JPS59101889A - High thermoconductive composite heat sink substrate - Google Patents

High thermoconductive composite heat sink substrate

Info

Publication number
JPS59101889A
JPS59101889A JP21126282A JP21126282A JPS59101889A JP S59101889 A JPS59101889 A JP S59101889A JP 21126282 A JP21126282 A JP 21126282A JP 21126282 A JP21126282 A JP 21126282A JP S59101889 A JPS59101889 A JP S59101889A
Authority
JP
Japan
Prior art keywords
layer
aqn
sic
heat dissipation
composite heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP21126282A
Other languages
Japanese (ja)
Other versions
JPH0445993B2 (en
Inventor
勝利 米屋
柘植 章彦
水谷 敏昭
博康 大田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP21126282A priority Critical patent/JPS59101889A/en
Publication of JPS59101889A publication Critical patent/JPS59101889A/en
Publication of JPH0445993B2 publication Critical patent/JPH0445993B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0306Inorganic insulating substrates, e.g. ceramic, glass

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は高熱伝導性の放熱基板に関する。[Detailed description of the invention] [Technical field of invention] The present invention relates to a heat dissipating substrate with high thermal conductivity.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

近年、電子機器、半導体機器の分野では、その小型化、
高性能化に伴って、回路構成素子からの発熱を効果的に
放熱することが重要な問題として浮上し、そのため、放
熱特性に優れた絶縁材料の開発が強く望まれている。
In recent years, in the field of electronic equipment and semiconductor equipment, miniaturization,
As performance increases, effective heat dissipation from circuit components has emerged as an important issue, and therefore there is a strong desire to develop insulating materials with excellent heat dissipation properties.

従来から現在まで、このような絶縁材料としては各種の
セラミックスが賞月されており、例えばIC基板を中心
にしてAQ203が主流であり、その他にもBeOが使
用されている。
Until now, various types of ceramics have been used as such insulating materials; for example, AQ203 has been the mainstream mainly used in IC substrates, and BeO has also been used.

しかしながら、Ag、203は熱伝導率に限界(最高約
0.3 W/crn−U )があってその放熱特性を充
分に高めることができず、また、BeOは毒性物質であ
るという難点があった。
However, Ag, 203 has a limited thermal conductivity (maximum approximately 0.3 W/crn-U), making it impossible to sufficiently enhance its heat dissipation properties, and BeO is a toxic substance. Ta.

最近、大きな電気絶縁性と熱伝導性を併有するSiC−
BeO系の材料が開発(特開昭56−66086号、同
57−2591号、同57−15484号等を参照)さ
れているが、この材料はバリスタ特性を備えるため高電
圧下では使用不能であり、しかも、製造工程において毒
性物質たるBeOを用いるため不都合である。
Recently, SiC-
BeO-based materials have been developed (see JP-A-56-66086, JP-A-57-2591, JP-A-57-15484, etc.), but this material has varistor properties and cannot be used under high voltage. However, it is inconvenient because BeO, a toxic substance, is used in the manufacturing process.

一方、新材料としてAQNが登場しているが、これは電
気的に大きな絶縁性を有し誘電率も8〜9と優れた特性
を備え、しかも理論的にはBeOに近い熱伝導率を有す
る材料である。しかしながら、実際には、製造工程にお
いて酸素等の不純物の混入又は異相の生成が避けられず
、その結果、熱伝導率が低下し現状では0.6W/cm
 −Cが最高の値である。そのため、放熱特性は、約2
.5W/Crn−CのBe01約2.3 W/cm −
Cノ金属1に比べて小さくなる。
On the other hand, AQN has appeared as a new material, but it has excellent electrical insulation properties and a dielectric constant of 8 to 9, and theoretically has a thermal conductivity close to that of BeO. It is the material. However, in reality, the incorporation of impurities such as oxygen or the formation of foreign phases is unavoidable during the manufacturing process, and as a result, the thermal conductivity decreases, currently 0.6 W/cm.
-C is the highest value. Therefore, the heat dissipation characteristics are approximately 2
.. Be01 of 5W/Crn-C approximately 2.3 W/cm −
It is smaller than C metal 1.

このように、従来から知られている高熱伝導性のセラミ
ックスには、それぞれ一長一短があるため、更に優れた
放熱特性を有し、かつ電気絶縁性の高い材料が望まれて
いる。
As described above, since the conventionally known highly thermally conductive ceramics each have advantages and disadvantages, there is a desire for a material that has even better heat dissipation properties and high electrical insulation properties.

〔発明の目的〕[Purpose of the invention]

本発明は、上記した産業上の要請に応えることができ、
放熱特性と電気絶縁性に優れた放熱基板の提供を目的と
する。
The present invention can meet the above industrial demands,
The purpose is to provide a heat dissipation board with excellent heat dissipation characteristics and electrical insulation.

