JP2000128654A - Silicon nitride composite substrate - Google Patents

Silicon nitride composite substrate

Info

Publication number
JP2000128654A
JP2000128654A JP10306497A JP30649798A JP2000128654A JP 2000128654 A JP2000128654 A JP 2000128654A JP 10306497 A JP10306497 A JP 10306497A JP 30649798 A JP30649798 A JP 30649798A JP 2000128654 A JP2000128654 A JP 2000128654A
Authority
JP
Japan
Prior art keywords
substrate
silicon nitride
thickness
composite substrate
thermal conductivity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10306497A
Other languages
Japanese (ja)
Other versions
JP2000128654A5 (en
Inventor
Ai Ito
愛 伊藤
Tomomasa Miyanaga
倫正 宮永
Masashi Yoshimura
雅司 吉村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP10306497A priority Critical patent/JP2000128654A/en
Priority to DE69934909T priority patent/DE69934909T2/en
Priority to EP99949425A priority patent/EP1142849B1/en
Priority to US09/830,219 priority patent/US6599637B1/en
Priority to PCT/JP1999/005910 priority patent/WO2000024692A1/en
Publication of JP2000128654A publication Critical patent/JP2000128654A/en
Publication of JP2000128654A5 publication Critical patent/JP2000128654A5/ja
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/48Manufacture or treatment of parts, e.g. containers, prior to assembly of the devices, using processes not provided for in a single one of the subgroups H01L21/06 - H01L21/326
    • H01L21/4814Conductive parts
    • H01L21/4846Leads on or in insulating or insulated substrates, e.g. metallisation
    • H01L21/4857Multilayer substrates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/584Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on silicon nitride
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B37/00Joining burned ceramic articles with other burned ceramic articles or other articles by heating
    • C04B37/02Joining burned ceramic articles with other burned ceramic articles or other articles by heating with metallic articles
    • C04B37/023Joining burned ceramic articles with other burned ceramic articles or other articles by heating with metallic articles characterised by the interlayer used
    • C04B37/026Joining burned ceramic articles with other burned ceramic articles or other articles by heating with metallic articles characterised by the interlayer used consisting of metals or metal salts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/498Leads, i.e. metallisations or lead-frames on insulating substrates, e.g. chip carriers
    • H01L23/49866Leads, i.e. metallisations or lead-frames on insulating substrates, e.g. chip carriers characterised by the materials
    • H01L23/49894Materials of the insulating layers or coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/52Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
    • H01L23/538Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames the interconnection structure between a plurality of semiconductor chips being formed on, or in, insulating substrates
    • H01L23/5383Multilayer substrates
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0306Inorganic insulating substrates, e.g. ceramic, glass
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/02Aspects relating to interlayers, e.g. used to join ceramic articles with other articles by heating
    • C04B2237/12Metallic interlayers
    • C04B2237/125Metallic interlayers based on noble metals, e.g. silver
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/32Ceramic
    • C04B2237/36Non-oxidic
    • C04B2237/368Silicon nitride
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/40Metallic
    • C04B2237/402Aluminium
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/40Metallic
    • C04B2237/407Copper
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/50Processing aspects relating to ceramic laminates or to the joining of ceramic articles with other articles by heating
    • C04B2237/66Forming laminates or joined articles showing high dimensional accuracy, e.g. indicated by the warpage
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/50Processing aspects relating to ceramic laminates or to the joining of ceramic articles with other articles by heating
    • C04B2237/70Forming laminates or joined articles comprising layers of a specific, unusual thickness
    • C04B2237/704Forming laminates or joined articles comprising layers of a specific, unusual thickness of one or more of the ceramic layers or articles
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/50Processing aspects relating to ceramic laminates or to the joining of ceramic articles with other articles by heating
    • C04B2237/70Forming laminates or joined articles comprising layers of a specific, unusual thickness
    • C04B2237/706Forming laminates or joined articles comprising layers of a specific, unusual thickness of one or more of the metallic layers or articles
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/50Processing aspects relating to ceramic laminates or to the joining of ceramic articles with other articles by heating
    • C04B2237/74Forming laminates or joined articles comprising at least two different interlayers separated by a substrate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/50Processing aspects relating to ceramic laminates or to the joining of ceramic articles with other articles by heating
    • C04B2237/76Forming laminates or joined articles comprising at least one member in the form other than a sheet or disc, e.g. two tubes or a tube and a sheet or disc
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Abstract

PROBLEM TO BE SOLVED: To provide a Si3N4 composite substrate not causing cracks in the substrate even by mechanical impacts and thermal impacts an having excellent heat-releasing characteristics and heat cycle-resistant characteristics by using a Si3N4 substrate as a ceramic substrate. SOLUTION: This Si3N4 composite substrate is obtained by using a Si3N4 substrate having a heat conductivity of >=90 W/m.K and a three point bending strength of >=700 MPa and setting a metal layer tm joined to the main surface of one side of the Si3N4 substrate and the thickness tc of the Si3N4 substrate so as to satisfy a relation: 2 tm <=tc<=20 tm. When metal layers are joined to the main surfaces of both the sides of the Si3N4 substrate, the total thickness ttm of the metal layers on both the main surfaces satisfies a relation: ttm<=tc<=10 ttm.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、半導体素子等の発
熱電子部品を搭載するパワーモジュール等の複合基板に
係わり、特にセラミック基板に金属層を接合した構造を
有し、放熱特性、機械的強度、及び耐熱サイクル特性に
優れたセラミック複合基板に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a composite substrate such as a power module on which a heat-generating electronic component such as a semiconductor element is mounted, and more particularly to a structure in which a metal layer is bonded to a ceramic substrate, heat radiation characteristics, and mechanical strength. And a ceramic composite substrate having excellent heat cycle characteristics.

【0002】[0002]

【従来の技術】従来から、各種電子機器の構成部品とし
て、電気絶縁性を有するAl23、AlN、BeOなど
のセラミック基板の表面に、導電層として銅やアルミニ
ウムを主成分とする金属板を接合したセラミック複合基
板が広く使用されてきた。
2. Description of the Related Art Conventionally, as a component of various electronic devices, a metal plate mainly composed of copper or aluminum as a conductive layer is formed on a surface of a ceramic substrate made of Al 2 O 3 , AlN, BeO or the like having electrical insulation. Have been widely used.

【0003】これらの従来のセラミック複合基板のう
ち、セラミック基板としてAl23基板を使用したもの
はAl23の熱伝導率が低いために良好な放熱性が得ら
れず、またBeO基板を用いたものは熱伝導率が高く放
熱性に優れるが、その毒性のため製造上の取り扱いが難
しいという問題があった。また、AlN基板を利用した
複合基板は、AlNの熱伝導率が高いため放熱性に優れ
ているが、AlNの機械的強度が低いため、機械的衝撃
や、実使用下で繰り返して使用する際の熱負荷により、
亀裂が生じやすいという問題点があった。
Among these conventional ceramic composite substrates, those using an Al 2 O 3 substrate as the ceramic substrate cannot provide good heat radiation because of the low thermal conductivity of Al 2 O 3 , and cannot be used for a BeO substrate. Although the use of is high in heat conductivity and excellent in heat dissipation, there is a problem that it is difficult to handle in production due to its toxicity. In addition, a composite substrate using an AlN substrate is excellent in heat dissipation because of the high thermal conductivity of AlN. However, since the mechanical strength of AlN is low, it can be used in mechanical shock or when repeatedly used under actual use. The thermal load of
There was a problem that cracks were easily formed.

【0004】一方、Si34を主成分とするセラミック
は、本来の高強度特性に加え、一般に1000℃以上の
高温度環境下でも優れた耐熱性を示し、且つ低熱膨張係
数を有し耐熱衝撃性にも優れている材料であるため、高
温構造材料として各種高温高強度部品への応用が試みら
れてきた。
On the other hand, ceramics containing Si 3 N 4 as a main component generally exhibit excellent heat resistance even in a high temperature environment of 1000 ° C. or more, and have a low thermal expansion coefficient, in addition to the inherent high strength characteristics. Since it is a material having excellent impact resistance, application to various high-temperature and high-strength components as a high-temperature structural material has been attempted.

【0005】[0005]

【発明が解決しようとする課題】最近では、Si34
主成分とするセラミックが本来備えている高強度特性を
利用して、複合基板用のセラミック基板としての用途が
検討されている。例えば特許公報第269870号や特
開平9−157054号公報には、Si34基板に金属
回路板を接合した複合回路基板であって、そのSi34
基板の厚みを1mmよりも薄くすることによって不十分
な熱伝導性を補い、回路全体の放熱性を高めようとする
試みが開示されている。
Recently, the use as a ceramic substrate for a composite substrate has been studied by utilizing the inherent high strength characteristics of ceramics containing Si 3 N 4 as a main component. For example, JP-A-269870 and JP-A-9-157054 disclose a composite circuit board in which a metal circuit board is bonded to a Si 3 N 4 board, and the Si 3 N 4
There is disclosed an attempt to compensate for insufficient thermal conductivity by making the thickness of the substrate smaller than 1 mm, and to enhance the heat dissipation of the entire circuit.

