,,,,,)=o,+5%S
n (Cr content: approximately 0.3 mol %), and pulverized and mixed in a wet ball mill for 45 hours. The resulting mixture was heated at 600°C in a stream of H8 for 2 hours and then at 100°C.
After being reduced by holding at 0° C. for 3 hours, the mixture was pulverized by wet ball milling in acetone for 5 hours.
乾燥後、プレス成形し1350〜1500℃で4時間焼
結を行ない10φ×100の形状のv203セラミック
焼結体を得た。After drying, it was press-molded and sintered at 1350 to 1500°C for 4 hours to obtain a v203 ceramic sintered body with a size of 10φ×100.
この焼結体と厚さ1m”のMo板を504tの活性金属
を含むAgロウ材を用いて第1図の構成の如く積層し真
空ロウ材をおこないv203基PTC抵抗体を得た。This sintered body and a 1 m'' thick Mo plate were laminated using Ag brazing material containing 504 t of active metal as shown in FIG. 1, and vacuum brazing was performed to obtain a v203 PTC resistor.
これを実施例1とし、さらに100.g”の活性金属を
含むロウ材を用いて第1図の構成の如く積層ロウ材して
実施例2を得た。This is referred to as Example 1, and further 100. Example 2 was obtained by laminating a brazing material as shown in FIG. 1 using a brazing material containing an active metal of "g".
同様に、活性金属を含むロウ材の厚さを300μs−活
性金属を含むAgロウ材を用いて第1図の構成で積層、
ロウ材した比較例1.また1m+tのMo板及び1 、
0 m ”の活性金属を含むロウ材を用いて第1図の構
成の如く積層ロウ材した比較例2を得た。Similarly, the thickness of the brazing material containing active metal was set to 300 μs, and Ag brazing material containing active metal was laminated in the configuration shown in Fig. 1.
Comparative example 1 using brazing material. Also, 1m+t Mo board and 1,
Comparative Example 2 was obtained in which a brazing material containing 0 m'' of active metal was used to form a laminated brazing material as shown in FIG.
これらのPTC抵抗体のうち実施例1,2,3゜比較例
1は接合後冷却しても電極部の剥離、クラック発生はお
こらなかったが、比較例2についてはこの時点で電極剥
離が発生した。Among these PTC resistors, Examples 1, 2, and 3 and Comparative Example 1 did not cause peeling or cracking of the electrode part even after cooling after bonding, but electrode peeling occurred at this point in Comparative Example 2. did.
残ったPTC抵抗体を200OAの電流容量をもつ短絡
回路に挿入し、50Hz半波通電をおこない耐衝撃性を
調べた。この結果実施例1,2.3においては、電極部
のクラック電極剥離は発生せず健全であったが、比較例
1においては、電極剥離によりPTC抵抗体は破壊した
。The remaining PTC resistor was inserted into a short circuit with a current capacity of 200 OA, and 50 Hz half-wave current was applied to examine the impact resistance. As a result, in Examples 1 and 2.3, cracks in the electrode portion did not occur and electrode peeling was not generated and the electrodes were sound, but in Comparative Example 1, the PTC resistor was destroyed due to electrode peeling.
以上の様に本発明になる応力緩衝層は、V、O。 As described above, the stress buffer layer according to the present invention includes V and O.
セラミックのPTC抵抗変化に伴なう寸法変化による応
力を緩和し耐熱衝撃性の優れたPTC抵抗体をもたらす
ものである。This method relieves stress caused by dimensional changes accompanying changes in PTC resistance of ceramic, and provides a PTC resistor with excellent thermal shock resistance.
