JP3722573B2 - Ceramic substrate, circuit board using the same, and manufacturing method thereof - Google Patents

Ceramic substrate, circuit board using the same, and manufacturing method thereof Download PDF

Info

Publication number
JP3722573B2
JP3722573B2 JP33065196A JP33065196A JP3722573B2 JP 3722573 B2 JP3722573 B2 JP 3722573B2 JP 33065196 A JP33065196 A JP 33065196A JP 33065196 A JP33065196 A JP 33065196A JP 3722573 B2 JP3722573 B2 JP 3722573B2
Authority
JP
Japan
Prior art keywords
ceramic substrate
circuit
metal
circuit board
warpage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP33065196A
Other languages
Japanese (ja)
Other versions
JPH10167804A (en
Inventor
健次 門田
東一 高城
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denka Co Ltd
Original Assignee
Denki Kagaku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denki Kagaku Kogyo KK filed Critical Denki Kagaku Kogyo KK
Priority to JP33065196A priority Critical patent/JP3722573B2/en
Publication of JPH10167804A publication Critical patent/JPH10167804A/en
Application granted granted Critical
Publication of JP3722573B2 publication Critical patent/JP3722573B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/0271Arrangements for reducing stress or warp in rigid printed circuit boards, e.g. caused by loads, vibrations or differences in thermal expansion
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0306Inorganic insulating substrates, e.g. ceramic, glass
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/02Apparatus or processes for manufacturing printed circuits in which the conductive material is applied to the surface of the insulating support and is thereafter removed from such areas of the surface which are not intended for current conducting or shielding
    • H05K3/022Processes for manufacturing precursors of printed circuits, i.e. copper-clad substrates