【0006】しかし、AlNよりも強度の高いSi34
であっても、基板の厚みが小さい場合には、やはりAl
N基板と同様に装着時及び実装時の機械的衝撃や、熱サ
イクルによる熱的衝撃によって亀裂が生じやすく、実用
化は難しいと考えられる。例えば、セラミック複合基板
を装置に組立てる工程で、装置の主要部に複合基板をね
じ止め等により固定する必要があるが、機械的強度に優
れたSi34基板であっても、基板が薄いとネジの押圧
力やハンドリング時の衝撃により亀裂の発生が避けられ
ないからである。このような亀裂が生じると、亀裂部分
で絶縁不良となり、絶縁破壊によって複合基板が使用不
可能になる。
However, Si 3 N 4 , which has higher strength than AlN,
However, if the thickness of the substrate is small,
Like the N-substrate, cracks are likely to occur due to mechanical shock at the time of mounting and mounting, and thermal shock due to thermal cycling, and it is considered that practical application is difficult. For example, in the process of assembling a ceramic composite substrate into a device, it is necessary to fix the composite substrate to the main part of the device by screwing or the like. Even if the substrate is a Si 3 N 4 substrate having excellent mechanical strength, the substrate is thin. This is because the generation of cracks due to the pressing force of the screws and the impact during handling is inevitable. When such a crack occurs, insulation failure occurs at the crack, and the composite substrate becomes unusable due to insulation breakdown.

【0007】本発明は、このような従来の事情に鑑み、
機械的衝撃や熱的衝撃によってもセラミック基板に亀裂
が発生することがなく、しかも放熱特性並びに耐熱サイ
クル特性に優れたセラミック複合基板を提供することを
目的とするものである。
The present invention has been made in view of such a conventional situation,
It is an object of the present invention to provide a ceramic composite substrate in which a ceramic substrate is not cracked even by a mechanical shock or a thermal shock, and is excellent in heat radiation characteristics and heat resistance cycle characteristics.

【0008】[0008]

【課題を解決するための手段】上記目的を達成するた
め、本発明者らは、高熱伝導率で且つ高強度のSi34
基板材料を研究開発すると共に、そのSi34基板の厚
さと金属板の厚さを所定比率に設定して複合基板とした
とき、組立工程での締め付け割れ等をなくし、耐熱サイ
クル特性を大幅に改善できること、特にSi34基板の
熱伝導率を高めることにより複合基板の放熱性を大幅に
改善できることを見い出し、本発明をなしたものであ
る。
In order to achieve the above object, the present inventors have developed a high thermal conductivity and high strength Si 3 N 4.
In addition to researching and developing substrate materials, when the thickness of the Si 3 N 4 substrate and the thickness of the metal plate are set to a predetermined ratio to form a composite substrate, tightening cracks and the like during the assembly process are eliminated, greatly improving the heat cycle characteristics. The present invention has been found that the heat dissipation of the composite substrate can be greatly improved by increasing the thermal conductivity of the Si 3 N 4 substrate.

【0009】即ち、本発明が提供するセラミック複合基
板は、熱伝導率が90W/m・K以上、3点曲げ強度が
700MPa以上である窒化ケイ素セラミック基板と、
その片方の主面上に接合された金属層とを備え、窒化ケ
イ素セラミック基板の厚さをtc、金属層の厚さをtm
としたとき、tcとtmが関係式2tm≦tc≦20t
mを満たすことを特徴とする。
That is, a ceramic composite substrate provided by the present invention includes a silicon nitride ceramic substrate having a thermal conductivity of 90 W / m · K or more and a three-point bending strength of 700 MPa or more;
A metal layer bonded on one of the main surfaces, the thickness of the silicon nitride ceramic substrate is tc, and the thickness of the metal layer is tm.
Where tc and tm are the relational expression 2tm ≦ tc ≦ 20t
m.

【0010】また、本発明が提供する他の窒化ケイ素複
合基板は、熱伝導率が90W/m・K以上、3点曲げ強
度が700MPa以上である窒化ケイ素セラミック基板
と、その両方の主面上に接合された金属層とを備え、窒
化ケイ素セラミック基板の厚さをtc、両主面上の金属
層の合計厚さをttmとするとき、tcとttmが関係
式ttm≦tc≦10ttmを満たすことを特徴とす
る。
Another silicon nitride composite substrate provided by the present invention includes a silicon nitride ceramic substrate having a thermal conductivity of 90 W / m · K or more and a three-point bending strength of 700 MPa or more, and a silicon nitride ceramic substrate on both main surfaces thereof. When the thickness of the silicon nitride ceramic substrate is tc and the total thickness of the metal layers on both main surfaces is ttm, tc and ttm satisfy the relational expression ttm ≦ tc ≦ 10ttm. It is characterized by the following.

【0011】上記の本発明の窒化ケイ素複合基板では、
金属板接合前の窒化ケイ素セラミック基板が、半導体素
子を搭載する側の主面が凹状となる反りを有することが
好ましく、その具体的な反り量は基板長さ25.4mm
(1インチ)当たり10〜300μmの範囲内が好まし
い。
In the silicon nitride composite substrate of the present invention,
It is preferable that the silicon nitride ceramic substrate before metal plate bonding has a warp such that the main surface on the side on which the semiconductor element is mounted is concave, and the specific amount of warp is a substrate length of 25.4 mm.
It is preferably within the range of 10 to 300 μm per (inch).

【0012】本発明の窒化ケイ素複合基板に用いる窒化
ケイ素セラミック基板は、希土類元素を酸化物に換算し
て0.6〜10重量%と、Mg、Ti、Ta、Li及び
Caから選ばれた少なくとも1種の元素を酸化物に換算
して0.5〜1.0重量%含有し、不純物としての酸素を
2重量%以下、及びAlを酸化物に換算して0.2重量
%以下含むことを特徴とする。
The silicon nitride ceramic substrate used for the silicon nitride composite substrate of the present invention has a rare earth element content of 0.6 to 10% by weight in terms of oxide and at least one selected from Mg, Ti, Ta, Li and Ca. Contains 0.5% to 1.0% by weight of one element in oxide, 2% by weight or less of oxygen as impurities, and 0.2% by weight or less of Al in oxide It is characterized by.

【0013】[0013]

【発明の実施の形態】まず、本発明のセラミック複合基
板に用いられるSi34基板について以下説明する。複
合基板に用いるセラミック基板は、高熱伝導性と高強度
特性を兼ね備えた緻密な焼結体である必要がある。従来
のSi34焼結体の熱伝導率が低いのは、焼結体のSi
34粒内に不純物が固溶し、熱伝導のキャリアーである
フォノンが散乱されるためである。Si34は難焼結性
のセラミックであるため、低温で液相を生成させる焼結
助剤の添加が必須であるが、この焼結助剤が粒内に固溶
して熱伝導率を低下させることが知られている。
DESCRIPTION OF THE PREFERRED EMBODIMENTS First, a Si 3 N 4 substrate used for a ceramic composite substrate of the present invention will be described below. The ceramic substrate used for the composite substrate needs to be a dense sintered body having both high thermal conductivity and high strength characteristics. The low thermal conductivity of the conventional Si 3 N 4 sintered body is due to the Si
This is because impurities are dissolved in 3 N 4 grains and phonons, which are carriers of heat conduction, are scattered. Since Si 3 N 4 is a hard-to-sinter ceramic, it is necessary to add a sintering aid that generates a liquid phase at a low temperature. It is known to reduce

【0014】そこで、本発明においては、焼結助剤の種
類を選択し、その添加量を所定の範囲に定めることによ
って、本来の優れた機械的強度に加えて、Si34焼結
体の熱伝導率を改善向上させ、これをセラミック基板と
して使用する。即ち、本発明では、Si34の焼結助剤
として、希土類酸化物と、Mg、Ti、Ta、Li、C
aの少なくとも1種の酸化物を併用する。
Therefore, in the present invention, the type of the sintering aid is selected, and the amount of the sintering additive is set within a predetermined range, thereby providing not only the original excellent mechanical strength but also the Si 3 N 4 sintered body. To improve and improve the thermal conductivity of the ceramic substrate. That is, in the present invention, as a sintering aid for Si 3 N 4 , rare earth oxides, Mg, Ti, Ta, Li, C
At least one oxide of a is used in combination.

