JPS63173373A - Field-effect transistor - Google Patents

Field-effect transistor

Info

Publication number
JPS63173373A
JPS63173373A JP668187A JP668187A JPS63173373A JP S63173373 A JPS63173373 A JP S63173373A JP 668187 A JP668187 A JP 668187A JP 668187 A JP668187 A JP 668187A JP S63173373 A JPS63173373 A JP S63173373A
Authority
JP
Japan
Prior art keywords
drain
layer
impurity layer
resistance
type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP668187A
Other languages
Japanese (ja)
Inventor
Yoshitomo Takahashi
美朝 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP668187A priority Critical patent/JPS63173373A/en
Publication of JPS63173373A publication Critical patent/JPS63173373A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors
    • H01L29/7811Vertical DMOS transistors, i.e. VDMOS transistors with an edge termination structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0607Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
    • H01L29/0611Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices
    • H01L29/0615Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE]
    • H01L29/0619Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE] with a supplementary region doped oppositely to or in rectifying contact with the semiconductor containing or contacting region, e.g. guard rings with PN or Schottky junction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/08Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/0843Source or drain regions of field-effect devices
    • H01L29/0847Source or drain regions of field-effect devices of field-effect transistors with insulated gate
    • H01L29/0852Source or drain regions of field-effect devices of field-effect transistors with insulated gate of DMOS transistors
    • H01L29/0873Drain regions
    • H01L29/0878Impurity concentration or distribution

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)

Abstract

PURPOSE:To increase breakdown voltage and decrease ON-resistance, by making the specific resistance of the surface layer of a peripheral part larger than that of a drain composed of a semiconductor layer. CONSTITUTION:An n-type impurity layer 4 and an n-type low concentration impurity layer 3 are arranged on the surface of a drain 2 composed of an n-type low concentration semiconductor layer on an n<+> type high concentration silicon substrate 1 having a drain electrode 12 on the rear. On the surface of an impurity layer 4, an active region is arranged, which comprises the following; an n<+> type high concentration source 7 on the surface, a base 6 between the sources 7, and a gate 8 formed on the impurity layer 4 via a gate insulating film. Thereby, the extension of a depletion layer in a pheripheral part is increased and the breakdown is improved. Further, by making the specific resistance of the surface layer of the active region smaller than that of the drain, the drain resistance is reduced and a low ON-resistance is obtained.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は電界効果1〜ランジスタに関し、特に高耐圧、
低オン抵抗の縦型の電界効果トランジスタに関する。
[Detailed Description of the Invention] [Industrial Field of Application] The present invention relates to field effects 1 to transistors, and in particular to high breakdown voltage,
This invention relates to a vertical field effect transistor with low on-resistance.

〔従来の技術〕[Conventional technology]

従来、縦型の電界効果トランジスタ(以下FETと称ず
)を、高耐圧化するには、半導体層からなるドレインの
比抵抗を大きくしかつその半導体層を厚くする方法をと
り、しかもベースを深くまで形成すると共にフィールド
プレートやフィールドリング等を能動領域の周辺部に設
けて電界の集中を緩和していた。
Conventionally, in order to increase the breakdown voltage of vertical field effect transistors (hereinafter referred to as FETs), the method of increasing the specific resistance of the drain consisting of a semiconductor layer and thickening the semiconductor layer was taken, as well as making the base deeper. At the same time, field plates, field rings, etc. were provided around the active region to alleviate the concentration of electric field.

第3図は従来のFETの一例の断面図である。FIG. 3 is a sectional view of an example of a conventional FET.

この従来例は、裏面にドレイン電極12を有するn+型
型部濃度シリコン基板1上のn−型低濃度の半導体層か
らなるドレイン2の表面にp型のベース6とベース6の
表面のn+型型部濃度ソース7とソース7の間のベース
6及びドレイン2の表面上にゲーI・絶縁膜を介して設
けたゲーI〜8とからなる能動領域と、その周囲を囲む
p型の拡散層5からなるフィールドリンクと、一番外側
のフィールドリング5に接続したフィールドプレー)1
0と、絶縁膜10に開孔した窓を通してソース7及びベ
ース6と接続したソース電極11とで構成されている。
In this conventional example, a p-type base 6 is formed on the surface of a drain 2 made of an n-type low concentration semiconductor layer on an n+ type doped silicon substrate 1 having a drain electrode 12 on the back surface, and an n+ type base 6 is formed on the surface of the base 6. An active region consisting of a gate I and gates I to 8 provided through an insulating film on the surfaces of the base 6 and the drain 2 between the source 7 and the source 7, and a p-type diffusion layer surrounding the active region. Field link consisting of 5 and field play connected to the outermost field ring 5) 1
0, and a source electrode 11 connected to the source 7 and base 6 through a window formed in an insulating film 10.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上述した従来技術の電界効果1〜ランジスタでは、高耐
圧化のために半導体層からなるドレインの比抵抗を大き
くしなければならないので、より一層高耐圧化を図ろう
とするとドレイン抵抗が増してオン抵抗が大きくなると
共に電力損失が増大し電気的特性を損うという欠点があ
る。
In the above-mentioned conventional field effect transistors, the specific resistance of the drain made of a semiconductor layer must be increased in order to achieve a high withstand voltage. Therefore, if an attempt is made to achieve an even higher withstand voltage, the drain resistance increases and the on-resistance increases. There is a drawback that as the value increases, power loss increases and electrical characteristics are impaired.