Description

【0001】
【発明の属する技術分野】
本発明は、高い信頼性、放熱性を要する電子部品のパワーモジュール等に使用される金属回路を有する回路基板に用いられるセラミックス基板及びそれを用いた回路基板及びその回路基板の製造方法に関する。
【0002】
【従来の技術】
従来から各種電子機器の構成部品として、アルミナ(Al23)、窒化アルミニウム(AlN)、酸化ベリリウム(BeO)などのセラミックス焼結体基板表面に導電層として銅(Cu)回路板等を一体に接合した回路基板が広く使用されている。
【0003】
これらの回路基板は、熱伝導性および電気伝導性に優れたCu等の金属により回路板を形成しているため、回路動作の遅延が減少するとともに回路配線の寿命も向上する利点がある。また半田等の接合材料に対する濡れ性が向上し、セラミックス焼結体表面に半導体素子(ICチップ)や電極板を高い接合強さで接合することができる。その結果、半導体素子からの発熱の放散性や素子の動作信頼性を良好に保つことができ、更にセラミックス基板の放熱面にもCu等の金属板を接合することにより、セラミックス基板の応力緩和および熱変形防止の目的も達成できるという利点を有している。
【0004】
【発明が解決しようとする課題】
回路基板は、ヒートシンクへの接合や電極を接合するなどのモジュールへの実装工程における実装時の熱応力やモジュールを各種装置へ装着する時にかかる荷重によって、金属回路間のセラミックス基板や金属回路の端部付近のセラミックス基板に微小クラックが発生する。その後、モジュールを使用時の繰り返し加熱冷却による応力のため、微小クラックが拡大する。クラックの部分で絶縁不良となり、リーク電流により破壊に至り、パワーモジュールが使用不能となる問題がある。
【0005】
回路基板の製造方法としてはいくつかの方法が知られているが、良好な生産性を得るためには、フルエッチ法がよく使われる。フルエッチ法は、セラミックス基板と金属板をろう材ペーストや基板と金属の共晶を用いるなどして接合し、回路面とする金属板上に回路パターンをエッチングレジストにより形成させた後、エッチング処理して不要部分を除去する方法である。フルエッチ法は、生産性は良好であるが、不要な回路及びろう材や共晶の除去工程を経るため、エッチング後金属回路間のセラミックス基板に大きな引張応力が残留する。
【0006】
回路基板をパワーモジュールに実装する場合、熱処理を施した後、ヒートシンク銅板へ接合する。さらに半導体チップや電極が回路基板に接合される。これらの工程は、エッチング後金属回路間のセラミックス基板や金属回路の端部付近のセラミックス基板に残留する大きな引張応力をさらに増大させるため、クラックが発生し易い問題があった。さらに、パワーモジュールを装置に装着する場合においても、ヒートシンクにあらかじめ開けておいた穴に固定用のボルトを通し、装置にねじ止めするときの荷重で、セラミックス基板に残留する大きな引張応力をさらに増大させるため、この時点に於いてもクラックが発生すると云う問題があった。
【0007】
以上の問題に対して、従来の窒化アルミニウム回路基板においては、ヒートショックやヒートサイクルなどの熱衝撃、熱履歴によって生じる損傷に対して十分な耐久性をもたせるため、銅回路と窒化アルミニウム基板との間に介在させる接合層の厚みを例えば20μm以上に厚くする方法が提案されている。(特開平6−196828号公報)しかしながら、接合層の厚みを厚くすると不要なろう材の除去が困難となるなど、未だ解決すべき課題があった。
【0008】
本発明は、上記に鑑みてなされたものであり、回路基板の放熱性、絶縁耐圧を損なうことなく、クラック発生を低減させ、信頼性の高い回路基板を提供すること及びその製造方法を提供すること及びそれらに適したセラミックス基板を提供することを目的とする。
【0009】
【課題を解決するための手段】
そこで本発明者らは、セラミックス基板の接合前の初期形状を工夫し、回路基板の製造時にセラミックス基板の金属回路接合面側に予め圧縮応力を与えることにより、クラックの発生を低減することが可能であることを見出し、本発明に到達したものである。
【0010】
すなわち本発明は、本質的に板状体であり、そりを持つセラミックス焼結体であって、一方向のそり量が、該方向の長さの1/4000から1/100で有り、該方向の直角方向のそり量が該方向のそり量の1/2以下(0を含む)であり、且つ、室温の熱膨張係数が5×10 -6 /℃以下であるセラミックス基板を用い、フルエッチ法により回路を形成させた回路基板において、セラミックス基板の凸面側に回路形成用金属板を、凹面側に放熱部形成用金属板を配置して、セラミックス基板のそりを修正するための荷重をかけ、荷重を負荷したまま熱処理を行い接合することを特徴とする回路基板の製造方法である。
【0014】
【発明の実施の形態】
以下、さらに詳しく本発明について説明する。本発明で使用されるセラミックス基板はアルミナ、ムライト、窒化珪素、窒化アルミ、酸化ベリリウムなど絶縁性、耐熱性に優れる材料であればいずれを用いても良い。一般に窒化アルミニウム基板、窒化珪素基板のように非酸化物セラミックスの基板は室温に於ける熱膨張係数が5×10-6 1/℃以下と小さく、金属との熱膨張係数差が大きい。この為製造工程で金属回路との間に応力が発生しやすい為、本発明によるクラック防止効果が大きい。
【0015】
セラミックス基板として材料特性には特に制限はないが、良好な放熱性を示すためには、熱伝導率が80W/mK以上のものが適している。また、基板の曲げ強さについては、回路基板形成後の強さに影響を及ぼすため350MPa以上のものが適当である。このような特性を示すセラミックスとして窒化アルミニウム或いは窒化珪素が知られている。
【0016】
セラミックス基板の厚みは、要求される回路基板の強さによって異なるが、通常、0.3mmから1.5mmのものが使われる。
【0017】
本発明のセラミックス基板において重要なことは、本質的に板状体であり、そりを持つ燒結体であって、一方向のそり量が、該方向の長さの1/4000から1/100である事である。この方向は基板形状が長方形の場合いわゆる長手方向であることが望ましい。該方向の直角方向のそり量が該方向のそり量の1/2以下(0を含む)であることである。そり量が該方向の長さの1/4000をしたまわると本発明の効果が得られず、そり量が該方向の1/100を越えると、接合時に生じる、セラミックス基板の内部ひずみが大きくなりすぎ、強さの小さいセラミックス基板では、破壊してしまうこともある。また、該方向の直角方向のそり量は小さい方が好ましい、すなわち反りは一方向に一様が好ましいが、該方向の1/2迄許容される。該方向のそり量の1/2を越えると回路基板にした場合に金属板との接合不良が起きやすくなる。
