JPH04170089A - Ceramic circuit board - Google Patents

Ceramic circuit board

Info

Publication number
JPH04170089A
JPH04170089A JP29552990A JP29552990A JPH04170089A JP H04170089 A JPH04170089 A JP H04170089A JP 29552990 A JP29552990 A JP 29552990A JP 29552990 A JP29552990 A JP 29552990A JP H04170089 A JPH04170089 A JP H04170089A
Authority
JP
Japan
Prior art keywords
film thickness
material layer
layer
solder material
thermal shock
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP29552990A
Other languages
Japanese (ja)
Inventor
Yumiko Kouno
有美子 河野
Masato Kumagai
正人 熊谷
Kenji Fukuda
憲司 福田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP29552990A priority Critical patent/JPH04170089A/en
Publication of JPH04170089A publication Critical patent/JPH04170089A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To get a ceramic circuit board, which has heat radiation property suitable for a power semiconductor, etc., and is excellent in thermal shock resistance, by interposing a specified solder material layer between an AlN ceramic sintered body and a copper plate. CONSTITUTION:This has a printed and dried solder material layer 2 on AlN ceramic 1, and when a copper plate 3 is put on this, it produces a space between the copper plate 3 and the solder material layer 2, but is these are heated in vacuum and joined to each other, the solder material layer turns into a silver copper layer 4 and a titanium nitride layer 5. The titanium nitride layer 5 exists between the AlN ceramic 1 and the silver copper layer 4. This solder material layer contains a titanium-containing layer, and the average dry film thickness is 10mum or more and 50mum or less, and the difference between the maximum film thickness and the minimum film thickness is 10mum or less. Hereby, the board becomes the one, in which junction defects are few, and the residual stress of the junction is low, and which is excellent in reliability of junction, thermal shock resistance, and high in heat radiation property.