第1図、第2図は本発明の実施例、比較例の構成を示す
断面図。
1・・・Mo板 2・・・ロウ材3・・・v
203セラミック 4・・・活性金属ロウ材代理人 弁
理士 則 近 憲 佑
同 竹花喜久男
第1図
手続補正書(方式)
1、事件の表示
特願昭61−1601118号
2、発明の名称
PTC抵抗体
3、補正をする者
事件との関係 特許出願人
(307)株式会社 東芝
4、代理人
〒105
東京都港区芝浦−丁目1番1号
株式会社東芝 本社事務所内
昭和61年9月30日(発送日)
6、補正の対象FIG. 1 and FIG. 2 are cross-sectional views showing the configurations of an example of the present invention and a comparative example. 1... Mo board 2... Brazing material 3... v
203 Ceramic 4...Active metal brazing agent Patent attorney Yudo Ken Chika Kikuo Takehana Diagram 1 procedural amendment (method) 1. Indication of the case Patent Application No. 1983-1601118 2. Name of the invention PTC resistor 3. Relationship with the case of the person making the amendment Patent applicant (307) Toshiba Corporation 4, Agent 1-1 Shibaura-chome, Minato-ku, Tokyo 105 Toshiba Corporation Head Office September 30, 1986 ( Shipping date) 6. Subject to correction
Claims (1)
0.02、XはCr、Al、Scのうち少なくとも一種
)の基本組成に対し、Fe、Ni、Co、Cu、Snの
少なくとも一種を20重量%以下含有するPTC抵抗素
体にAgロウを用いてMoまたはWを電極板として添着
したPTC抵抗体において、Agロウ層の厚さが0.0
1〜2.0mmであり、かつMo、Wからなる電極板の
厚さの1/3以下であることを特徴とするPTC抵抗体
。(V_1_-_xX_x)_2O_3 (0≦x≦
0.02; In a PTC resistor with Mo or W attached as an electrode plate, the thickness of the Ag wax layer is 0.0
A PTC resistor having a thickness of 1 to 2.0 mm and less than 1/3 of the thickness of an electrode plate made of Mo or W.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP16081886A JPS6317502A (en) | 1986-07-10 | 1986-07-10 | Ptc resistance element |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP16081886A JPS6317502A (en) | 1986-07-10 | 1986-07-10 | Ptc resistance element |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS6317502A true JPS6317502A (en) | 1988-01-25 |
Family
ID=15723084
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP16081886A Pending JPS6317502A (en) | 1986-07-10 | 1986-07-10 | Ptc resistance element |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6317502A (en) |
-
1986
- 1986-07-10 JP JP16081886A patent/JPS6317502A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5668837B2 (en) | Electronic component mounting structure | |
JP2003197826A (en) | Ceramic circuit board and semiconductor module using the same | |
JP3834351B2 (en) | Ceramic circuit board | |
JPH05347469A (en) | Ceramic circuit board | |
JP3446713B2 (en) | Ceramic electronic components with lead terminals | |
JP4910113B2 (en) | Method for producing metal / ceramic bonding substrate | |
JP5047315B2 (en) | Ceramic circuit board | |
JPS6317502A (en) | Ptc resistance element | |
JP4560874B2 (en) | Ceramic electronic components | |
JP2002084046A (en) | Ceramic circuit board | |
JPH0597533A (en) | Composition for bonding ceramic-metal and bonded product of ceramic-metal | |
JPS6320801A (en) | Ptc resistance element | |
JPH06263554A (en) | Jointed substrate of ceramics-metal | |
JPH05246769A (en) | Ceramic-metal joining composition and ceramic-metal joined body using the same | |
JPH04170089A (en) | Ceramic circuit board | |
JPS6258602A (en) | Ptc resistor | |
JPH0564842B2 (en) | ||
JP3577109B2 (en) | Metallized substrate | |
JP2506270B2 (en) | High thermal conductivity circuit board and high thermal conductivity envelope | |
JP2512497B2 (en) | Conductor paste composition | |
WO1994009182A1 (en) | Metal powder composition for metallization and metallized substrate | |
JPH04285085A (en) | Ceramic substrate with thick film | |
JPS62152103A (en) | Ptc resistance device | |
JPH07176839A (en) | Ceramics insulating substrate | |
JPS59101889A (en) | High thermoconductive composite heat sink substrate |