【0018】
セラミックス基板に形成される金属回路もしくは金属回路と金属放熱板の材質は、銅、ニッケル、アルミニウム、モリブデン、タングステン等の純金属もしくは合金であって、その厚みは0.1〜2.0mmが使われる。
【0019】
本発明に係る接合層はろう材ペーストを用いて形成されたものであっても、セラミックスと金属の共晶相により形成されたものでもよい。ここで使用されるろう材ペーストは、例えば金属回路又は金属放熱板の材質がCuである場合、AgもしくはCuもしくはAgとCuを含むろう材である。また、ここで用いる共晶相は、例えば、セラミックス基板がアルミナで金属回路又は金属放熱板の材質がCuの場合にはCu−Oの共晶相である。
【0020】
本発明の回路基板において重要なことは、図1の概念図に示すようにそりのあるセラミックス基板と金属回路、金属放熱板を接合するときに、セラミックス基板のそりの凸面側に回路形成用金属板を、凹面側に放熱部形成用金属板を配置して、セラミックス基板をたわませ、そりを修正した状態(みかけの反り量が該方向の長さの1/4000未満)で、加熱接合することである。また、金属回路のパターン抜き部分が連続している場合には、それとは直角な方向にそりのあるセラミックス基板を用いる方が効果は著しく大きくなる。
【0021】
本発明のセラミックス基板を製造する方法について、セラミックス基板が窒化アルミニウムの場合について一例を示す。窒化アルミニウム粉末と燒結助剤を含むスラリーを調整した後グリーンシートに成形する。このグリーンシートを本請求項に係る形状を持つように作製した窒化ボロン製の治具にのせ、バインダーを除去した後、不活性雰囲気下、1700℃以上の温度で燒結させる。
【0022】
本発明の回路基板を製造する方法について一例を説明する。
先ず、本発明の請求項に示すセラミックス基板の表面全体にAgとCu及び活性金属を含むろう材ペーストを塗布する。
【0023】
ペースト面を覆うに十分な広さの放熱板側のベタ金属板を置き、次ぎにセラミックス基板をそりの凸面側を上面にして置き、更に金属回路側のベタ金属板を置いて、その上からセラミックス基板のそりを修正するための荷重をかけ、荷重を負荷したまま熱処理を行い接合する。荷重をかける方法は、重しであっても良いし、ホットプレスのように油圧又は機械的な圧力をかける等いずれの方法であっても加熱と荷重に耐える治具を適宜選択して実施すればよい。
【0024】
次いで、接合体の金属板上にエッチングレジストを用いて回路パターンをスクリーン印刷し、レジスト回路パターンを形成させる。
【0025】
エッチング処理してパターン外の不要な金属やろう材等を除去した後、エッチングレジスト膜を除去して金属回路を有するセラミックス基板とする。その後、金属回路の酸化と腐食を防止するため、必要に応じてNiメッキ等により選択的に金属回路上に保護膜を形成させる。以下に実施例に基づいて、本発明を更に詳細に説明する。
【0026】
【実施例】
窒化アルミニウム粉末と燒結助剤を含むスラリーを調整した後グリーンシートに成形する。このグリーンシートを以下に示す反りを持つBN製の治具にのせ、バインダーを除去した後、窒素雰囲気下、1850℃の温度で燒結させる。このようにして、一方向のそり量がそれぞれ5、10、50、100、200、300、400、500μmでサイズ40mm×40mm、厚み0.635mmの窒化アルミニウム基板を製造した。これらの窒化アルミニウム基板は該方向の直角方向のそり量は該方向のそり量の1/2以下であった。
【0027】
また、窒化アルミニウム粉末の変わりに窒化珪素粉末を用いる以外は上記と同様にして、一方向のそり量がそれぞれ200、500μmでサイズ40mm×40mm、厚み0.635mmの窒化珪素基板を製造した。これらの窒化珪素基板は該方向の直角方向のそり量は該方向のそり量の1/2以下であった。
【0028】
また、窒化アルミニウム粉末の変わりにアルミナ粉末を用いる以外は上記と同様にして、一方向のそり量がそれぞれ200、500μmでサイズ40mm×40mm、厚み0.635mmのアルミナ基板を製造した。これらのアルミナ基板は該方向の直角方向のそり量は該方向のそり量の1/2以下であった。
【0029】
上記の各基板の両面にAg−Cu系の活性金属含有ろう材ペーストをスクリーン印刷法により塗布し乾燥した後、凸面側に厚み0.3mmの金属回路用Cu板を、凹面側に厚み0.15mmの金属放熱用Cu板を接触配置するように10Kgの重しを載せ、真空中830℃で30分間熱処理を行いセラミックス基板とCu板の接合体を得た。
【0030】
また、そり量が50、100μmの窒化アルミニウム基板の両面にAg−Cu系の活性金属含有ろう材ペーストをスクリーン印刷法により塗布し乾燥した後、凹面側に厚み0.3mmの金属回路用Cu板を、凸面側に厚み0.15mmの金属放熱用Cu板を接触配置するように重しを載せ、真空中830℃で30分間熱処理を行い窒化アルミニウム基板とCu板の接合体を得た。さらに、そりのない窒化アルミニウム基板についても同様に行い窒化アルミニウム基板とCu板の接合体を得た。
【0031】
これらの接合体のCu板上に紫外線硬化型エッチングレジストをスクリーン印刷法により回路パターンに印刷し硬化させた後、塩化第2鉄溶液でパターン外の不要なCuを除去した。次いで、フッ化水素アンモニウムと過酸化水素を含む水溶液に入れ、Cu回路パターン間の不要ろう材を除去した後、レジストを除去した。更に、無電解NiメッキによりCu回路に選択的にNi保護膜を形成させた。
【0032】
以上のようにして、実施例1から8、及び比較例1から7の試料を得た。
このようにして、表1の実施例、比較例に示すような回路基板を完成させた。
【0033】
これらの回路基板についてヒートサイクル試験を実施した。ヒートサイクル試験は、−40℃で30分間保持し、125℃で30分間保持する加熱冷却操作を1サイクルとし、JIS-C-0025温度変化試験方法に準じて実施した。10回、30回、50回、100回のヒートサイクル試験後にクラック発生の有無を評価した。クラックの評価は、回路間のクラックの有無を蛍光探傷検査により観察することで行った。結果を表1に示す。クラックは発生率(%)で示した。
【0034】
【表1】