Description

【発明の詳細な説明】 【産業上の利用分野】 本発明は、パワー半導体用等に適した高い放熱性を有し
、耐熱衝撃性に優れたセラミックス回路基板に関する。 r従来の技術】 近年、素子の高集積密度化、高速化、大電力制御化の傾
向に伴い、素子から発生する大量の熱を速やかに放散す
ることのできる基板が求められてきた。 そのような基板の1つとして、高熱伝導性絶縁セラミッ
クスであるAl2Nセラミックスをベースとし、その上
に、熱伝導性が良く、電気伝導性にも優れた金属である
銅を接合して回路を形成した基板が注目されている。そ
の製法として従来、大きく分類して次の(1)(2)が
紹介されている。 (1)表面を酸化させたAβNセラミックスと銅板を配
置し加熱してCu−0共晶を発生させて接合する方法(
東芝レビュー41.9pp811〜814 (1986
) (2)積層箔、合金板、混合粉1合金粉等のいずれかの
形態で、活性金属入りのろう材をAβNセラミックスと
銅板の間に介在させ、不活性雰囲気で加熱し、接合する
方法(特開昭56−163093、特開平2−1494
78号公報) 上記(2)の技術手段は(1)の手段に比べ、接着力も
強く、信頼性の高い接合状態が得られるが、銅とAl2
N基板の熱膨張差に起因する残留応力が発生し、接合、
冷却後あるいは素子搭載復電力ON −OFF切換に伴
う熱衝撃後に、クラックが発生しやすい欠点があった。 因みに銅及びAlxの熱膨張率はそれぞれl 7 x 
10−’/”C。 4〜5X10−6/”Cである。 その解決策として従来よりろう材層を30μm以下の厚
さの合金箔から成る合金層としたり(特開昭60−32
648号公報)、厚さ0.5 u mから10μmのチ
タン層を銅と、61Nの間に介在させる(特開昭60−
177634号公報)など、ろう材層や活性金属層を薄
くする方法が提案されてきた。 【発明が解決しようとする課題〕 上記の接合部残留応力の低減、耐熱衝撃性の向上を目的
としてろう材層を薄(すると接合欠陥が出易くなり、ろ
う材ペーストを用いた場合、箔に比べてその傾向が顕著
で問題であった。 一方、接合欠陥が現れないように、ろう材層を厚く印刷
又は塗布すると接合部残留応力の増大、耐熱衝撃性の低
下を来すばかりか甚だしい場合、ろう材が銅板からはみ
出して問題であった。 本発明者らは、接合の信頼性を低下させることなく耐熱
衝撃性を向上させるためのろう材層の構造について種々
検討した結果、接合欠陥の起き易さ、及びAβNセラミ
ックスに加わる残留応力の大きさはろう材層の厚さと平
坦度に大きく支配され、これらを適切に選定することに
よって信頼性が高く耐熱衝撃性に優れたろう材層を見出
した。 本発明はこの知見に基いて完成されたもので、王妃従来
技術の欠点を解消した回路基板を提供することを目的と
する。 [課題を解決するための手段] 本発明はAβNセラミックス焼結体と銅板との間に、含
チタン層を含み、平均乾燥膜厚が10μm以上50μm
以下でかつ最大膜厚と最小膜厚の差が10μm以下であ
るろう材層を介在させたことを特徴とするセラミックス
回路基板である。 [作用] 本発明のセラミックス回路基板は上記構成を有すること
により残留応力が少なく耐熱衝撃性が高い。 本発明の基板のろう材層は、活性金属であるTiを含む
ろう材を用いて形成し、TiN層等の含チタン層を包含
する。このろう材層の平均乾燥膜厚さは10μm未満で
は接合欠陥を生ずるので10μm以上とし、50μmを
越えると膜厚が大きいために残留応力の値が大きくなり
耐熱衝撃性が低下するので上限を50tLmに限定した
。 さらに重要なことは膜厚の均一性であって、最大膜厚と
最小膜厚との差RmaXが重要である。このR111a
Xについて本発明者が調査した実験結果を第1図を用い
て説明する。 第1図(a)はAl2Nセラミックス1の上に印刷し乾
燥したろう材層2を模式的に示したものである。従来の
厚膜印刷法はファインラインを精度良く形成することに
傾注した結果本件のように比較的広い面積を印刷すると
、この図に示すように端の部分が盛り上がる傾向にあっ
た。第1図(b)に示すようにこの上に銅板3を載せる
と銅板3とろう材層2の間にはすきまが生じているが、
これらを真空中で加熱接合すると第1図(C)に示すよ
うに、ろう材層は銀銅層4と窒化チタン層5を形成し、
窒化チタン層5はA12Nセラミツクスlと銀銅層4の
間に介在する。 この時、銀銅層4は溶融流動して第1図(b)に存在し
ていたすきまを充填する傾向にあるが、第1図(a)に
おけるろう材層の平坦性が悪い場合、すなわち、最大膜
厚と最小膜厚の差RffjaXが大きい場合には完全に
充填することが難しく、接合欠陥を誘起し易いことがわ
かった。 そこでRmaXに注目し、スクリーンメツシュ数、エマ
ルジョン厚さ、印刷スキージの硬さ、圧力、等、種々の
印刷条件を検討した結果接合欠陥はRmaXが小さいほ
ど低減され、RrnaXが10μm以下のような平坦化
した乾燥膜を有することにより、乾燥時平均膜厚10〜
50μmの回路基板は良好な接合性を示した。 〔実施例) 本発明の実施例の回路基板を次の方法により製造した。 水素化チタン粉末2〜7重量%を含む一22gmの銀銅
共晶合金粉末に、有機物を加えて粘度が50,000〜
70,0OOcpsのろう材ペーストを調整した。この
ペーストをスクリーン印刷法により50mmX30mm
x0.635mmのAρNセラミックス焼結体に印刷し
た。このとき、印刷厚さ及び最大膜厚と最小膜厚の差は
、第1表に示す平均乾燥膜厚Tm、最大膜厚と最小膜厚
の膜厚差RrllaXになるようにした。 ろう材ペーストが乾燥した後、その上に銅板を載せ1〜
l0XIO−5Torrの真空中で900℃で30分保
持して焼成し銅板を接合した。このようにして接合した
セラミックス回路基板の接合欠陥及び熱衝撃数を調査し
た結果を第1表に示した。実施例では、接合欠陥を発見
せずまた熱衝撃数は高い値を示したが、第1表において
、接合状態を示す記号は ○:良好 △:最大欠陥10mmφ未満 X:最大欠陥10mmφ以上 であり、熱衝撃性を示す表示は、−65℃から+150
℃の繰返し熱衝撃サイクルに対して熱衝撃後の観察によ
り ○:20サイクルで割れ、ひび、変形などの外観異常な
し ×:20サイクル未満で割れ、ひび、変形などの外観異
常発生 を示す。実施例であるNo、 1〜5では良好な成績を
示したが、No、6ではRmaxが大きく接合不良が見
られ、No7はTLI+が大きいので耐熱衝撃性が劣っ
ている。 〔発明の効果〕 本発明のセラミックス回路基板は、接合欠陥が少なく、
接合部の残留応力が低く、接合の信頼性、耐熱衝撃性と
もに優れ、放熱性が高い。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a ceramic circuit board having high heat dissipation properties and excellent thermal shock resistance suitable for use in power semiconductors and the like. 2. Description of the Related Art In recent years, with the trend toward higher integration density, higher speed, and higher power control of devices, there has been a demand for substrates that can quickly dissipate large amounts of heat generated from devices. One such substrate is based on Al2N ceramics, which is an insulating ceramic with high thermal conductivity, and a circuit is formed by bonding copper, a metal with good thermal conductivity and excellent electrical conductivity, on top of it. This board is attracting attention. Conventionally, the following methods (1) and (2) have been introduced as their manufacturing methods, broadly classified. (1) A method of bonding by placing AβN ceramics with an oxidized surface and a copper plate and heating them to generate Cu-0 eutectic (