〔発明の概要〕[Summary of the invention]

本発明者らは、AQNは電気的特性に優れるが放熱特性
は劣ること、また、SiCは熱伝導率が大きく放熱特性
に優れている反面電気抵抗は低く絶縁材料としての適性
に欠けること、しかも、両者はその熱膨張係数が近接し
ていること、などの事実に着目し、両者の層を積層すれ
ば両者の優れた特性をそれぞれ独立して生かし得るとの
着想を得、鋭意研究を重ねた結果、放熱特性に優れかつ
電気的にも充分機能し得る本発明の複合基板を開発する
に到った。
The present inventors discovered that AQN has excellent electrical properties but inferior heat dissipation properties, and that SiC has high thermal conductivity and excellent heat dissipation properties, but low electrical resistance and lacks suitability as an insulating material. Focusing on the fact that the coefficients of thermal expansion of both are close to each other, he got the idea that by stacking layers of both, the excellent properties of both could be utilized independently, and he conducted extensive research. As a result, we have developed the composite substrate of the present invention, which has excellent heat dissipation properties and can function satisfactorily electrically.

すなわち、本発明の放熱基板は、AQN層とSiC層の
積層体であり、更に他の態様は、この両層の間にAαN
及びSiCの混合層を介在せしめた積層体であることを
特徴とする。
That is, the heat dissipation substrate of the present invention is a laminate of an AQN layer and a SiC layer, and in another embodiment, AαN
It is characterized by being a laminate in which a mixed layer of SiC and SiC is interposed.

本発明の複合放熱基板は例えば次のようにして製造する
ことができる。
The composite heat dissipation board of the present invention can be manufactured, for example, as follows.

まず、第1の方法は、AQN 、 SiC、INとSi
Cの混合粉末をそれぞれ常法に従って成形若しくは焼結
して所定の厚みの圧粉体若しくは焼結板とし、これらを
積層してホットプレスして相互に接合し一体的な積層体
とする方法である。
First, the first method is AQN, SiC, IN and Si
A method of molding or sintering the mixed powder of C according to a conventional method to form a green compact or sintered plate of a predetermined thickness, and then laminating these and hot pressing them to bond them together to form an integral laminate. be.

第2の方法は、所定の鋳型の中にkQN 、 S i 
C。
The second method involves adding kQN, S i
C.

AQNと8iCの混合粉末をそれぞれ所定の厚みで充填
し、これら全体をホットプレスして一体的に焼結する方
法である。
This is a method in which mixed powders of AQN and 8iC are filled to a predetermined thickness, and the whole is hot pressed and sintered as one piece.

第3の方法は、所定厚みのSiC焼結板又はその上にA
QNとSiCの混合層を形成した焼結板に、常法により
AQNをスパッタしてAANを一体的に積層する方法で
ある。
The third method is to use a SiC sintered plate of a predetermined thickness or a
In this method, AQN is sputtered by a conventional method onto a sintered plate on which a mixed layer of QN and SiC is formed, and AAN is integrally laminated thereon.

ここで混合層はその両面に接合するAQN層及びSiC
層との間における熱膨張差に基づく熱応力の発生を緩衝
する機能を果すもので、AQNと8+Cの混合比は、使
用時の基板に作用する温度分布によって種々の値をとる
ことができる。通常、その混合比は重量比で20〜80
%の範囲内にある。また、この混合層は、AQNとSi
Cとを所定の混合比で均一に混合した層であってもよい
が、状況に応じては、AQNと8iCの混合比を段階的
に変動させて混合層の熱膨張係数に傾斜をもたせた層で
あってもよい。
Here, the mixed layer is an AQN layer and a SiC layer bonded on both sides.
It functions to buffer the generation of thermal stress due to the difference in thermal expansion between the layers, and the mixing ratio of AQN and 8+C can take various values depending on the temperature distribution acting on the substrate during use. Usually, the mixing ratio is 20 to 80 by weight.
within the range of %. Moreover, this mixed layer is composed of AQN and Si.
It may be a layer in which AQN and 8iC are uniformly mixed at a predetermined mixing ratio, but depending on the situation, the mixing ratio of AQN and 8iC may be varied in stages to give a slope to the coefficient of thermal expansion of the mixed layer. It may be a layer.