Figure 0003722573
【0035】
表1に示す結果から明らかなように、実施例1〜8に示す回路基板は、ヒートサイクル試験30回後のヒートシンク接合でもセラミックス基板にクラックは発生しておらず、高い信頼性を有し、実用的である。
【0036】
一方、比較例1及び5〜7に係る回路基板は、ヒートサイクル試験30回でヒートシンク接合でクラックが発生し、ヒートサイクルの繰り返し回数の増加に伴い、基板に発生するクラックが多くなったため、充分な信頼性が得られない。また、比較例2〜4に係る回路基板は初期反り量が大きいため、ヒートサイクル実施前にクラック発生が多数認められた。また、実施例4、7、8を比較すると、室温の熱膨張係数が5×10-6 1/℃以下であるセラミックス基板を用いた4、7の方が効果が高いことが明白である。
【0037】
【発明の効果】
本発明によれば、高い信頼性、放熱性を有する回路基板、及びそのためのセラミックス基板を提供することができる。
【図面の簡単な説明】
【図1】本発明に係る回路基板について概略図を示したものである。
【符号の説明】
w:本発明のセラミックス基板のそり量を示す。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a ceramic substrate used for a circuit board having a metal circuit used in a power module of an electronic component that requires high reliability and heat dissipation, a circuit board using the ceramic substrate, and a method for manufacturing the circuit board.
[0002]
[Prior art]
Conventionally, as a component of various electronic devices, a copper (Cu) circuit board, etc., is integrated as a conductive layer on the surface of a ceramic sintered substrate such as alumina (Al 2 O 3 ), aluminum nitride (AlN), beryllium oxide (BeO), etc. A circuit board bonded to the substrate is widely used.
[0003]
Since these circuit boards are made of a circuit board made of a metal such as Cu having excellent thermal conductivity and electrical conductivity, there is an advantage that the delay of the circuit operation is reduced and the life of the circuit wiring is improved. Further, the wettability with respect to a bonding material such as solder is improved, and a semiconductor element (IC chip) or an electrode plate can be bonded to the surface of the ceramic sintered body with a high bonding strength. As a result, the heat dissipation from the semiconductor element and the operation reliability of the element can be kept good. Furthermore, by joining a metal plate such as Cu to the heat dissipation surface of the ceramic substrate, the stress of the ceramic substrate can be reduced. It has the advantage that the purpose of preventing thermal deformation can also be achieved.
[0004]
[Problems to be solved by the invention]
The circuit board has a ceramic substrate between metal circuits and the edge of the metal circuit depending on the thermal stress at the time of mounting in the module mounting process such as bonding to the heat sink and electrodes, and the load applied when mounting the module to various devices. Micro cracks are generated in the ceramic substrate near the portion. Thereafter, micro cracks expand due to the stress caused by repeated heating and cooling when the module is used. There is a problem in that insulation failure occurs at the cracked portion, which leads to breakdown due to leakage current, making the power module unusable.
[0005]
Several methods are known as a method of manufacturing a circuit board, but a full etch method is often used to obtain good productivity. In the full etch method, a ceramic substrate and a metal plate are joined using brazing paste or a eutectic of the substrate and metal, and a circuit pattern is formed on the metal plate to be a circuit surface with an etching resist, followed by an etching process. In this way, unnecessary portions are removed. The full-etch method has good productivity, but a large tensile stress remains on the ceramic substrate between the metal circuits after etching because it passes through unnecessary circuit and brazing material and eutectic removal steps.
[0006]
When the circuit board is mounted on the power module, it is heat-treated and then joined to the heat sink copper plate. Further, a semiconductor chip and electrodes are bonded to the circuit board. Since these processes further increase the large tensile stress remaining on the ceramic substrate between the metal circuits after etching and the ceramic substrate near the end of the metal circuit, there is a problem that cracks are likely to occur. In addition, even when the power module is installed in the equipment, the large tensile stress remaining on the ceramic substrate is further increased by the load when the fixing bolt is passed through the hole that has been drilled in the heat sink and screwed to the equipment. Therefore, there was a problem that cracks occurred even at this point.
[0007]
With respect to the above problems, the conventional aluminum nitride circuit board has sufficient durability against damage caused by thermal shock and heat history such as heat shock and heat cycle. There has been proposed a method in which the thickness of the bonding layer interposed therebetween is increased to, for example, 20 μm or more. However, there is still a problem to be solved such that when the thickness of the bonding layer is increased, it becomes difficult to remove unnecessary brazing material.
[0008]
The present invention has been made in view of the above, and provides a highly reliable circuit board and a method for manufacturing the same by reducing the occurrence of cracks without impairing the heat dissipation and dielectric strength of the circuit board. It is an object of the present invention to provide a ceramic substrate suitable for them.
[0009]
[Means for Solving the Problems]
Therefore, the present inventors can reduce the occurrence of cracks by devising the initial shape of the ceramic substrate before bonding and preliminarily applying a compressive stress to the metal circuit bonding surface side of the ceramic substrate when manufacturing the circuit board. And the present invention has been achieved.
[0010]