Toshiba Review 41.9pp811-814 (1986
) (2) A method of interposing a brazing filler metal containing an active metal between AβN ceramics and a copper plate in the form of laminated foil, alloy plate, mixed powder 1 alloy powder, etc., and heating and bonding in an inert atmosphere. (JP-A-56-163093, JP-A-2-1494
Publication No. 78) The technical means of (2) above has stronger adhesive force and can provide a more reliable bonding state than the means of (1), but
Residual stress is generated due to the difference in thermal expansion of the N substrate, causing bonding and
There was a drawback that cracks were likely to occur after cooling or after thermal shock associated with ON/OFF switching of the element-mounted recovery power. Incidentally, the coefficient of thermal expansion of copper and Alx is l 7 x
10-'/"C. 4-5X10-6/"C. As a solution to this problem, the brazing material layer has been conventionally made of alloy foil with a thickness of 30 μm or less (Japanese Patent Application Laid-Open No. 60-32
No. 648), a titanium layer with a thickness of 0.5 μm to 10 μm is interposed between copper and 61N (Japanese Patent Application Laid-open No. 60-1999).
177634), methods of thinning the brazing material layer and the active metal layer have been proposed. [Problems to be Solved by the Invention] In order to reduce the residual stress in the joint and improve thermal shock resistance, the brazing material layer is made thinner (thus, bonding defects are more likely to occur, and when a brazing material paste is used, the foil On the other hand, printing or coating a thick layer of brazing material to prevent bonding defects not only increases the residual stress in the bonding area and reduces thermal shock resistance, but also causes serious problems. The problem was that the brazing filler metal protruded from the copper plate.As a result of various studies on the structure of the brazing filler metal layer to improve thermal shock resistance without reducing bonding reliability, the present inventors found that The ease with which AβN occurs and the magnitude of residual stress applied to AβN ceramics are largely controlled by the thickness and flatness of the brazing material layer, and by appropriately selecting these factors, it is possible to find a brazing material layer that is highly reliable and has excellent thermal shock resistance. The present invention was completed based on this knowledge, and an object thereof is to provide a circuit board that eliminates the drawbacks of the conventional technology. A titanium-containing layer is included between the aggregate and the copper plate, and the average dry film thickness is 10 μm or more and 50 μm.
This is a ceramic circuit board characterized by interposing a brazing material layer having a thickness of 10 μm or less and a difference between a maximum film thickness and a minimum film thickness of 10 μm or less. [Function] The ceramic circuit board of the present invention has little residual stress and high thermal shock resistance because it has the above configuration. The brazing material layer of the substrate of the present invention is formed using a brazing material containing Ti, which is an active metal, and includes a titanium-containing layer such as a TiN layer. If the average dry film thickness of this brazing material layer is less than 10 μm, bonding defects will occur, so it should be 10 μm or more, and if it exceeds 50 μm, the film thickness will be large, resulting in a large residual stress value and a decrease in thermal shock resistance, so the upper limit should be 50 tL. limited to. What is more important is the uniformity of the film thickness, and the difference RmaX between the maximum film thickness and the minimum film thickness is important. This R111a