【0015】希土類酸化物はSi34粒内に殆ど固溶し
ないため、焼結体の高熱伝導化に有効である。希土類酸
化物の中でも、Y、Yb、Smの酸化物を用いるのが望
ましい。これらの酸化物を用いた場合、粒界相が容易に
結晶化するためである。粒界相が結晶化した場合、高温
強度が高くなると同時に、粒界相でのフォノンの散乱が
低減されるため、高強度化と高熱伝導化の同時達成に有
効である。また、これら希土類酸化物の添加量は、0.
6〜10重量%の範囲が好ましい。0.6重量%より少
ない場合には、液相が十分に生成されず、焼結過程で緻
密化が進まないために、焼結後の気孔率が高くなり、熱
伝導率が低下すると同時に、機械的強度も低くなる。逆
に10重量%より多い場合には、焼結体中の粒界相の占
める割合が大きくなり、熱伝導率が低下する。
Since rare earth oxides hardly form a solid solution in Si 3 N 4 grains, they are effective for increasing the thermal conductivity of the sintered body. Among rare earth oxides, it is desirable to use oxides of Y, Yb, and Sm. This is because when these oxides are used, the grain boundary phase is easily crystallized. When the grain boundary phase is crystallized, the high-temperature strength is increased, and at the same time, the scattering of phonons in the grain boundary phase is reduced, which is effective for simultaneously achieving high strength and high thermal conductivity. Further, the amount of these rare earth oxides added is 0.1.
A range of 6 to 10% by weight is preferred. If the amount is less than 0.6% by weight, a liquid phase is not sufficiently generated, and the densification does not proceed in the sintering process, so that the porosity after sintering increases and the thermal conductivity decreases. The mechanical strength is also low. On the other hand, when the content is more than 10% by weight, the ratio of the grain boundary phase in the sintered body increases, and the thermal conductivity decreases.

【0016】他の焼結助剤であるMg、Ti、Ta、L
i、Caの酸化物は、1600℃以下の温度でSi34
粒子表面のSiO2と反応して液相を生成させ、焼結過
程で緻密化を促進させるために有効である。これらの酸
化物は、合計で0.5〜1重量%の少量の添加によっ
て、希土類酸化物を単独で添加した場合に比較して、焼
結性を大幅に改善し、しかも熱伝導率の低下には殆ど影
響しない。しかし、これらMg、Ti、Ta、Caの酸
化物の合計添加量が1重量%を越えると、これらの元素
がSi34粒内に固溶し、熱伝導率が大幅に低減する恐
れがある。また、Mg、Ti、Ta、Li、Caが粒界
相成分に含まれる場合、粒界相で非結晶性のガラス成分
を形成するため、やはり熱伝導率が低下し、また高温で
の強度が低下する。
Other sintering aids such as Mg, Ti, Ta, L
The oxides of i and Ca are Si 3 N 4 at a temperature of 1600 ° C. or less.
It is effective for generating a liquid phase by reacting with SiO 2 on the particle surface and promoting densification in the sintering process. These oxides greatly improve the sinterability and reduce the thermal conductivity by adding a small amount of 0.5 to 1% by weight in total, as compared with the case where the rare earth oxide is added alone. Has little effect. However, if the total added amount of these oxides of Mg, Ti, Ta, and Ca exceeds 1% by weight, these elements may form a solid solution in the Si 3 N 4 grains, and the thermal conductivity may be significantly reduced. is there. Further, when Mg, Ti, Ta, Li, and Ca are included in the grain boundary phase component, a non-crystalline glass component is formed in the grain boundary phase, so that the thermal conductivity also decreases, and the strength at high temperatures also decreases. descend.

【0017】更に、原料粉末の純度を高めることによ
り、得られるSi34焼結体の熱伝導率を向上させるこ
とができる。酸素とAlは容易にSi34粒内に固溶し
熱伝導率を低下させることが広く知られている。従っ
て、本発明のSi34基板では、その焼結体原料粉末
中、特にSi34粉末中の不純物として、酸素量を2重
量%以下、及びAlを0.2重量%以下とすることによ
り、Si34焼結体の熱伝導率を一層向上させることが
できる。
Further, by increasing the purity of the raw material powder, the thermal conductivity of the obtained Si 3 N 4 sintered body can be improved. It is widely known that oxygen and Al easily dissolve in Si 3 N 4 grains to lower the thermal conductivity. Therefore, in the Si 3 N 4 substrate of the present invention, the oxygen content is set to 2% by weight or less and Al is set to 0.2% by weight or less as impurities in the raw material powder of the sintered body, particularly in the Si 3 N 4 powder. Thereby, the thermal conductivity of the Si 3 N 4 sintered body can be further improved.

【0018】このようにして製造したSi34焼結体
は、室温での熱伝導率が90W/m・K以上で、且つ3
点曲げ強度が700MPa以上の優れた特性を有してい
る。このように、従来の高熱伝導率のSi34基板より
も更に熱伝導率を高め、同時に機械的強度も高めること
により、セラミック複合基板全体の熱抵抗を低減させな
がら、セラミック基板の厚さを大きくして、熱衝撃や機
械的衝撃に耐え得る厚さとすることができるのである。
The thus produced Si 3 N 4 sintered body has a thermal conductivity at room temperature of 90 W / m · K or more, and
It has excellent properties with a point bending strength of 700 MPa or more. Thus, by increasing the thermal conductivity further than the conventional high thermal conductivity Si 3 N 4 substrate and at the same time increasing the mechanical strength, the thermal resistance of the entire ceramic composite substrate is reduced, and the thickness of the ceramic substrate is reduced. Can be increased to a thickness that can withstand thermal and mechanical shocks.

【0019】つまり、本発明の窒化ケイ素複合基板で
は、熱伝導率が90W/m・K以上及び3点曲げ強度が
700MPa以上であるSi34基板を用い、その片方
の主面上に金属層を接合する場合に、Si34基板の厚
さをtc、金属層の厚さをtmとしたときに、このtc
とtmが2tm≦tc≦20tmの関係式1を満たすよ
うにセラミック基板の厚さを設定する。
That is, in the silicon nitride composite substrate of the present invention, a Si 3 N 4 substrate having a thermal conductivity of 90 W / m · K or more and a three-point bending strength of 700 MPa or more is used. When joining the layers, when the thickness of the Si 3 N 4 substrate is tc and the thickness of the metal layer is tm, this tc
And the thickness of the ceramic substrate is set so that tm satisfies the relational expression 1 of 2 tm ≦ tc ≦ 20 tm.

【0020】セラミック複合基板の耐熱サイクル特性を
向上させるためには、セラミック基板の両方の主面に金
属層を接合することが有効であるが、その場合には、両
方の主面に接合した金属層の厚さの合計をttmとした
とき、前記tcとttmとがttm≦tc≦10ttm
の関係式2を満たすようにセラミック基板の厚さを設定
する。尚、このとき、同時に上記関係式1を満たすこと
が好ましい。また、両方の主面に接合する金属層の厚さ
は同一でも又は異なっていてもよい。
In order to improve the heat-resistant cycle characteristics of the ceramic composite substrate, it is effective to bond a metal layer to both main surfaces of the ceramic substrate. Assuming that the total thickness of the layers is ttm, tc and ttm satisfy ttm ≦ tc ≦ 10ttm.
The thickness of the ceramic substrate is set so as to satisfy the relational expression 2. At this time, it is preferable to satisfy the above relational expression 1 at the same time. Further, the thickness of the metal layer bonded to both main surfaces may be the same or different.

【0021】上記tcとtm又はttmの関係におい
て、金属層がSi34基板の主面の片方にある場合にS
34基板の厚さtcがtc<2tmであるか、主面の
両方にある場合にtc<ttmであると、上記のような
高強度のSi34基板を用いても、実装時の機械的衝撃
によりに割れたり、熱サイクルによって亀裂が発生しや
すくなる。また、金属層が主面の片方にある場合にtc
>20tmとするか、主面の両方にある場合にtc>t
tmとすると、複合基板全体の熱抵抗が大きくなるので
好ましくない。
In the above relationship between tc and tm or ttm, when the metal layer is on one of the main surfaces of the Si 3 N 4 substrate, S
If the thickness tc of the i 3 N 4 substrate is tc <2 tm, or if it is tc <ttm when both are on the main surface, mounting is possible even with the high-strength Si 3 N 4 substrate as described above. Cracks are likely to occur due to mechanical shock at the time, and cracks are likely to occur due to thermal cycling. When the metal layer is on one side of the main surface, tc
> 20 tm or tc> t when both are on the main surface
If tm, the thermal resistance of the entire composite substrate increases, which is not preferable.

【0022】具体的なSi34基板の厚さとしては、機
械的衝撃による亀裂や破損の発生を防ぐために、1mm
以上とすることが好ましい。しかし、Si34基板が厚
すぎると、全体としての放熱特性や熱サイクル特性が低
下するので、ほぼ6mm以下とすることが望ましい。
The specific thickness of the Si 3 N 4 substrate is 1 mm in order to prevent cracks and breakage due to mechanical impact.
It is preferable to make the above. However, if the Si 3 N 4 substrate is too thick, the heat radiation characteristics and the heat cycle characteristics as a whole deteriorate, so that it is preferable that the thickness be approximately 6 mm or less.