〔発明の実施例〕[Embodiments of the invention]

実施例1 平均粒径1μmのSiC粉末に2 wt%のB4C及び
2wt%のCの粉末を混合し、この混合粉末を真空中、
2000 t?T焼結して密度3−15 P/Cm” 
(7)SiC焼結板とした。厚み約1−51ar ++
こ(7) SiC焼結板をカーボンモールドの中に置き
、この上に、F8SS (Fisher’s 5ub−
8ieveSize )粒径1.2jjmのAQN  
粉末を50 okt/Cm”の圧力で成形したAQN圧
粉体(厚み1.5n+m)を載せ、全体を真空中、18
00C,3ooky/m2の東件でホットプレスした。
Example 1 SiC powder with an average particle size of 1 μm was mixed with 2 wt% B4C and 2 wt% C powder, and this mixed powder was heated in a vacuum.
2000 tons? T-sintered to a density of 3-15 P/Cm”
(7) A SiC sintered plate was prepared. Thickness approximately 1-51ar ++
(7) Place the SiC sintered plate in the carbon mold, and place F8SS (Fisher's 5ub-
8ieveSize) AQN with particle size 1.2jjm
An AQN powder compact (thickness 1.5n+m) formed by molding powder at a pressure of 50 okt/Cm was placed on it, and the whole was heated in a vacuum for 18
Hot pressed at 00C, 3ooky/m2 at Token.

AgN層とSiC層が接合した複合基板が得られた。A composite substrate in which an AgN layer and a SiC layer were bonded was obtained.

この複合基板の接合部の切断面をX線マイクロアナライ
ザー、金属顕微鏡及び走査電顕で観察したところ、その
接合部ではAQN層とSiC層とが明確に分離している
と同時に充分結合しあっていることが確認できた。
When the cut section of the joint of this composite substrate was observed using an X-ray microanalyzer, a metallurgical microscope, and a scanning electron microscope, it was found that the AQN layer and the SiC layer were clearly separated at the joint, but at the same time they were sufficiently bonded to each other. I was able to confirm that there was.

ついで、この複合基板の両面をダイヤモンド砥石で研削
し、AffiN層の厚み0.3 mm 、 SiC層の
厚み0.5 vm 1全体の厚み0.8 mの基板とし
た。
Next, both sides of this composite substrate were ground with a diamond grindstone to obtain a substrate having an AffiN layer thickness of 0.3 mm, a SiC layer thickness of 0.5 vm, and a total thickness of 0.8 m.

この基板の熱伝導率をレーザーフラッシュ法で測定した
ところ、1.15 W/cm −7:であり、厚み0.
8mのiN基板の熱伝導率0.5W/Crn、Cに比べ
て2.3倍の放熱効果を有していた。なお、電気絶縁性
に関してはAQN単体の場合と変らなかつた。
When the thermal conductivity of this substrate was measured by the laser flash method, it was 1.15 W/cm -7: and the thickness was 0.
The 8 m long iN substrate had a thermal conductivity of 0.5 W/Crn, and had a heat dissipation effect 2.3 times that of C. Note that the electrical insulation property was the same as that of AQN alone.

また、AQ、Nの厚みを種々変化させて本発明の複合基
板を製造し、その放熱特性を調査したところ、A、QN
の厚みが薄いものほど好結果が得られた。
In addition, when the composite substrate of the present invention was manufactured by varying the thickness of AQ and N, and its heat dissipation characteristics were investigated, it was found that A, QN
The thinner the material, the better the results.

実施例2 8iC焼結板とAQN圧粉体の間に、AQN/5iC(
重量比)が1のAQN −SiC混合粉末の焼結板(厚
み0.2 trtm )を介在させたこと、AQN圧粉
体の厚みが1mであったこと、を除いては、実施例1と
同様にしてAQN −AQN/SiC−S i Cの複
合基板を製造した。
Example 2 AQN/5iC (
Example 1 was performed, except that a sintered plate (thickness: 0.2 trtm) of AQN-SiC mixed powder with a weight ratio of 1 was interposed, and the thickness of the AQN powder compact was 1 m. Similarly, an AQN-AQN/SiC-S i C composite substrate was manufactured.

実施例1と同様にしてその接合部を観察したところ、各
層は明確に分離しておりかつ充分に結合していることが
確認された。
When the bonded portion was observed in the same manner as in Example 1, it was confirmed that each layer was clearly separated and sufficiently bonded.

また、この複合基板をダイヤモンド砥石で研削し、AQ
N層の厚み0.2闘、SiC層の厚み0.4調、全体の
厚み0.8 teaとして実施例1と同様の方法で熱伝
導率を測定したところ、1.1W/cm −Uであった
In addition, this composite substrate was ground with a diamond grindstone, and AQ
Thermal conductivity was measured in the same manner as in Example 1 with the N layer thickness 0.2 mm, the SiC layer thickness 0.4 mm, and the total thickness 0.8 mm. there were.