The experimental results investigated by the present inventor regarding X will be explained using FIG. FIG. 1(a) schematically shows a brazing material layer 2 printed and dried on an Al2N ceramic 1. Conventional thick film printing methods focus on forming fine lines with high precision, and as a result, when printing a relatively wide area as in this case, the edges tend to swell as shown in this figure. As shown in FIG. 1(b), when the copper plate 3 is placed on top of this, a gap is created between the copper plate 3 and the brazing metal layer 2.
When these are heated and bonded in a vacuum, the brazing material layer forms a silver copper layer 4 and a titanium nitride layer 5, as shown in FIG. 1(C).
A titanium nitride layer 5 is interposed between the A12N ceramic 1 and the silver copper layer 4. At this time, the silver-copper layer 4 tends to melt and flow and fill the gap that existed in FIG. 1(b), but if the flatness of the brazing material layer in FIG. 1(a) is poor, i.e. It was found that when the difference RffjaX between the maximum film thickness and the minimum film thickness is large, it is difficult to completely fill the film, and bonding defects are likely to occur. Therefore, we focused on RmaX and examined various printing conditions such as screen mesh number, emulsion thickness, printing squeegee hardness, pressure, etc. As a result, bonding defects are reduced as RmaX is smaller, and when RrnaX is 10 μm or less, By having a flattened dry film, the average dry film thickness is 10~
The 50 μm circuit board showed good bonding properties. [Example] A circuit board according to an example of the present invention was manufactured by the following method. Organic matter is added to 122 gm of silver-copper eutectic alloy powder containing 2-7% by weight of titanium hydride powder to give a viscosity of 50,000 to 50,000.
A brazing paste of 70,000 cps was prepared. This paste was printed into 50mm x 30mm by screen printing method.
It was printed on an AρN ceramic sintered body with a size of 0.635 mm. At this time, the printing thickness and the difference between the maximum film thickness and the minimum film thickness were set to be the average dry film thickness Tm and the film thickness difference RrllaX between the maximum film thickness and the minimum film thickness shown in Table 1. After the brazing paste has dried, place a copper plate on top of it.
The copper plates were bonded by firing by holding at 900° C. for 30 minutes in a vacuum of 10XIO-5 Torr. Table 1 shows the results of investigating the bonding defects and thermal shock counts of the ceramic circuit boards bonded in this manner. In the example, no joining defects were found and the thermal shock number showed a high value, but in Table 1, the symbols indicating the joining state are: ○: Good △: Maximum defect less than 10 mmφ X: Maximum defect greater than 10 mmφ , The display indicating thermal shock resistance is from -65℃ to +150℃.
Observation after thermal shock for repeated thermal shock cycles at 0.degree. C.: ○: No appearance abnormalities such as cracks, cracks, deformation, etc. occurred after 20 cycles. ×: Appearance abnormalities such as cracks, deformations, etc. occurred after less than 20 cycles. Examples Nos. 1 to 5 showed good results, but Nos. 6 had a large Rmax and poor bonding was observed, and No. 7 had a large TLI+ and had poor thermal shock resistance. [Effects of the Invention] The ceramic circuit board of the present invention has few bonding defects and
Low residual stress in the joint, excellent joint reliability and thermal shock resistance, and high heat dissipation.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の効果を示す図である。 FIG. 1 is a diagram showing the effects of the present invention.