【0023】本発明のSi34基板は、金属層を接合す
る前の初期段階で、半導体素子を搭載する側の主面が凹
状となる反りを有することが好ましい。また、この反り
の量は、Si34基板の主面の長さ25.4mm(1イ
ンチ)あたり10〜300μmの範囲内であることが好
ましい。
It is preferable that the Si 3 N 4 substrate of the present invention has a warp in which the main surface on the side on which the semiconductor element is mounted becomes concave at an initial stage before joining the metal layers. Further, it is preferable that the amount of the warpage is in the range of 10 to 300 μm per 25.4 mm (1 inch) of the length of the main surface of the Si 3 N 4 substrate.

【0024】このような反りを有するSi34基板の凹
状の主面に金属板を接合し、その上に発熱源であるトラ
ンジスタチップなどの素子を搭載した場合には、素子の
発熱量が増大して回路全体の温度が上昇したとき、その
熱によりSi34基板には素子搭載側の主面に引っ張り
応力が、反対側の主面には圧縮応力が作用する。その結
果、初期には素子搭載側に凹状に反っていたSi34
板が、装置主要部に対し平行になる方向に変形し、装置
と基板の密着性が向上するので、装置全体の熱抵抗をよ
り一層低減させることができる。
When a metal plate is bonded to a concave main surface of a Si 3 N 4 substrate having such a warp and a device such as a transistor chip as a heat source is mounted thereon, the amount of heat generated by the device is reduced. When the temperature of the entire circuit rises due to the increase, the heat causes a tensile stress to act on the principal surface on the element mounting side of the Si 3 N 4 substrate and a compressive stress to act on the principal surface on the opposite side. As a result, the Si 3 N 4 substrate, which was initially warped concavely toward the element mounting side, is deformed in a direction parallel to the main part of the device, and the adhesion between the device and the substrate is improved. Resistance can be further reduced.

【0025】[0025]

【実施例】実施例1 酸素含有量1重量%、平均粒径0.9μmのSi34
末に、Si34粉末の8重量%のY23粉末(平均粒径
1.0μm)と、0.5重量%のMgO粉末(平均粒径
1.0μm)を加え、アルコール溶媒中ボールミルで混
合した。その後、原料粉末の混合体を乾燥し、バインダ
ー成分を添加混練し、乾式金型プレスによりシート状の
成形体を複数作製した。この成形体を窒素雰囲気中で脱
脂処理した後、窒素雰囲気中1800℃で4時間焼成し
て、Si34焼結体を得た。尚、焼結体中の不純物Al
量をICP発光分析法により定量した結果、約0.1重
量%であった。この不純物Alは原料に由来するものと
考えられる。
EXAMPLE 1 An Si 3 N 4 powder having an oxygen content of 1% by weight and an average particle diameter of 0.9 μm was mixed with a Y 2 O 3 powder of 8% by weight of the Si 3 N 4 powder (an average particle diameter of 1.0 μm). ) And 0.5% by weight of MgO powder (average particle size: 1.0 μm) were mixed in an alcohol solvent by a ball mill. Thereafter, the mixture of the raw material powders was dried, a binder component was added and kneaded, and a plurality of sheet-like molded bodies were produced by a dry mold press. After the molded body was degreased in a nitrogen atmosphere, it was baked at 1800 ° C. for 4 hours in a nitrogen atmosphere to obtain a Si 3 N 4 sintered body. The impurity Al in the sintered body
As a result of quantification of the amount by ICP emission spectrometry, it was about 0.1% by weight. This impurity Al is considered to be derived from the raw material.

【0026】次に、得られた各Si34焼結体の一部よ
り、直径10mm、厚さ3mmの熱伝導測定用サンプル
を加工し、レーザーフラッシュ法により熱拡散率を測定
し、計算式K=α×C×ρ(α:熱拡散率、C:比熱、
ρ:密度)により熱伝導率を算出した。また、各Si3
4焼結体の一部から、研削加工により4×3×40m
mの抗折試験片を作製し、スパン30mmでJIS規格
(R−1601)の3点曲げ試験に供した。その結果、
このSi34焼結体の熱伝導率は110W/m・K、及
び3点曲げ強度は950MPaであった。
Next, a sample for measuring heat conduction having a diameter of 10 mm and a thickness of 3 mm was processed from a part of each of the obtained Si 3 N 4 sintered bodies, and the thermal diffusivity was measured by a laser flash method. Equation K = α × C × ρ (α: thermal diffusivity, C: specific heat,
(ρ: density) to calculate the thermal conductivity. In addition, each Si 3
Some N 4 sintered body, 4 × 3 × 40m by grinding
A bending test piece of m was prepared and subjected to a three-point bending test of JIS standard (R-1601) with a span of 30 mm. as a result,
The thermal conductivity of this Si 3 N 4 sintered body was 110 W / m · K, and the three-point bending strength was 950 MPa.

【0027】得られたSi34焼結体を、研削・研磨加
工により縦横32×75mmで、厚さを下記表1に示す
ように変化させて加工し、それぞれSi34基板とし
た。各基板の長さ25.4mm(1インチ)あたりの反
り量を測定し、その結果を表1に示した。また、試料1
〜6では凹側の主面に、及び試料7〜10では両側の主
面に、それぞれ表1に示す厚さtm又は合計厚さttm
の無酸素銅板を活性金属を含むロー材を用いて接合し、
セラミック複合基板を得た。
The obtained Si 3 N 4 sintered body was machined by grinding and polishing with a length and width of 32 × 75 mm and the thickness was changed as shown in Table 1 below to obtain Si 3 N 4 substrates. . The amount of warpage per 25.4 mm (1 inch) length of each substrate was measured, and the results are shown in Table 1. Sample 1
6, the thickness tm or the total thickness ttm shown in Table 1 is provided on the concave main surface, and on the main surfaces on both sides in Samples 7 to 10, respectively.
Oxygen-free copper plate is joined using a brazing material containing active metal,
A ceramic composite substrate was obtained.

【0028】Si34基板と銅板の接合後、超音波探傷
法により基板と銅板の間に空隙がないことを確認した
後、各複合基板をヒートサイクル試験に供した。ヒート
サイクル試験は、複合基板を−40℃で20分間冷却
し、室温で20分間保持し、125℃で20分間加熱
し、更に室温で20分間保持する操作を1サイクルとし
て行い、蛍光探傷法により亀裂発生の有無と亀裂発生ま
でのヒートサイクル数を確認した。また、各複合基板の
熱抵抗を測定し、回路全体の放熱特性を調べた。熱抵抗
の測定は、複合基板の凹側の主面に接合した銅板上に1
0×10mmのSiトランジスタチップを発熱源として
装着して評価した。これらの結果を下記表1に併せて示
した。
After joining the Si 3 N 4 substrate and the copper plate, it was confirmed by ultrasonic testing that there was no gap between the substrate and the copper plate, and then each composite substrate was subjected to a heat cycle test. In the heat cycle test, the composite substrate was cooled at −40 ° C. for 20 minutes, kept at room temperature for 20 minutes, heated at 125 ° C. for 20 minutes, and further kept at room temperature for 20 minutes as one cycle. The presence or absence of crack generation and the number of heat cycles until crack generation were confirmed. Further, the thermal resistance of each composite substrate was measured, and the heat radiation characteristics of the entire circuit were examined. The measurement of the thermal resistance was performed by placing one piece on the copper plate bonded to the concave main surface of the composite substrate.
The evaluation was performed by mounting a 0 × 10 mm Si transistor chip as a heat source. These results are shown in Table 1 below.