That is, the present invention is essentially a plate-like body, a ceramic sintered body having a warp, and the amount of warpage in one direction is 1/4000 to 1/100 of the length in the direction, and the direction perpendicular direction of the warp amount is 1/2 or less of the amount of warpage of the direction (including 0) der is, and, using a ceramic substrate having a thermal expansion coefficient at room temperature is 5 × 10 -6 / ℃ less, full In a circuit board on which a circuit is formed by the etching method, a metal plate for circuit formation is disposed on the convex surface side of the ceramic substrate, and a metal plate for heat radiation portion is disposed on the concave surface side, so that a load for correcting the warpage of the ceramic substrate is provided. over a manufacturing method of a circuit board, characterized that you bonding heat treatment is performed while a load.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described in more detail. As the ceramic substrate used in the present invention, any material that is excellent in insulation and heat resistance such as alumina, mullite, silicon nitride, aluminum nitride, and beryllium oxide may be used. In general, a substrate made of non-oxide ceramics such as an aluminum nitride substrate or a silicon nitride substrate has a small coefficient of thermal expansion at room temperature of 5 × 10 −6 1 / ° C. or less, and has a large difference in coefficient of thermal expansion from metal. For this reason, since a stress is easily generated between the metal circuit and the manufacturing process, the crack preventing effect of the present invention is great.
[0015]
Although there is no restriction | limiting in particular in a material characteristic as a ceramic substrate, In order to show favorable heat dissipation, a thing with a heat conductivity of 80 W / mK or more is suitable. The substrate bending strength is suitably 350 MPa or more because it affects the strength after the circuit board is formed. Aluminum nitride or silicon nitride is known as a ceramic exhibiting such characteristics.
[0016]
The thickness of the ceramic substrate varies depending on the required strength of the circuit board, but a thickness of 0.3 mm to 1.5 mm is usually used.
[0017]
What is important in the ceramic substrate of the present invention is essentially a plate-like body and a sintered body having a warp, and the warp amount in one direction is 1/4000 to 1/100 of the length in the direction. There is something. This direction is preferably the so-called longitudinal direction when the substrate shape is rectangular. The amount of warpage in the direction perpendicular to the direction is ½ or less (including 0) of the amount of warpage in the direction. If the warpage amount is 1/4000 of the length in the direction, the effect of the present invention cannot be obtained. If the warpage amount exceeds 1/100 of the direction, the internal strain of the ceramic substrate generated during bonding increases. If the ceramic substrate has a low strength, it may be destroyed. Further, it is preferable that the amount of warpage in the direction perpendicular to the direction is small, that is, the warp is preferably uniform in one direction, but is allowed up to ½ of the direction. If it exceeds 1/2 of the warp amount in this direction, a defective bonding to the metal plate is likely to occur when the circuit board is used.
[0018]
The material of the metal circuit or metal circuit and metal heat sink formed on the ceramic substrate is a pure metal or alloy such as copper, nickel, aluminum, molybdenum, tungsten, etc., and its thickness is 0.1 to 2.0 mm. Is called.
[0019]
The bonding layer according to the present invention may be formed using a brazing paste, or may be formed using a eutectic phase of ceramics and metal. The brazing material paste used here is a brazing material containing Ag or Cu or Ag and Cu when the material of the metal circuit or the metal heat sink is Cu, for example. The eutectic phase used here is, for example, a Cu—O eutectic phase when the ceramic substrate is alumina and the material of the metal circuit or the metal heat sink is Cu.
[0020]
What is important in the circuit board of the present invention is that, as shown in the conceptual diagram of FIG. 1, when a warped ceramic substrate is joined to a metal circuit and a metal heat sink, a metal for circuit formation is formed on the convex side of the warp of the ceramic substrate. Heat bonding with the plate placed on the concave side with the heat sink forming metal plate, the ceramic substrate bent and the warp corrected (apparent warpage is less than 1/4000 of the length in this direction) It is to be. In addition, when the pattern-extracted portion of the metal circuit is continuous, the effect is remarkably increased by using a ceramic substrate having a warp in a direction perpendicular thereto.
[0021]
An example of the method for producing a ceramic substrate of the present invention will be described in the case where the ceramic substrate is aluminum nitride. A slurry containing aluminum nitride powder and a sintering aid is prepared and then formed into a green sheet. The green sheet is placed on a boron nitride jig produced to have the shape according to the present claims, and after removing the binder, it is sintered at a temperature of 1700 ° C. or higher in an inert atmosphere.
[0022]
An example of the method for producing the circuit board of the present invention will be described.
First, a brazing paste containing Ag, Cu and an active metal is applied to the entire surface of the ceramic substrate shown in the claims of the present invention.
[0023]
Place a solid metal plate on the side of the heat sink that is wide enough to cover the paste surface, then place the ceramic substrate with the convex side of the sled on the top, and then place a solid metal plate on the metal circuit side, and from above A load for correcting the warp of the ceramic substrate is applied, and heat treatment is performed while the load is applied to perform bonding. The method of applying a load may be a weight, or any method such as applying a hydraulic pressure or a mechanical pressure such as hot pressing should be performed by appropriately selecting a jig that can withstand heating and load. That's fine.
[0024]
Next, a circuit pattern is screen-printed on the metal plate of the joined body using an etching resist to form a resist circuit pattern.
[0025]