Claims (1)

【特許請求の範囲】[Claims] 1 AlNセラミックス焼結体と銅板との間に、含チタ
ン層を含み、平均乾燥膜厚が10μm以上50μm以下
でかつ最大膜厚と最小膜厚の差が10μm以下であるろ
う材層を介在させたことを特徴とするセラミックス回路
基板。
1 A brazing material layer containing a titanium-containing layer, having an average dry film thickness of 10 μm or more and 50 μm or less, and a difference between the maximum film thickness and the minimum film thickness of 10 μm or less, is interposed between the AlN ceramic sintered body and the copper plate. A ceramic circuit board characterized by:
JP29552990A 1990-11-02 1990-11-02 Ceramic circuit board Pending JPH04170089A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29552990A JPH04170089A (en) 1990-11-02 1990-11-02 Ceramic circuit board

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29552990A JPH04170089A (en) 1990-11-02 1990-11-02 Ceramic circuit board

Publications (1)

Publication Number Publication Date
JPH04170089A true JPH04170089A (en) 1992-06-17

Family

ID=17821807

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29552990A Pending JPH04170089A (en) 1990-11-02 1990-11-02 Ceramic circuit board

Country Status (1)

Country Link
JP (1) JPH04170089A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005216668A (en) * 2004-01-29 2005-08-11 Sii Micro Parts Ltd Electrochemical cell
JP2005252087A (en) * 2004-03-05 2005-09-15 Hitachi Metals Ltd Ceramic circuit board
JP2011258566A (en) * 2011-08-03 2011-12-22 Seiko Instruments Inc Electrochemical cell
JP2023147093A (en) * 2022-03-29 2023-10-12 株式会社プロテリアル Ceramic substrate, ceramic divided substrate, and method for manufacturing ceramic substrate

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005216668A (en) * 2004-01-29 2005-08-11 Sii Micro Parts Ltd Electrochemical cell
JP2005252087A (en) * 2004-03-05 2005-09-15 Hitachi Metals Ltd Ceramic circuit board
JP2011258566A (en) * 2011-08-03 2011-12-22 Seiko Instruments Inc Electrochemical cell
JP2023147093A (en) * 2022-03-29 2023-10-12 株式会社プロテリアル Ceramic substrate, ceramic divided substrate, and method for manufacturing ceramic substrate

Similar Documents

Publication Publication Date Title
JP5757359B2 (en) Cu / ceramic bonded body, Cu / ceramic bonded body manufacturing method, and power module substrate
US5981085A (en) Composite substrate for heat-generating semiconductor device and semiconductor apparatus using the same
JPH0261539B2 (en)
TW201841871A (en) Copper/ceramic bonded body, insulating circuit substrate, method of manufacturing copper/ceramic bonded body and method of manufacturing insulating circuit substrate
JP3012835B2 (en) Substrate and its manufacturing method, metal joined body suitable for substrate
JP6907546B2 (en) Power module
JPH08255973A (en) Ceramic circuit board
KR100374379B1 (en) Substrate
JP3834351B2 (en) Ceramic circuit board
JPH0786703A (en) Ceramic circuit board
JP2022023954A (en) Ceramic/aluminum bonded body, insulating circuit board, led module and ceramic member
JPH05347469A (en) Ceramic circuit board
JPH04170089A (en) Ceramic circuit board
JPH08102570A (en) Ceramic circuit board
JP5016756B2 (en) Nitride-based ceramic member and metal member joined body and nitride-based ceramic circuit board using the same
JP4244723B2 (en) Power module and manufacturing method thereof
JP2017157599A (en) Semiconductor device
WO2019180914A1 (en) Electronic-component-mounted module
JP3933287B2 (en) Circuit board with heat sink
JPH11154776A (en) Board
JP2503775B2 (en) Substrate for semiconductor device
JP2503778B2 (en) Substrate for semiconductor device
JP3454331B2 (en) Circuit board and method of manufacturing the same
JP2503779B2 (en) Substrate for semiconductor device
JP2508545B2 (en) Substrate for semiconductor device