【0029】[0029]

【表1】 基板厚さ 銅板厚さ tc/tm 反り量 亀裂発生時 熱抵抗試料 tc (mm) tm、ttm(mm) (tc/ttm) (μm/in) 亀裂数 ヒートサイクル数 (℃/W) 1 2 0.3 6.7 100 0 >3000 0.6 2 1 0.3 3.3 200 0 >3000 0.3 3 0.6 0.3 2.0 250 0 >3000 0.25 4 5 0.3 16.7 15 0 >3000 1.2 5* 6.3 0.3 21.0 9 0 >3000 2.0 6* 0.5 0.3 1.67 310 4 1500 0.3 7 2 0.3+0.3 3.3 95 0 >3000 0.4 8 5 0.3+0.3 8.3 10 0 >3000 0.8 9 2 0.1+0.3 5.0 90 0 >3000 0.5 10 2 1.5+0.3 1.1 90 0 >3000 0.3 (注)表中の*を付した試料は比較例である。また、試料7〜10の銅板の合計 厚さttmは各主面ごとの厚さの和で示した。[Table 1] Substrate thickness Copper plate thickness tc / tm Warpage amount Thermal resistance sample when cracks occur tc (mm) tm, ttm (mm) (tc / ttm) (μm / in) Number of cracks Number of heat cycles (° C / W ) 1 2 0.3 6.7 100 0> 3000 0.6 2 1 0.3 3.3 200 0> 3000 0.3 3 0.6 0.3 2.0 250 0> 3000 0.25 4 5 0.3 16.7 15 0> 3000 1.25 * 6.3 0.3 21.0 9 0> 3000 2.0 6 * 0.5 0.3 1.67 310 4 1500 0.3 7 2 0.3 + 0.3 3.3 95 0> 3000 0.4 8 5 0.3 + 0.3 8.3 10 0> 3000 0.89 2 0.1 + 0.3 5.0 90 0> 3000 0.5 10 2 1.5 + 0.3 1.1 90 0> 3000 0.3 (Note) Samples marked with * in the table are comparative examples. In addition, the total thickness ttm of the copper plates of Samples 7 to 10 was represented by the sum of the thickness of each main surface.

【0030】この結果から分かるように、熱伝導率が1
10W/m・K及び3点曲げ強度が950MPaのSi3
4基板を用い、基板の厚さtcと金属層の厚さtm又
は合計厚さttmを2≦tc/tm≦20又は1≦tc
/ttm≦10となるように調整した本発明の各試料で
は、ヒートサイクル試験においてサイクル数3000回
に達した時点でもSi34基板に亀裂の発生がなく、同
時に複合基板全体の熱抵抗の値も小さくなり、優れた放
熱特性を示すことが実証された。
As can be seen from the results, the thermal conductivity is 1
Si 3 with 10 W / m · K and three-point bending strength of 950 MPa
Using an N 4 substrate, the thickness tc of the substrate and the thickness tm of the metal layer or the total thickness ttm are set to 2 ≦ tc / tm ≦ 20 or 1 ≦ tc.
In each sample of the present invention adjusted so as to satisfy / ttm ≦ 10, no crack was generated in the Si 3 N 4 substrate even when the number of cycles reached 3,000 in the heat cycle test, and at the same time, the thermal resistance of the entire composite substrate was reduced. The values were also small, demonstrating that excellent heat dissipation characteristics were exhibited.

【0031】一方、tc/tm>20又はtc/ttm
>10とした比較例の試料5の複合基板では、Si34
基板の厚さが大き過ぎるため、回路全体の放熱特性が劣
り、複合基板全体の熱抵抗が2.0℃/Wと非常に大き
くなった。また、tc/tm<2又はtc/ttm<1
となる比較例の試料6では、Si34基板を薄くしたこ
とにより耐熱サイクル特性が低下し、ヒートサイクル試
験ではサイクル数が少ないうちに基板に亀裂が生じた。
尚、Si34基板の厚さが1mm未満の試料3と6で
は、組立工程での機械的衝撃により基板に亀裂や破損な
どが発生しやすかった。
On the other hand, tc / tm> 20 or tc / ttm
In the composite substrate of Sample 5 of Comparative Example in which> 10, Si 3 N 4
Since the thickness of the substrate was too large, the heat radiation characteristics of the entire circuit were inferior, and the thermal resistance of the entire composite substrate was extremely high at 2.0 ° C./W. Also, tc / tm <2 or tc / ttm <1
In the sample 6 of the comparative example, the heat-resistant cycle characteristics were deteriorated by reducing the thickness of the Si 3 N 4 substrate, and cracks were generated in the heat cycle test while the number of cycles was small.
In samples 3 and 6 in which the thickness of the Si 3 N 4 substrate was less than 1 mm, cracks and breaks were likely to occur on the substrate due to mechanical impact in the assembly process.

【0032】実施例2 Si34粉末に添加する焼結助剤の種類と添加量を下記
表2に示すように変化させた以外は、実施例1と同様に
してSi34基板を作製し、その熱伝導率及び3点曲げ
強度を同様に評価した。これらの結果を表2に併せて示
した。また、参考のため、実施例1のSi34基板(試
料1)についても表2に併せて示した。尚、各Si34
基板中の不純物量は、実施例1の各試料と同じく、酸素
量が1重量%、及びAl量が0.1重量%であった。
Example 2 A Si 3 N 4 substrate was prepared in the same manner as in Example 1 except that the type and amount of the sintering aid added to the Si 3 N 4 powder were changed as shown in Table 2 below. It was fabricated and its thermal conductivity and three-point bending strength were similarly evaluated. These results are also shown in Table 2. Table 2 also shows the Si 3 N 4 substrate of Example 1 (sample 1) for reference. In addition, each Si 3 N 4
As in the samples of Example 1, the amount of impurities in the substrate was 1% by weight of oxygen and 0.1% by weight of Al.

【0033】[0033]

【表2】 熱伝導率 3点曲げ強度試 料 焼結助剤の種類と添加量(wt%) (W/m・K) (MPa) 1 Y2O3(8)+MgO(0.5) 110 950 11 Sm2O3(8)+MgO(0.5) 110 900 12 Yb2O3(8)+MgO(0.5) 140 900 13 Y2O3(4)+Yb2O3(4)+MgO(0.5) 138 900 14 Y2O3(4)+Sm2O3(4)+MgO(0.5) 100 1000 15 Yb2O3(4)+Sm2O3(4)+MgO(0.5) 105 950 16 Y2O3(8)+TiO2(0.5) 110 900 17 Y2O3(8)+Ta2O3(0.5) 115 1000 18 Y2O3(8)+Li2O(0.5) 90 900 19 Y2O3(8)+CaO(0.5) 95 880 20 Y2O3(4)+Sm2O3(4)+MgO(0.3)+Ta2O3(0.2) 100 1000 21* Y2O3(0.4)+MgO(1) 80 680 22* Y2O3(15)+MgO(0.5) 75 850 23* Sm2O3(0.4)+TiO2(5) 70 500 24* Sm2O3(15) 75 830 25* Yb2O3(0.4)+CaO(1.0) 65 600 26* Yb2O3(15) 65 800 (注)表中の*を付した試料は比較例である。[Table 2] Thermal conductivity 3-point bending strength sample Type and amount of sintering aid (wt%) (W / m · K) (MPa) 1 Y 2 O 3 (8) + MgO (0.5) 110 950 11 Sm 2 O 3 (8) + MgO (0.5) 110 900 12 Yb 2 O 3 (8) + MgO (0.5) 140 900 13 Y 2 O 3 (4) + Yb 2 O 3 (4) + MgO (0.5) 138 900 14 Y 2 O 3 (4) + Sm 2 O 3 (4) + MgO (0.5) 100 1000 15 Yb 2 O 3 (4) + Sm 2 O 3 (4) + MgO (0.5) 105 950 16 Y 2 O 3 (8) + TiO 2 (0.5) 110 900 17 Y 2 O 3 (8) + Ta 2 O 3 (0.5) 115 1000 18 Y 2 O 3 (8) + Li 2 O (0.5) 90 900 19 Y 2 O 3 (8) + CaO (0.5 ) 95 880 20 Y 2 O 3 (4) + Sm 2 O 3 (4) + MgO (0.3) + Ta 2 O 3 (0.2) 100 1000 21 * Y 2 O 3 (0.4) + MgO (1) 80 680 22 * Y 2 O 3 (15) + MgO (0.5) 75 850 23 * Sm 2 O 3 (0.4) + TiO 2 (5) 70 500 24 * Sm 2 O 3 (15) 75 830 25 * Yb 2 O 3 (0.4) + CaO (1.0 ) 65 600 26 * Yb 2 O 3 (15) 65 800 (Note) Samples marked with * in the table are comparative examples.

【0034】この結果から分かるように、焼結助剤とし
て添加する希土類酸化物は、Y23以外にYb23又は
Sm23を用いても、熱伝導率が100W/m・K以上
及び3点曲げ強度が900MPa以上の優れた特性を有
するSi34基板が得られ、特にYb23を用いた試料
12では140W/m・Kと極めて高熱伝導特性の基板
が得られた。また、試料16〜20では、希土類酸化物
以外の焼結助剤として、MgO以外にTi、Ta、L
i、Caの各酸化物を1重量%以下添加した。これらの
酸化物を用いても、MgOの場合と同様に、1800℃
以下の低温での焼結により緻密なSi34焼結体を得る
ことができた。
As can be seen from the results, the rare earth oxide added as a sintering aid has a thermal conductivity of 100 W / m · even when Yb 2 O 3 or Sm 2 O 3 is used in addition to Y 2 O 3. A Si 3 N 4 substrate having excellent characteristics of not less than K and a three-point bending strength of not less than 900 MPa can be obtained. In particular, in the case of sample 12 using Yb 2 O 3 , a substrate having an extremely high thermal conductivity of 140 W / m · K can be obtained. Was done. In Samples 16 to 20, Ti, Ta, L other than MgO were used as sintering aids other than rare earth oxides.
1% by weight or less of each oxide of i and Ca was added. Even when these oxides are used, 1800 ° C.
A dense Si 3 N 4 sintered body could be obtained by sintering at the following low temperature.