本発明の目的は、高耐圧でしかも低オン抵抗のFETを
提供することにある。
An object of the present invention is to provide an FET with high breakdown voltage and low on-resistance.

〔問題点を解決するための手段〕[Means for solving problems]

本発明の電界効果I・ランジスタは、−導電型低濃度の
半導体層からなるドレイン表面に設けた所定のパターン
の前記ドレインより高濃度の一導電型の第1の不純物層
と、前記ドレイン表面の前記第1の不純物層の周囲に設
けた前記ドレインより低濃度の一導電型の第2の不純物
層と、前記第1の不純物層表面に設けた反対導電型のベ
ースと、該ベース表面に設けた一導電型高濃度のソース
と、前記ベース表面の前記ソース及び前記不純物層に挟
まれた部分の上にゲート絶縁膜を介して設けたゲートと
を少くとも有して成る。
The field effect I transistor of the present invention includes a first impurity layer of one conductivity type with a higher concentration than the drain in a predetermined pattern provided on the drain surface made of a low concentration semiconductor layer of the negative conductivity type, and a first impurity layer of one conductivity type with a higher concentration than the drain, and a second impurity layer of one conductivity type with a lower concentration than the drain provided around the first impurity layer; a base of an opposite conductivity type provided on the surface of the first impurity layer; and a second impurity layer provided on the surface of the base. and a gate provided on a portion of the base surface sandwiched between the source and the impurity layer with a gate insulating film interposed therebetween.

〔実施例〕〔Example〕

次に、本発明の一実施例について図面を参照して説明す
る。
Next, an embodiment of the present invention will be described with reference to the drawings.

第1図は本発明の第1の実施例の断面図である。FIG. 1 is a sectional view of a first embodiment of the invention.

この実施例は、裏面にドレイン電極12を有するn+型
型温濃度シリコン基板1上のn−型低濃度の比抵抗が1
8ΩΩで厚さ45μmの半導体層からなるドレイン2表
面に比抵抗が6Ω艶程度のn型の不純物層4及びその周
辺の比抵抗38Ω(至)で厚さ3μmのn−一型低濃度
の不純物層3を設け、不純物層4表面にドレイン2に至
るp型のベース6、その表面のn+型型温濃度ソース7
並びにソース7の間のベース6及び不純物層4の上にゲ
ート絶縁膜を介して設けたゲート8からなる能動領域を
設け、不純物層3表面にドレイン2に至るp型の拡散層
5からなるフィールドリングを設け、更に、一番外側の
フィールドリング5に接゛続したフィールドプレー1・
10並びにソース7及びベース6と接続したソース電極
11を設け、不純物層3及び4の境界が拡散層5からな
るフィールドリングと能動領域の間に設けた構造になっ
ている。ここで、不純物層4は、例えば、エネルギー1
20keV、ドーズ量2 X 1012cm2テt ウ
素をイオン注入し、1200℃、60分で押込み拡散を
行い、形成している。
In this embodiment, the specific resistance of the n- type low concentration on the n+ type temperature doped silicon substrate 1 having the drain electrode 12 on the back surface is 1.
An n-type impurity layer 4 with a resistivity of about 6Ω on the surface of the drain 2 made of a semiconductor layer with a resistivity of 8ΩΩ and a thickness of 45μm, and a low concentration n-type impurity with a resistivity of 38Ω (maximum) and a thickness of 3μm around it. A layer 3 is provided, and a p-type base 6 extending to the drain 2 is formed on the surface of the impurity layer 4, and an n+-type temperature concentration source 7 on the surface thereof.
Furthermore, an active region consisting of a gate 8 provided through a gate insulating film is provided on the base 6 and the impurity layer 4 between the source 7, and a field consisting of a p-type diffusion layer 5 extending to the drain 2 on the surface of the impurity layer 3. A field play 1.
10 and a source electrode 11 connected to the source 7 and the base 6 are provided, and the boundary between the impurity layers 3 and 4 is provided between the field ring made of the diffusion layer 5 and the active region. Here, the impurity layer 4 has an energy of 1, for example.
It is formed by implanting ion implantation of 20 keV and dose of 2 x 1012 cm2 tet of uran, and performing intrusion diffusion at 1200°C for 60 minutes.