〔発明の効果〕〔Effect of the invention〕

以上の説明から明らかなように、本発明の複合基板は、
電気絶縁性はAQNと同等であり、かつ、放熱特性が優
れていて、とくにパワーICなど高出力回路基板として
有用である。
As is clear from the above description, the composite substrate of the present invention is
It has electrical insulation properties equivalent to AQN and excellent heat dissipation properties, making it particularly useful as high-output circuit boards such as power ICs.

川崎市幸区小向東芝町1番地東 京芝浦電気株式会社総合研究所1-1 East Komukai Toshiba-cho, Saiwai-ku, Kawasaki City Kyoshibaura Electric Co., Ltd. Research Institute

Claims (1)

【特許請求の範囲】 1、窒化アルミニウム質層と炭化ケイ素質層の積層体で
あることを特徴とする高熱伝導性複合放熱基板。 2、窒化アルミニウム質層と炭化ケイ素質との間に窒化
アルミニウム及び炭化ケイ素の混合層を介在せしめた積
層体であることを特徴とする高熱伝導性放熱基板。
[Claims] 1. A highly thermally conductive composite heat dissipation board characterized by being a laminate of an aluminum nitride layer and a silicon carbide layer. 2. A highly thermally conductive heat dissipating substrate characterized by being a laminate in which a mixed layer of aluminum nitride and silicon carbide is interposed between an aluminum nitride layer and a silicon carbide layer.
JP21126282A 1982-12-03 1982-12-03 High thermoconductive composite heat sink substrate Granted JPS59101889A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21126282A JPS59101889A (en) 1982-12-03 1982-12-03 High thermoconductive composite heat sink substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21126282A JPS59101889A (en) 1982-12-03 1982-12-03 High thermoconductive composite heat sink substrate

Publications (2)

Publication Number Publication Date
JPS59101889A true JPS59101889A (en) 1984-06-12
JPH0445993B2 JPH0445993B2 (en) 1992-07-28

Family

ID=16602993

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21126282A Granted JPS59101889A (en) 1982-12-03 1982-12-03 High thermoconductive composite heat sink substrate

Country Status (1)

Country Link
JP (1) JPS59101889A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61119051A (en) * 1984-11-15 1986-06-06 Nec Corp Semiconductor device
US4756976A (en) * 1983-09-30 1988-07-12 Kabushiki Kaisha Toshiba Ceramic with anisotropic heat conduction

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57102374A (en) * 1980-12-18 1982-06-25 Ricoh Co Ltd Thermal head

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57102374A (en) * 1980-12-18 1982-06-25 Ricoh Co Ltd Thermal head

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4756976A (en) * 1983-09-30 1988-07-12 Kabushiki Kaisha Toshiba Ceramic with anisotropic heat conduction
JPS61119051A (en) * 1984-11-15 1986-06-06 Nec Corp Semiconductor device

Also Published As

Publication number Publication date
JPH0445993B2 (en) 1992-07-28

Similar Documents

Publication Publication Date Title
US5981085A (en) Composite substrate for heat-generating semiconductor device and semiconductor apparatus using the same
CN109690760B (en) Heat sink and method for manufacturing the same
US20150036261A1 (en) Cooling plate, method for manufacturing the same, and member for semiconductor manufacturing apparatus
JPH0261539B2 (en)
JPS6273799A (en) Multilayer ceramic circuit substrate
JPS5831755B2 (en) Base for electrical insulation
JP2004128451A (en) Method of manufacturing low expansive material and semiconductor device using it
JP2000128654A (en) Silicon nitride composite substrate
JPS59101889A (en) High thermoconductive composite heat sink substrate
JP2004160549A (en) Ceramic-metal complex and high heat-conductive substrate for heat radiation using the same
JP2692332B2 (en) Manufacturing method of aluminum nitride substrate
CN114038639A (en) Multilayer ceramic sintered body substrate, electronic device, chip resistor, and method for manufacturing chip resistor
JP2004055577A (en) Plate-shaped aluminum-silicon carbide composite
JP3121769B2 (en) Silicon nitride multilayer substrate and method of manufacturing the same
JPH05326743A (en) Insulated heat dissipating substrate for semiconductor element mounting
WO2021187362A1 (en) Bonding sheet and bonded structure
JP4249371B2 (en) Metal base circuit board
JP3369749B2 (en) Aluminum nitride package
JP4636329B2 (en) Manufacturing method of heat dissipation buffer plate
JP2004200567A (en) Radiator and its producing process, substrate for power module, power module
JPH04168792A (en) Manufacture of high heat radiating ceramic circuit board with excellent thermal shock resistance
JPS6084713A (en) Electrically insulating material
JPH11171672A (en) Composite and heat sink using the same
JPH0347944A (en) Substrate material for heat radiation
JPH10154780A (en) Heat radiating parts, its manufacturing method, and semiconductor device using it