【0035】一方、比較例である試料21〜26におい
て、希土類酸化物の添加量が0.4重量%と少ない試料
では、Si34粒子の緻密化の過程で生成される液相の
量が少なく、1950℃という高温で焼結したにもかか
わらず、緻密な焼結体を得ることが出来なかった。その
結果、得られたSi34焼結体の熱伝導率は低く、また
3点曲げ強度の値も低かった。逆に希土類酸化物の添加
量が15重量%と過大な場合には、焼結体全体に対する
粒界相の占める体積割合が増えるため、熱伝導率が低下
した。
On the other hand, in Samples 21 to 26, which are comparative examples, in which the amount of the rare earth oxide added was as small as 0.4% by weight, the amount of liquid phase generated in the process of densification of Si 3 N 4 particles was small. However, despite sintering at a high temperature of 1950 ° C., a dense sintered body could not be obtained. As a result, the thermal conductivity of the obtained Si 3 N 4 sintered body was low, and the value of the three-point bending strength was also low. Conversely, when the added amount of the rare earth oxide was as large as 15% by weight, the volume ratio occupied by the grain boundary phase with respect to the entire sintered body was increased, so that the thermal conductivity was lowered.

【0036】次に、上記各Si34焼結体について、実
施例1と同様に厚さ2mmのSi34基板に加工し、基
板長さ25.4mmあたりの反り量を測定すると共に、
その凹側の主面に厚さ0.3mmの無酸素銅板を活性金
属を含むロー材を用いて接合した。得られた各セラミッ
ク複合基板について、実施例1と同様に、ヒートサイク
ル試験により亀裂発生の有無と亀裂発生までのヒートサ
イクル数を確認し、また熱抵抗を測定して回路全体の放
熱特性を調べた。これらの結果を下記表3に併せて示し
た。
Next, each of the above Si 3 N 4 sintered bodies was processed into a Si 3 N 4 substrate having a thickness of 2 mm in the same manner as in Example 1, and the amount of warpage per 25.4 mm of the substrate length was measured. ,
An oxygen-free copper plate having a thickness of 0.3 mm was joined to the concave main surface using a brazing material containing an active metal. For each of the obtained ceramic composite substrates, as in Example 1, the presence or absence of cracks and the number of heat cycles up to the occurrence of cracks were confirmed by a heat cycle test, and the thermal resistance was measured to examine the heat dissipation characteristics of the entire circuit. Was. The results are shown in Table 3 below.

【0037】[0037]

【表3】 (注)表中の*を付した試料は比較例である。[Table 3] (Note) Samples marked with * in the table are comparative examples.

【0038】このように、熱伝導率と機械的強度に優れ
たSi34基板を用い、基板と銅板の厚さが所定の比率
にある本発明の各試料11〜20においては、耐熱サイ
クル特性及び放熱特性に優れたセラミック複合基板が得
られた。しかし、比較例の試料21〜26では、Si3
4基板の熱伝導率が低いため、複合基板の熱抵抗が高
くなり、特に強度が劣るSi34基板を用いた試料2
1、23、25ではヒートサイクル試験での熱衝撃によ
り、基板に亀裂が発生しやすいことが分かる。
As described above, in each of the samples 11 to 20 of the present invention in which the Si 3 N 4 substrate excellent in thermal conductivity and mechanical strength is used and the thickness of the substrate and the thickness of the copper plate are at a predetermined ratio, A ceramic composite substrate having excellent characteristics and heat radiation characteristics was obtained. However, in Samples 21 to 26 of the comparative example, Si 3
Since the thermal conductivity of the N 4 substrate is low, the thermal resistance of the composite substrate is high, and in particular, Sample 2 using a Si 3 N 4 substrate, which is inferior in strength.
It can be seen that cracks easily occur in the substrates 1, 23, and 25 due to thermal shock in the heat cycle test.

【0039】実施例3 下記表4に示すように、試料27〜32では原料粉末中
の酸素量又はAl量を変えてSi34焼結体を製造した
以外は、実施例1と同様にSi34基板を作製し、その
熱伝導率及び3点曲げ強度を同様に評価した。これらの
結果を表4に併せて示した。また、参考のために、実施
例1のSi34基板(試料1)についても併せて示し
た。
[0039]Example 3  As shown in Table 4 below, in samples 27 to 32,
By changing the amount of oxygen or AlThreeNFourManufactured sintered body
Other than the above, SiThreeNFourMake a substrate, and
The thermal conductivity and the three-point bending strength were similarly evaluated. these
The results are shown in Table 4. Also implemented for reference
Si of Example 1ThreeNFourThe substrate (sample 1) is also shown.
Was.

【0040】[0040]

【表4】 原料粉末中不純物量 熱伝導率 3点曲げ強度試料 焼結助剤(wt%) 酸素(wt%) Al(wt%) (W/m・K) (MPa) 1 Y2O3(8)+MgO(0.5) 1 0.1 110 950 27 Y2O3(8)+MgO(0.5) 2 0.1 95 1100 28 Y2O3(8)+MgO(0.5) 0.5 0.1 120 930 29 Y2O3(8)+MgO(0.5) 1 0.2 90 1200 30 Y2O3(8)+MgO(0.5) 1 0.05 120 900 31* Y2O3(8)+MgO(0.5) 3 0.1 70 1200 32* Y2O3(8)+MgO(0.5) 1 0.5 50 1250 (注)表中の*を付した試料は比較例である。[Table 4] Impurities in raw material powder Thermal conductivity 3-point bending strength Sample sintering aid (wt%) Oxygen (wt%) Al (wt%) (W / m · K) (MPa) 1 Y 2 O 3 (8) + MgO (0.5) 1 0.1 110 950 27 Y 2 O 3 (8) + MgO (0.5) 2 0.1 95 1100 28 Y 2 O 3 (8) + MgO (0.5) 0.5 0.1 120 930 29 Y 2 O 3 (8 ) + MgO (0.5) 1 0.2 90 1200 30 Y 2 O 3 (8) + MgO (0.5) 1 0.05 120 900 31 * Y 2 O 3 (8) + MgO (0.5) 3 0.1 70 1200 32 * Y 2 O 3 (8 ) + MgO (0.5) 1 0.5 50 1250 (Note) Samples marked with * in the table are comparative examples.

【0041】原料粉末中の酸素量又はAl量が増加する
に従って、Si34の焼結性が向上するため、得られる
焼結体は緻密なものとなり機械的強度が向上する。しか
しながら、その一方でSi34焼結体の熱伝導率は低下
した。これは、酸素及びAlがSi34粒内に固溶する
ことにより、Si34結晶本来の結晶構造がより複雑に
なり、フォノンが粒内で著しく散乱されるためである。
As the amount of oxygen or Al in the raw material powder increases, the sinterability of Si 3 N 4 improves, so that the resulting sintered body becomes dense and the mechanical strength improves. However, on the other hand, the thermal conductivity of the Si 3 N 4 sintered body decreased. This is because the solid solution of oxygen and Al in the Si 3 N 4 grains makes the original crystal structure of the Si 3 N 4 crystal more complicated, and phonons are significantly scattered in the grains.

【0042】次に、上記表4の試料27〜32の各Si
34焼結体について、実施例1と同様に厚さ2mmのS
34基板に加工し、基板長さ25.4mmあたりの反
り量を測定すると共に、その凹側の主面に厚さ0.3m
mの無酸素銅板を活性金属を含むロー材を用いて接合し
た。得られた各セラミック複合基板について、実施例1
と同様に、ヒートサイクル試験により亀裂発生の有無と
亀裂発生までのヒートサイクル数を確認し、また熱抵抗
を測定して回路全体の放熱特性を調べた。これらの結果
を下記表5に示した。
Next, each of Samples 27 to 32 in Table 4
As for the 3 N 4 sintered body, the S
The substrate was processed into an i 3 N 4 substrate, the amount of warpage per substrate length of 25.4 mm was measured, and the thickness of the concave main surface was 0.3 m.
m oxygen-free copper plates were joined using a brazing material containing an active metal. Example 1 about each obtained ceramic composite substrate
Similarly to the above, the presence / absence of crack generation and the number of heat cycles until crack generation were confirmed by a heat cycle test, and the heat resistance was measured to examine the heat radiation characteristics of the entire circuit. The results are shown in Table 5 below.