Etching is performed to remove unnecessary metal and brazing material outside the pattern, and then the etching resist film is removed to obtain a ceramic substrate having a metal circuit. Thereafter, in order to prevent oxidation and corrosion of the metal circuit, a protective film is selectively formed on the metal circuit by Ni plating or the like as necessary. Hereinafter, the present invention will be described in more detail based on examples.
[0026]
【Example】
A slurry containing aluminum nitride powder and a sintering aid is prepared and then formed into a green sheet. This green sheet is placed on a jig made of BN having the following warpage, and after removing the binder, it is sintered at a temperature of 1850 ° C. in a nitrogen atmosphere. In this way, aluminum nitride substrates with a unidirectional warpage of 5, 10, 50, 100, 200, 300, 400, and 500 μm and a size of 40 mm × 40 mm and a thickness of 0.635 mm were manufactured. In these aluminum nitride substrates, the amount of warpage in the direction perpendicular to the direction was ½ or less of the amount of warpage in the direction.
[0027]
Further, a silicon nitride substrate having a unidirectional warpage of 200 and 500 μm, a size of 40 mm × 40 mm, and a thickness of 0.635 mm was produced in the same manner as above except that silicon nitride powder was used instead of aluminum nitride powder. In these silicon nitride substrates, the amount of warpage in the direction perpendicular to the direction was ½ or less of the amount of warpage in the direction.
[0028]
Further, in the same manner as described above except that alumina powder was used instead of aluminum nitride powder, an alumina substrate having a unidirectional warpage of 200 and 500 μm and a size of 40 mm × 40 mm and a thickness of 0.635 mm was produced. In these alumina substrates, the amount of warpage in the direction perpendicular to the direction was 1/2 or less of the amount of warpage in the direction.
[0029]
After applying an Ag-Cu-based active metal-containing brazing material paste to both surfaces of each of the above substrates by a screen printing method and drying, a Cu plate for metal circuit having a thickness of 0.3 mm on the convex side and a thickness of 0. 0 on the concave side. A 10 kg weight was placed so that a 15 mm metal heat-dissipating Cu plate was placed in contact, and heat treatment was performed in vacuum at 830 ° C. for 30 minutes to obtain a joined body of the ceramic substrate and the Cu plate.
[0030]
Also, after applying an Ag-Cu based active metal-containing brazing material paste on both surfaces of an aluminum nitride substrate having a warpage of 50, 100 μm by screen printing and drying, a Cu plate for a metal circuit having a thickness of 0.3 mm on the concave side A weight of 0.15 mm thick metal heat-dissipating Cu plate was placed in contact with the convex surface, and heat treatment was performed in vacuum at 830 ° C. for 30 minutes to obtain a joined body of an aluminum nitride substrate and a Cu plate. Further, an aluminum nitride substrate without warpage was performed in the same manner to obtain a bonded body of the aluminum nitride substrate and the Cu plate.
[0031]
An ultraviolet curable etching resist was printed on a circuit pattern by a screen printing method on a Cu plate of these joined bodies and cured, and then unnecessary Cu outside the pattern was removed with a ferric chloride solution. Next, it was placed in an aqueous solution containing ammonium hydrogen fluoride and hydrogen peroxide to remove the unnecessary brazing material between the Cu circuit patterns, and then the resist was removed. Further, a Ni protective film was selectively formed on the Cu circuit by electroless Ni plating.
[0032]
As described above, samples of Examples 1 to 8 and Comparative Examples 1 to 7 were obtained.
In this way, circuit boards as shown in the examples and comparative examples in Table 1 were completed.
[0033]
A heat cycle test was performed on these circuit boards. The heat cycle test was carried out in accordance with the JIS-C-0025 temperature change test method, with one cycle consisting of a heating / cooling operation of holding at −40 ° C. for 30 minutes and holding at 125 ° C. for 30 minutes. The presence or absence of cracking was evaluated after 10 times, 30 times, 50 times, and 100 heat cycle tests. Evaluation of the crack was performed by observing the presence or absence of a crack between circuits by a fluorescent flaw inspection. The results are shown in Table 1. Cracks are indicated by the occurrence rate (%).
[0034]
[Table 1]
Figure 0003722573
[0035]
As is apparent from the results shown in Table 1, the circuit boards shown in Examples 1 to 8 have no cracks in the ceramic substrate even after heat cycle bonding 30 times after the heat cycle test, and have high reliability. It is practical.
[0036]
On the other hand, in the circuit boards according to Comparative Examples 1 and 5 to 7, cracks occurred in the heat sink joint in 30 heat cycle tests, and the number of cracks generated in the board increased with the increase in the number of repetitions of the heat cycle. Reliable. Moreover, since the circuit board which concerns on Comparative Examples 2-4 had a large amount of initial curvature, many crack generation | occurrence | production was recognized before heat cycle implementation. Moreover, when Examples 4, 7, and 8 are compared, it is clear that the effects of 4 and 7 using a ceramic substrate having a thermal expansion coefficient at room temperature of 5 × 10 −6 1 / ° C. or less are higher.
[0037]
【The invention's effect】
ADVANTAGE OF THE INVENTION According to this invention, the circuit board which has high reliability and heat dissipation, and the ceramic substrate for it can be provided.
[Brief description of the drawings]
FIG. 1 is a schematic view of a circuit board according to the present invention.
[Explanation of symbols]
w: Indicates the amount of warpage of the ceramic substrate of the present invention.