第2図は本発明の第2の実施例の断面図である。FIG. 2 is a sectional view of a second embodiment of the invention.

この実施例は、不純物層3及び4が、一番内側のp型の
拡散層5からなるフィールドリンクによって仕切られて
いる。
In this embodiment, impurity layers 3 and 4 are separated by a field link consisting of an innermost p-type diffusion layer 5.

上述の構造のFETを試作した結果、5.5run口の
半導体チップで耐圧550■、オン抵抗0.42Ωのも
のが得られた。従来方法で試作したものは、耐圧530
Vでオン抵抗0.6Ωであったので耐圧、オン抵抗の両
方が改善された。
As a result of fabricating a prototype FET with the above structure, a semiconductor chip with a 5.5-run opening and a withstand voltage of 550 cm and an on-resistance of 0.42 Ω were obtained. The prototype manufactured using the conventional method has a breakdown voltage of 530
Since the on-resistance was 0.6Ω at V, both the withstand voltage and on-resistance were improved.

〔発明の効果〕〔Effect of the invention〕

以上述べた様に本発明は周辺部表面層の比抵抗を半導体
層からなるドレインの比抵抗より大きくすることにより
、外周部での空乏層の延びを大きくして耐圧を高くする
と共に能動領域の表面層の比抵抗をドレインの比抵抗よ
り小さくしてドレイン抵抗を下げ低オン抵抗で高耐圧の
電界効果トランジスタを提供できるという効果がある。
As described above, the present invention makes the specific resistance of the surface layer of the peripheral part larger than the specific resistance of the drain made of the semiconductor layer, thereby increasing the extension of the depletion layer in the outer peripheral part, increasing the breakdown voltage, and increasing the breakdown voltage of the active region. The specific resistance of the surface layer is made smaller than the specific resistance of the drain, thereby reducing the drain resistance and providing a field effect transistor with low on-resistance and high breakdown voltage.

又、能動領域表面の比抵抗を小さくすることによって更
にパターンを微細化してパターン密度を上げゲート幅を
増やして性能を向上することができるという効果もある
Further, by reducing the specific resistance of the surface of the active region, it is possible to further miniaturize the pattern, increase the pattern density, and increase the gate width, thereby improving performance.

【図面の簡単な説明】[Brief explanation of the drawing]

第1及び第2図はそれぞれ本発明の第1及び第2の実施
例の断面図、第3図は従来のFETの一例の断面図であ
る。 1・・・シリコン基板、2・・・ドレイン、3,4・・
・不鈍物層、5・・・拡散層、6・・・ベース、7・・
・ソース、8・・・ゲート、9・・・絶縁膜、10・・
・フィールドプレート、11・・・ソース電極、12・
・・ドレイン電極。 第 1 回
1 and 2 are sectional views of the first and second embodiments of the present invention, respectively, and FIG. 3 is a sectional view of an example of a conventional FET. 1... Silicon substrate, 2... Drain, 3, 4...
・Undull material layer, 5... Diffusion layer, 6... Base, 7...
・Source, 8... Gate, 9... Insulating film, 10...
・Field plate, 11...source electrode, 12・
...Drain electrode. 1st

Claims (1)

【特許請求の範囲】[Claims] 一導電型低濃度の半導体層からなるドレイン表面に設け
た所定のパターンの前記ドレインより高濃度の一導電型
の第1の不純物層と、前記ドレイン表面の前記第1の不
純物層の周囲に設けた前記ドレインより低濃度の一導電
型の第2の不純物層と、前記第1の不純物層表面に設け
た反対導電型のベースと、該ベース表面に設けた一導電
型高濃度のソースと、前記ベース表面の前記ソース及び
前記不純物層に挟まれた部分の上にゲート絶縁膜を介し
て設けたゲートとを少くとも有することを特徴とする電
界効果トランジスタ。
A first impurity layer of one conductivity type with a higher concentration than the drain in a predetermined pattern provided on the surface of the drain made of a low concentration semiconductor layer of one conductivity type, and a first impurity layer of one conductivity type provided around the first impurity layer on the surface of the drain. a second impurity layer of one conductivity type with a lower concentration than the drain; a base of the opposite conductivity type provided on the surface of the first impurity layer; and a high concentration source of one conductivity type provided on the surface of the base; A field effect transistor comprising at least a gate provided on a portion of the base surface sandwiched between the source and the impurity layer with a gate insulating film interposed therebetween.
JP668187A 1987-01-13 1987-01-13 Field-effect transistor Pending JPS63173373A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP668187A JPS63173373A (en) 1987-01-13 1987-01-13 Field-effect transistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP668187A JPS63173373A (en) 1987-01-13 1987-01-13 Field-effect transistor