【0043】また、上記表4の試料1のSi34基板を
用いて、厚さ2mmのSi34基板に加工し、試料1−
aとして、その凹状の主面に厚さ0.3mmのアルミニ
ウム板をアルミニウムを含むロー材によって接合した。
更に、試料1−bとして、同じく実施例1のSi34
板の両方の主面に、それぞれ厚さ0.3mmのアルミニ
ウム板を上記と同様に接合した。得られた各複合基板に
ついて、上記と同様の方法により評価し、その結果を表
5に併せて示した。
Further, using the Si 3 N 4 substrate of Sample 1 shown in Table 4 above, the substrate was processed into a Si 3 N 4 substrate having a thickness of 2 mm.
As a, an aluminum plate having a thickness of 0.3 mm was joined to the concave main surface by a brazing material containing aluminum.
Further, as Sample 1-b, aluminum plates each having a thickness of 0.3 mm were joined to both main surfaces of the Si 3 N 4 substrate of Example 1 in the same manner as described above. Each of the obtained composite substrates was evaluated by the same method as described above, and the results are shown in Table 5.

【0044】[0044]

【表5】 tc/tm 反り量 亀裂発生時 熱抵抗試 料 金属層 (tc/ttm) (μm/in) 亀裂数 ヒートサイクル数 (℃/W) 27 Cu 6.7 80 0 >3000 0.7 28 Cu 6.7 100 0 >3000 0.5 29 Cu 6.7 80 0 >3000 0.65 30 Cu 6.7 90 0 >3000 0.45 31* Cu 6.7 110 0 >3000 1.8 32* Cu 6.7 105 0 >3000 1.9 1−a Al 6.7 100 0 >3000 1.0 1−b Al(両面) 3.3 100 0 >3000 0.7 (注)表中の*を付した試料は比較例である。[Table 5] tc / tm warpage cracking during thermal resistance specimen metal layer (tc / ttm) (μm / in) the number of crack heat cycle number (℃ / W) 27 Cu 6.7 80 0> 3000 0.7 28 Cu 6.7 100 0> 3000 0.5 29 Cu 6.7 80 0> 3000 0.65 30 Cu 6.7 90 0> 3000 0.45 31 * Cu 6.7 110 0> 3000 1.8 32 * Cu 6.7 105 0> 3000 1.9 1−a Al 6.7 100 0> 3000 1.0 1− b Al (both sides) 3.3 100 0> 3000 0.7 (Note) Samples marked with * in the table are comparative examples.

【0045】上記の結果から分かるように、熱伝導率と
機械的強度に優れたSi34基板を用い、基板と銅板の
厚さが所定の比率にある本発明の各試料27〜30及び
試料1−a〜1−bにおいては、耐熱サイクル特性及び
放熱特性に優れたセラミック複合基板が得られた。しか
し、比較例の試料31〜32では、Si34基板の熱伝
導率が低いため、複合基板の熱抵抗が非常に高くなっ
た。
As can be seen from the above results, each of the samples 27 to 30 of the present invention using a Si 3 N 4 substrate excellent in thermal conductivity and mechanical strength and having a predetermined ratio of the thickness of the substrate to the thickness of the copper plate. In samples 1-a to 1-b, ceramic composite substrates having excellent heat cycle characteristics and heat radiation characteristics were obtained. However, in the samples 31 to 32 of the comparative examples, the thermal resistance of the composite substrate was extremely high because the thermal conductivity of the Si 3 N 4 substrate was low.

【0046】また、試料1−a及び1−bの結果から分
かるように、Si34基板に接合する金属板として、銅
板以外にアルミニウム板を用いても、良好な放熱特性を
有する複合基板が得られた。
As can be seen from the results of Samples 1-a and 1-b, even if an aluminum plate was used as the metal plate to be bonded to the Si 3 N 4 substrate instead of the copper plate, a composite substrate having good heat radiation characteristics was obtained. was gotten.

【0047】[0047]

【発明の効果】本発明によれば、従来のSi34焼結体
よりも高熱伝導性を有し、また同時に機械的強度を併せ
持つSi34基板を使用し、且つSi34基板の厚さと
基板に接合する金属層の厚さを特定範囲に調整すること
によって、実装時あるいは装着時の機械的負荷に耐え、
また耐熱サイクル特性及び放熱特性に優れたセラミック
複合基板を提供することができる。
According to the present invention has a high thermal conductivity than conventional the Si 3 N 4 sintered body, also using the Si 3 N 4 substrate having both the mechanical strength at the same time, and Si 3 N 4 By adjusting the thickness of the board and the thickness of the metal layer bonded to the board to a specific range, it can withstand the mechanical load at the time of mounting or mounting,
Further, a ceramic composite substrate having excellent heat cycle characteristics and heat radiation characteristics can be provided.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 吉村 雅司 兵庫県伊丹市昆陽北一丁目1番1号 住友 電気工業株式会社伊丹製作所内 Fターム(参考) 4G026 BA17 BB23 BB27 BC01 BD14 BF11 BH07 5E338 AA01 AA02 AA18 CC01 CD11 EE02  ────────────────────────────────────────────────── ─── Continuing on the front page (72) Inventor Masaji Yoshimura 1-1-1 Kunyokita, Itami City, Hyogo Prefecture F-term in Sumitomo Electric Industries, Ltd. Itami Works 4G026 BA17 BB23 BB27 BC01 BD14 BF11 BH07 5E338 AA01 AA02 AA18 CC01 CD11 EE02

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 熱伝導率が90W/m・K以上、3点曲
げ強度が700MPa以上である窒化ケイ素セラミック
基板と、その片方の主面上に接合された金属層とを備
え、窒化ケイ素セラミック基板の厚さをtc、金属層の
厚さをtmとしたとき、tcとtmが関係式2tm≦t
c≦20tmを満たすことを特徴とする窒化ケイ素複合
基板。
1. A silicon nitride ceramic comprising: a silicon nitride ceramic substrate having a thermal conductivity of 90 W / m · K or more and a three-point bending strength of 700 MPa or more; and a metal layer bonded on one main surface thereof. When the thickness of the substrate is tc and the thickness of the metal layer is tm, the relational expression 2tm ≦ t
A silicon nitride composite substrate, wherein c ≦ 20 tm is satisfied.
【請求項2】 熱伝導率が90W/m・K以上、3点曲
げ強度が700MPa以上である窒化ケイ素セラミック
基板と、その両方の主面上に接合された金属層とを備
え、窒化ケイ素セラミック基板の厚さをtc、両主面上
の金属層の合計厚さをttmとするとき、tcとttm
が関係式ttm≦tc≦10ttmを満たすことを特徴
とする窒化ケイ素複合基板。
2. A silicon nitride ceramic comprising: a silicon nitride ceramic substrate having a thermal conductivity of at least 90 W / m · K and a three-point bending strength of at least 700 MPa; and a metal layer bonded on both main surfaces thereof. Assuming that the thickness of the substrate is tc and the total thickness of the metal layers on both main surfaces is ttm, tc and ttm
Satisfies the relational expression ttm ≦ tc ≦ 10ttm.
【請求項3】 金属板接合前の窒化ケイ素セラミック基
板が、半導体素子を搭載する側の主面が凹状となる反り
を有することを特徴とする、請求項1又は2に記載の窒
化ケイ素複合基板。
3. The silicon nitride composite substrate according to claim 1, wherein the silicon nitride ceramic substrate before the metal plate bonding has a warp such that a main surface on a side on which the semiconductor element is mounted is concave. .
【請求項4】 前記反り量が基板長さ25.4mm当た
り10〜300μmであることを特徴とする、請求項3
に記載の窒化ケイ素複合基板。
4. The method according to claim 3, wherein the amount of the warpage is 10 to 300 μm per 25.4 mm of the substrate length.
3. The silicon nitride composite substrate according to 1.).
【請求項5】 前記窒化ケイ素セラミック基板は、希土
類元素を酸化物に換算して0.6〜10重量%と、M
g、Ti、Ta、Li及びCaから選ばれた少なくとも
1種の元素を酸化物に換算して0.5〜1.0重量%含有
し、不純物としての酸素を2重量%以下、及びAlを酸
化物に換算して0.2重量%以下含むことを特徴とす
る、請求項1〜4のいずれかに記載の窒化ケイ素複合基
板。
5. The silicon nitride ceramic substrate according to claim 1, wherein said rare earth element is converted to an oxide in an amount of 0.6 to 10% by weight,
g, at least one element selected from the group consisting of Ti, Ta, Li, and Ca in an amount of 0.5 to 1.0% by weight in terms of oxides, oxygen as an impurity of 2% by weight or less, and Al The silicon nitride composite substrate according to any one of claims 1 to 4, wherein the silicon nitride composite substrate contains 0.2% by weight or less in terms of oxide.
【請求項6】 前記希土類元素がY、Sm及びYbから
選ばれた少なくとも1種であることを特徴とする、請求
項5に記載の窒化ケイ素複合基板。
6. The silicon nitride composite substrate according to claim 5, wherein said rare earth element is at least one selected from Y, Sm and Yb.
【請求項7】 前記金属層が銅を主成分とする金属から
なることを特徴とする、請求項1〜6のいずれかに記載
の窒化ケイ素複合基板。
7. The silicon nitride composite substrate according to claim 1, wherein said metal layer is made of a metal containing copper as a main component.
【請求項8】 前記金属層がアルミニウムを主成分とす
る金属からなることを特徴とする、請求項1〜6のいず
れかに記載の窒化ケイ素複合基板。
8. The silicon nitride composite substrate according to claim 1, wherein said metal layer is made of a metal containing aluminum as a main component.
JP10306497A 1998-10-28 1998-10-28 Silicon nitride composite substrate Pending JP2000128654A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP10306497A JP2000128654A (en) 1998-10-28 1998-10-28 Silicon nitride composite substrate
DE69934909T DE69934909T2 (en) 1998-10-28 1999-10-25 Substrate based on a silicon nitride complex
EP99949425A EP1142849B1 (en) 1998-10-28 1999-10-25 Silicon nitride composite substrate
US09/830,219 US6599637B1 (en) 1998-10-28 1999-10-25 Silicon nitride composite substrate
PCT/JP1999/005910 WO2000024692A1 (en) 1998-10-28 1999-10-25 Silicon nitride composite substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10306497A JP2000128654A (en) 1998-10-28 1998-10-28 Silicon nitride composite substrate