Claims (1)

そりを持つセラミックス焼結板であって、一方向のそり量が、その方向の長さの1/4000から1/100で有り、該方向の直角方向のそり量が該方向のそり量の1/2以下(0を含む)であり、且つ、室温の熱膨張係数が5×10-6/℃以下であるセラミックス基板を用い、フルエッチ法により回路を形成させた回路基板において、セラミックス基板の凸面側に回路形成用金属板を、凹面側に放熱部形成用金属板を配置して、セラミックス基板のそりを修正するための荷重をかけ、荷重を負荷したまま熱処理を行い接合することを特徴とする回路基板の製造方法。A sintered ceramic plate having a warp, wherein a warp amount in one direction is 1/4000 to 1/100 of a length in the direction, and a warp amount in a direction perpendicular to the direction is 1 of the warp amount in the direction. / 2 or less (including 0) and a ceramic substrate having a thermal expansion coefficient of 5 × 10 −6 / ° C. or less at room temperature and a circuit is formed by a full etch method, A circuit-forming metal plate is placed on the convex side and a heat-dissipating part-forming metal plate is placed on the concave side, and a load is applied to correct the warpage of the ceramic substrate. A method for manufacturing a circuit board.
JP33065196A 1996-12-11 1996-12-11 Ceramic substrate, circuit board using the same, and manufacturing method thereof Expired - Fee Related JP3722573B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33065196A JP3722573B2 (en) 1996-12-11 1996-12-11 Ceramic substrate, circuit board using the same, and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33065196A JP3722573B2 (en) 1996-12-11 1996-12-11 Ceramic substrate, circuit board using the same, and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JPH10167804A JPH10167804A (en) 1998-06-23
JP3722573B2 true JP3722573B2 (en) 2005-11-30