Publications (1)

Publication Number Publication Date
JPS63173373A true JPS63173373A (en) 1988-07-16

Family

ID=11645106

Family Applications (1)

Application Number Title Priority Date Filing Date
JP668187A Pending JPS63173373A (en) 1987-01-13 1987-01-13 Field-effect transistor

Country Status (1)

Country Link
JP (1) JPS63173373A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5557127A (en) * 1995-03-23 1996-09-17 International Rectifier Corporation Termination structure for mosgated device with reduced mask count and process for its manufacture
WO2002082553A1 (en) * 2001-04-04 2002-10-17 Mitsubishi Denki Kabushiki Kaisha Semiconductor device
JP2009076930A (en) * 2008-11-13 2009-04-09 Mitsubishi Electric Corp Semiconductor device
JP2009187994A (en) * 2008-02-04 2009-08-20 Fuji Electric Device Technology Co Ltd Semiconductor device and manufacturing method thereof
JP2018107477A (en) * 2018-04-02 2018-07-05 三菱電機株式会社 Power semiconductor device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5553462A (en) * 1978-10-13 1980-04-18 Int Rectifier Corp Mosfet element
JPS5987871A (en) * 1982-11-12 1984-05-21 Hitachi Ltd Insulated gate field effect semiconductor device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5553462A (en) * 1978-10-13 1980-04-18 Int Rectifier Corp Mosfet element
JPS5987871A (en) * 1982-11-12 1984-05-21 Hitachi Ltd Insulated gate field effect semiconductor device

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5557127A (en) * 1995-03-23 1996-09-17 International Rectifier Corporation Termination structure for mosgated device with reduced mask count and process for its manufacture
WO2002082553A1 (en) * 2001-04-04 2002-10-17 Mitsubishi Denki Kabushiki Kaisha Semiconductor device
JPWO2002082553A1 (en) * 2001-04-04 2004-07-29 三菱電機株式会社 Semiconductor device
US7180106B2 (en) 2001-04-04 2007-02-20 Mitsubishi Denki Kabushiki Kaisha Semiconductor device having enhanced di/dt tolerance and dV/dt tolerance
JP4837236B2 (en) * 2001-04-04 2011-12-14 三菱電機株式会社 Semiconductor device
US8183631B2 (en) 2001-04-04 2012-05-22 Mitsubishi Denki Kabushiki Kaisha Semiconductor device
US8692323B2 (en) 2001-04-04 2014-04-08 Mitsubishi Denki Kabushiki Kaisha Semiconductor device with peripheral base region connected to main electrode
JP2009187994A (en) * 2008-02-04 2009-08-20 Fuji Electric Device Technology Co Ltd Semiconductor device and manufacturing method thereof
JP2009076930A (en) * 2008-11-13 2009-04-09 Mitsubishi Electric Corp Semiconductor device
JP2018107477A (en) * 2018-04-02 2018-07-05 三菱電機株式会社 Power semiconductor device

Similar Documents

Publication Publication Date Title
JP2585331B2 (en) High breakdown voltage planar element
JP2766239B2 (en) High voltage semiconductor device
JP2003298052A (en) Semiconductor device
JP2000183348A (en) Mos gate power device
JPH0783119B2 (en) Field effect transistor
JP3484690B2 (en) Vertical field-effect transistor
JPH0228270B2 (en)
JP3114069B2 (en) Power element having double field plate structure
JPH03262130A (en) Manufacture of semiconductor element
JPH0237777A (en) Vertical type field-effect transistor
JPS63173373A (en) Field-effect transistor
JPS58175872A (en) Insulated gate field effect transistor
JP3192857B2 (en) Vertical MOS semiconductor device and method of manufacturing the same
JP2926969B2 (en) Semiconductor device having MIS type field effect transistor
JP3885844B2 (en) Semiconductor device
JP3186298B2 (en) Method for manufacturing MOS type semiconductor device
JPH0758776B2 (en) Composite semiconductor device
JPH09129878A (en) Semiconductor device
JPH01132167A (en) Semiconductor device
JP4017763B2 (en) Static induction transistor
JP3301271B2 (en) Horizontal power MOSFET
JPS62229977A (en) Manufacture of conduction-modulation mosfet
JPS63177566A (en) Field-effect transistor
JPH11186402A (en) Semiconductor device and manufacture of semiconductor
JPH06268162A (en) Semiconductor device and its manufacture