Publications (2)

Publication Number Publication Date
JP2000128654A true JP2000128654A (en) 2000-05-09
JP2000128654A5 JP2000128654A5 (en) 2005-09-08

Family

ID=17957746

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10306497A Pending JP2000128654A (en) 1998-10-28 1998-10-28 Silicon nitride composite substrate

Country Status (5)

Country Link
US (1) US6599637B1 (en)
EP (1) EP1142849B1 (en)
JP (1) JP2000128654A (en)
DE (1) DE69934909T2 (en)
WO (1) WO2000024692A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001064080A (en) * 1999-06-23 2001-03-13 Ngk Insulators Ltd Silicon nitride sintered body and its production
JP2002029850A (en) * 2000-07-17 2002-01-29 Denki Kagaku Kogyo Kk Sintered silicon nitride compact and method for manufacturing the same
JP2002029851A (en) * 2000-07-17 2002-01-29 Denki Kagaku Kogyo Kk Silicon nitride composition, method for manufacturing sintered silicon nitride compact using the same and sintered silicon nitride compact
JP2002203993A (en) * 2000-12-27 2002-07-19 Toshiba Corp Substrate for thermoelectric modules and thermoelectric module using the substrate
JP2006062907A (en) * 2004-08-26 2006-03-09 Dowa Mining Co Ltd Aluminum-ceramic joined substrate

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6958535B2 (en) * 2000-09-22 2005-10-25 Matsushita Electric Industrial Co., Ltd. Thermal conductive substrate and semiconductor module using the same
JP4454191B2 (en) * 2001-07-30 2010-04-21 日本特殊陶業株式会社 Manufacturing method of ceramic heater
JP4483161B2 (en) 2002-08-13 2010-06-16 住友電気工業株式会社 Aluminum nitride sintered body, metallized substrate, heater, jig, and method of manufacturing aluminum nitride sintered body
JP4869070B2 (en) 2004-05-20 2012-02-01 株式会社東芝 High thermal conductivity silicon nitride sintered body and silicon nitride structural member
EP2217043B1 (en) 2007-11-06 2019-01-30 Mitsubishi Materials Corporation Method for producing a substrate for power module
US7948075B2 (en) * 2008-03-10 2011-05-24 Hitachi Metals, Ltd. Silicon nitride substrate, method of manufacturing the same, and silicon nitride circuit board and semiconductor module using the same

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59150453A (en) * 1982-12-23 1984-08-28 Toshiba Corp Manufacture of substrate for seiconductor module
JPH0699191B2 (en) * 1984-12-22 1994-12-07 京セラ株式会社 Method for manufacturing silicon nitride sintered body
EP0587119B1 (en) * 1992-09-08 1998-01-07 Kabushiki Kaisha Toshiba High thermal conductive silicon nitride sintered body and method of producing the same
KR100232660B1 (en) * 1995-03-20 1999-12-01 니시무로 타이죠 Silicon nitride circuit board
EP0766307B1 (en) 1995-03-20 2007-08-08 Kabushiki Kaisha Toshiba Silicon nitride circuit board
JPH09153567A (en) 1995-09-28 1997-06-10 Toshiba Corp Heat conductive silicon nitride circuit board and semiconductor device
JP3629783B2 (en) 1995-12-07 2005-03-16 電気化学工業株式会社 Circuit board
TW353220B (en) * 1996-08-20 1999-02-21 Toshiba Corp Silicon nitride circuit board and semiconductor module
JPH1093211A (en) * 1996-09-17 1998-04-10 Toshiba Corp Silicon nitride circuit board
JP3722573B2 (en) * 1996-12-11 2005-11-30 電気化学工業株式会社 Ceramic substrate, circuit board using the same, and manufacturing method thereof
US6143677A (en) 1997-09-03 2000-11-07 Sumitomo Electric Industries, Ltd. Silicon nitride sinter having high thermal conductivity and process for preparing the same

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001064080A (en) * 1999-06-23 2001-03-13 Ngk Insulators Ltd Silicon nitride sintered body and its production
JP4571728B2 (en) * 1999-06-23 2010-10-27 日本碍子株式会社 Silicon nitride sintered body and manufacturing method thereof
JP2002029850A (en) * 2000-07-17 2002-01-29 Denki Kagaku Kogyo Kk Sintered silicon nitride compact and method for manufacturing the same
JP2002029851A (en) * 2000-07-17 2002-01-29 Denki Kagaku Kogyo Kk Silicon nitride composition, method for manufacturing sintered silicon nitride compact using the same and sintered silicon nitride compact
JP2002203993A (en) * 2000-12-27 2002-07-19 Toshiba Corp Substrate for thermoelectric modules and thermoelectric module using the substrate
JP2006062907A (en) * 2004-08-26 2006-03-09 Dowa Mining Co Ltd Aluminum-ceramic joined substrate

Also Published As

Publication number Publication date
US6599637B1 (en) 2003-07-29
WO2000024692A1 (en) 2000-05-04
EP1142849B1 (en) 2007-01-17
EP1142849A1 (en) 2001-10-10
DE69934909D1 (en) 2007-03-08
DE69934909T2 (en) 2007-07-05
EP1142849A4 (en) 2004-11-10

Similar Documents

Publication Publication Date Title
JP4013386B2 (en) Support for manufacturing semiconductor and method for manufacturing the same
JP2000044342A (en) Aluminum nitride sintered compact and its production
CN110383468A (en) Flange-cooled power module substrate
JP3565425B2 (en) Method for producing silicon nitride-based powder and method for producing silicon nitride-based sintered body
JP2000128654A (en) Silicon nitride composite substrate
JP3539634B2 (en) Silicon nitride substrate for circuit mounting and circuit substrate
KR102206422B1 (en) Copper/ceramic composite
JP2004160549A (en) Ceramic-metal complex and high heat-conductive substrate for heat radiation using the same
JP2000351673A (en) High heat-conductive silicon nitride-based sintered product and its production
JP2004231513A (en) Circuit board excellent in high strength/high heat conductivity
WO2020203683A1 (en) Silicon nitride sintered body, method for producing same, multilayer body and power module
JPH11100274A (en) Silicon nitride sintered compact, its production and circuit board
JP2004262756A (en) Silicon nitride powder, silicon nitride sintered compact, and circuit board for electronic component using the sintered compact
JP2002201072A (en) AlN SINTERED COMPACT AND AlN CIRCUIT SUBSTRATE USING IT
JP4348659B2 (en) High thermal conductivity silicon nitride sintered body, substrate using the same, circuit board for semiconductor device
JP2677748B2 (en) Ceramics copper circuit board
JPH0477369A (en) Production of metal-ceramic laminated substrate
WO2020115870A1 (en) Ceramic sintered body and substrate for semiconductor devices
JP3683067B2 (en) Aluminum nitride sintered body
JP5073135B2 (en) Aluminum nitride sintered body, production method and use thereof
JP2000323619A (en) Semiconductor device material using ceramic, and manufacture thereof
JP2002029851A (en) Silicon nitride composition, method for manufacturing sintered silicon nitride compact using the same and sintered silicon nitride compact
JP2002293641A (en) Silicon nitride-based sintered compact
JP2004055577A (en) Plate-shaped aluminum-silicon carbide composite
JP4332828B2 (en) High thermal conductivity silicon nitride sintered body, substrate using the same, circuit board for semiconductor device

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050315

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050315

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050315

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080513

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080711

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090616

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20091027