Family

ID=18235060

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33065196A Expired - Fee Related JP3722573B2 (en) 1996-12-11 1996-12-11 Ceramic substrate, circuit board using the same, and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP3722573B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102315179A (en) * 2011-09-03 2012-01-11 江苏宏微科技有限公司 Metal-coated ceramic baseplate and manufacturing method thereof

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000128654A (en) 1998-10-28 2000-05-09 Sumitomo Electric Ind Ltd Silicon nitride composite substrate
JP2007165588A (en) 2005-12-14 2007-06-28 Omron Corp Power module structure, and solid-state relay using same
EP4059912A4 (en) * 2019-11-15 2023-01-04 Denka Company Limited Ceramic substrate, composite substrate, circuit board, method for producing ceramic substrate, method for producing composite substrate, method for producing circuit board, and method for producing plurality of circuit boards
CN114667806B (en) * 2019-11-15 2024-04-02 电化株式会社 Ceramic substrate, composite substrate, circuit substrate, and method for manufacturing ceramic substrate, method for manufacturing composite substrate, method for manufacturing circuit substrate, and method for manufacturing a plurality of circuit substrates
CN116504683B (en) * 2023-06-25 2023-08-25 江苏富乐华半导体科技股份有限公司 Method for controlling warpage of copper DBC (copper-nickel) product

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102315179A (en) * 2011-09-03 2012-01-11 江苏宏微科技有限公司 Metal-coated ceramic baseplate and manufacturing method thereof

Also Published As

Publication number Publication date
JPH10167804A (en) 1998-06-23

Similar Documents

Publication Publication Date Title
US6054762A (en) Semiconductor substrates of high reliability ceramic metal composites
JP5598522B2 (en) Circuit board, semiconductor module using the same, and circuit board manufacturing method
JP4969738B2 (en) Ceramic circuit board and semiconductor module using the same
JP2006240955A (en) Ceramic substrate, ceramic circuit board, and power control component using the same
JPH07202063A (en) Ceramic circuit board
CN106537580B (en) Ceramic circuit board and method for manufacturing the same
JP2000323618A (en) Copper circuit clad substrate and manufacture thereof
KR100374379B1 (en) Substrate
JP2002043482A (en) Member for electronic circuit, its manufacturing method and electronic component
JP2016051778A (en) Metal-ceramic bonded substrate
JP3722573B2 (en) Ceramic substrate, circuit board using the same, and manufacturing method thereof
JP4104429B2 (en) Module structure and module using it
JP2001332854A (en) Ceramic circuit board
JP2911644B2 (en) Circuit board
JPH11330308A (en) Ceramic circuit board and manufacture thereof
JPH10247763A (en) Circuit board and manufacture thereof
JPH10190176A (en) Circuit board
JP4910113B2 (en) Method for producing metal / ceramic bonding substrate
JP3599517B2 (en) Circuit board for power module
JP2004055576A (en) Circuit board and power module using it
JP4557398B2 (en) Electronic element
JPH10200219A (en) Circuit board
KR100873772B1 (en) Metal / Ceramic Bonding Products
JPH10224059A (en) Heat sink
WO2023047765A1 (en) Metal-ceramic bonding substrate, and method for manufacturing same

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041027

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050315

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050318

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050614

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050623

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050628

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20050707

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050809

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050810

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050913

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050913

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090922

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100922

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100922

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110922

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120922

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120922

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130922

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees