JP3301271B2 - Horizontal power MOSFET - Google Patents

Horizontal power MOSFET

Info

Publication number
JP3301271B2
JP3301271B2 JP12783395A JP12783395A JP3301271B2 JP 3301271 B2 JP3301271 B2 JP 3301271B2 JP 12783395 A JP12783395 A JP 12783395A JP 12783395 A JP12783395 A JP 12783395A JP 3301271 B2 JP3301271 B2 JP 3301271B2
Authority
JP
Japan
Prior art keywords
region
type
conductivity
concentration
drain
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP12783395A
Other languages
Japanese (ja)
Other versions
JPH08321606A (en
Inventor
泰明 早見
星  正勝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP12783395A priority Critical patent/JP3301271B2/en
Publication of JPH08321606A publication Critical patent/JPH08321606A/en
Application granted granted Critical
Publication of JP3301271B2 publication Critical patent/JP3301271B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors
    • H01L29/7809Vertical DMOS transistors, i.e. VDMOS transistors having both source and drain contacts on the same surface, i.e. Up-Drain VDMOS transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0684Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape, relative sizes or dispositions of the semiconductor regions or junctions between the regions
    • H01L29/0692Surface layout
    • H01L29/0696Surface layout of cellular field-effect devices, e.g. multicellular DMOS transistors or IGBTs

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、横型パワーMOSFE
T(LDMOS)に関し、特にオン抵抗を低減するため
の構造に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a horizontal power MOSFET.
The present invention relates to T (LDMOS), and particularly to a structure for reducing on-resistance.

【0002】[0002]

【従来の技術】従来のLDMOSとしては、例えば本件
発明者らにより特願平6−10984号で開示した図
7、図8に示すようなものがある。両図は、それぞれ断
面構造と平面パターン配置を示している。図7におい
て、P型半導体基板1の第1主面内に低抵抗領域となる
+ 型埋込み層2が形成され、このN+ 型埋込み層2を
含むP型半導体基板1の第1主面上にP型エピタキシャ
ル層3が形成されている。P型エピタキシャル層3内に
N型ドレイン領域(N型半導体基体領域)4が形成され
ている。N型ドレイン領域4内にP型ベース領域5及び
高濃度N+ 型ドレイン領域8が形成され、さらにN+
埋込み層2に達する導通領域としての高濃度N+ 型ドレ
イン取り出し領域7が形成されている。P型ベース領域
5内には高濃度N+ 型ソース領域6が形成されており、
高濃度N+ 型ソース領域6とN型ドレイン領域4との間
のP型ベース領域5上にゲート絶縁膜9を介してゲート
電極10が形成されている。上記のP型ベース領域5と
その領域内に形成された高濃度N+ 型ソース領域6と
は、全面に形成されたゲート電極10膜に設けられたソ
ース開口部からの二重拡散により形成され、高濃度N+
型ドレイン領域8は、同じくゲート電極10膜に設けら
れたドレイン開口部からの拡散により形成されている。
そして、第1層層間絶縁膜11によりゲート電極10と
絶縁されてソース電極12及びドレイン電極13が形成
され、第2層層間絶縁膜14によりソース電極12と絶
縁されてドレイン電極13に接続された第2層ドレイン
電極15が形成されている。
2. Description of the Related Art As a conventional LDMOS, for example, there is one shown in FIGS. 7 and 8 disclosed in Japanese Patent Application No. 6-10984 by the present inventors. Both figures show a cross-sectional structure and a plane pattern arrangement, respectively. In FIG. 7, an N + -type buried layer 2 serving as a low-resistance region is formed in a first main surface of a P-type semiconductor substrate 1, and the first main surface of the P-type semiconductor substrate 1 including the N + -type buried layer 2 A P-type epitaxial layer 3 is formed thereon. An N-type drain region (N-type semiconductor substrate region) 4 is formed in the P-type epitaxial layer 3. A P-type base region 5 and a high-concentration N + -type drain region 8 are formed in the N-type drain region 4, and a high-concentration N + -type drain extraction region 7 as a conduction region reaching the N + -type buried layer 2 is formed. ing. A high concentration N + -type source region 6 is formed in the P-type base region 5,
A gate electrode 10 is formed on a P-type base region 5 between a high-concentration N + -type source region 6 and an N-type drain region 4 via a gate insulating film 9. The P-type base region 5 and the high-concentration N + -type source region 6 formed in the P-type base region 5 are formed by double diffusion from a source opening provided in a gate electrode 10 film formed on the entire surface. , High concentration N +
The type drain region 8 is formed by diffusion from a drain opening also provided in the gate electrode 10 film.
Then, the source electrode 12 and the drain electrode 13 were formed by being insulated from the gate electrode 10 by the first interlayer insulating film 11, and were connected to the drain electrode 13 by being insulated from the source electrode 12 by the second interlayer insulating film 14. A second layer drain electrode 15 is formed.

【0003】図8は、MOSFETセルを構成するソー
スセル領域S及びドレインセル領域Dの平面配置を示し
ている。なお、ソースセル領域S及びドレインセル領域
Dとは、全面に形成したゲート電極10膜に開けたソー
ス開口部及びドレイン開口部にそれぞれ対応する領域で
ある。ただし、実際上の開口部は、ソース電極12及び
ドレイン電極13とゲート電極10との接触を避けるた
めに設けた第1層層間絶縁膜11の開口部(ゲート電極
10に設けた開口部よりもやや狭い)となる。図に示す
ように、MOSFETセル1個当たりソースセル領域S
が6×6個配列の正方形メッシュ状に所定のピッチで配
置されており、その中心の2×2個配列のソースセル領
域位置にドレインセル領域Dが配置されている。このよ
うなMOSFETセル1個当たりのパターン配置を基本
として、繰り返しソースセル領域Sとドレインセル領域
Dが配置されている。
FIG. 8 shows a plan layout of a source cell region S and a drain cell region D constituting a MOSFET cell. The source cell region S and the drain cell region D are regions respectively corresponding to a source opening and a drain opening formed in the gate electrode 10 film formed on the entire surface. However, the actual opening is formed in the opening of the first interlayer insulating film 11 provided to avoid contact between the source electrode 12 and the drain electrode 13 and the gate electrode 10 (in comparison with the opening provided in the gate electrode 10). Slightly narrower). As shown, the source cell region S per MOSFET cell
Are arranged at a predetermined pitch in a 6 × 6 array of square meshes, and a drain cell region D is arranged at the center of the 2 × 2 array of source cell regions. Based on such a pattern arrangement per MOSFET cell, a source cell region S and a drain cell region D are repeatedly arranged.

【0004】次に、上記従来のLDMOSの動作を説明
する。第2層ドレイン電極15とソース電極12との間
に正電圧が印加された状態で、ゲート電極10にしきい
値以上の電圧が印加されるとゲート電極10直下のP型
ベース領域5の表面がN型に反転しチャネルが形成され
る。ドレインセル領域Dの周辺部に対向したソースセル
領域Sでは高濃度N+ 型ドレイン領域8から電流がN型
ドレイン領域4内に拡がり、上記チャネルを経由して高
濃度N+ 型ソース領域6に電流が流れる。またドレイン
セル領域Dの周辺部に対向していない、即ちドレインセ
ル領域Dから離れているソース領域Sでは、高濃度N+
型ドレイン領域8から高濃度N+ 型ドレイン取り出し領
域7に電流が流れ、引き続きN+ 型埋込み層2を横方向
に流れ、さらにN型ドレイン領域4を縦方向に流れチャ
ネルを経由して高濃度N+ 型ソース領域6に電流が流れ
る。
Next, the operation of the conventional LDMOS will be described. When a voltage equal to or higher than the threshold value is applied to the gate electrode 10 in a state where a positive voltage is applied between the second layer drain electrode 15 and the source electrode 12, the surface of the P-type base region 5 immediately below the gate electrode 10 becomes The channel is inverted to N-type to form a channel. In the source cell region S opposed to the peripheral portion of the drain cell region D, a current spreads from the high-concentration N + -type drain region 8 into the N-type drain region 4, and flows into the high-concentration N + -type source region 6 via the channel. Electric current flows. In the source region S not facing the peripheral portion of the drain cell region D, that is, in the source region S remote from the drain cell region D, the high concentration N +
A current flows from the drain region 8 to the high-concentration N + drain extraction region 7, subsequently flows laterally through the N + -type buried layer 2, further flows vertically through the N-type drain region 4, and flows through the channel. A current flows through the N + type source region 6.

【0005】従来のLDMOSにおいては、ソース電極
12、ゲート電極10、ドレイン電極13の各電極が半
導体基板の同一主面上にあるので、複数の出力MOSF
ETを1チップ化することができるという利点があり、
これと同時に、所定の間隔で配置されたソースセル領域
Sの一部をドレインセル領域Dに置き換えてソースセル
領域Sの高集積化を可能としオン抵抗の低減を図ってい
る。
In the conventional LDMOS, since each electrode of the source electrode 12, the gate electrode 10, and the drain electrode 13 is on the same main surface of the semiconductor substrate, a plurality of output MOSFs are provided.
There is an advantage that ET can be made into one chip,
At the same time, a part of the source cell region S arranged at a predetermined interval is replaced with a drain cell region D to enable high integration of the source cell region S and reduce on-resistance.

【0006】[0006]

【発明が解決しようとする課題】従来のLDMOSで
は、P型ベース領域とN型ドレイン領域の間にできる空
乏層によりゲート電極下方のN型ドレイン領域部分の抵
抗が大きくなるという、いわゆるJ−FET効果による
抵抗を低減するために一定値以上のゲート長が必要とな
っている。しかしながらゲート長が長くなると、ゲート
電極下方のN型ドレイン領域部分自身の抵抗が増してオ
ン抵抗を低減させるのに限界があった。このように、従
来のLDMOSではオン抵抗を低減させるのに限界があ
り、より一層のオン抵抗低減技術が求められていた。
In a conventional LDMOS, a depletion layer formed between a P-type base region and an N-type drain region increases the resistance of an N-type drain region below a gate electrode. In order to reduce the resistance due to the effect, a gate length exceeding a certain value is required. However, when the gate length is increased, the resistance of the N-type drain region below the gate electrode itself increases, and there is a limit in reducing the on-resistance. As described above, there is a limit in reducing the on-resistance in the conventional LDMOS, and a further on-resistance reduction technique has been demanded.

【0007】本発明は、上記に鑑みてなされたもので、
耐圧を低下させることなく、より一層オン抵抗を低減す
ることのできる横型パワーMOSFETを提供すること
を目的とする。
[0007] The present invention has been made in view of the above,
It is an object of the present invention to provide a lateral power MOSFET that can further reduce the on-resistance without lowering the withstand voltage.

【0008】[0008]

【課題を解決するための手段】上記課題を解決するため
に、請求項1記載の発明は、ドレイン領域となる第1導
電型の半導体基体領域の第1主面側にゲート絶縁膜を介
して形成されたゲート電極と、該ゲート電極に設けられ
たソース開口部からの二重拡散により形成された第2導
電型ベース領域及び該第2導電型ベース領域内に形成さ
れた高濃度第1導電型ソース領域と、前記ゲート電極に
設けられたドレイン開口部から前記半導体基体領域に電
気的に導通をとるために形成された高濃度第1導電型ド
レイン領域と、前記半導体基体領域における前記第1主
面側とは反対側の第2主面側に形成された低抵抗領域
と、該低抵抗領域と前記高濃度第1導電型ドレイン領域
とを低抵抗で導通させる導通領域とを備え、前記ゲート
電極、前記高濃度第1導電型ソース領域に接続されたソ
ース電極及び前記高濃度第1導電型ドレイン領域に接続
されたドレイン電極の各電極が前記第1主面側に設けら
れた横型MOSFETの構造を有するセルが同一チップ
上に複数個配置されるとともに、該複数個のセルの平面
的な配置パターンは前記ソース開口部に対応するソース
セル領域と前記ドレイン開口部に対応するドレインセル
領域とが規則的に所定のピッチで配置されており、かつ
1つのセルには中央部に配置された1つのドレインセル
領域の周りに複数個のソースセル領域が2列以上隣り合
って設けられた構成を有する横型パワーMOSFETに
おいて、隣り合う前記第2導電型ベース領域の各間にお
ける前記半導体基体領域の第1主面側に高濃度第1導電
型領域を形成してなることを要旨とする。
According to a first aspect of the present invention, there is provided a semiconductor device, comprising: a first conductive type semiconductor substrate region serving as a drain region; A gate electrode formed, a second conductivity type base region formed by double diffusion from a source opening provided in the gate electrode, and a high concentration first conductivity formed in the second conductivity type base region. A source region, a high-concentration first-conductivity-type drain region formed to electrically conduct from the drain opening provided in the gate electrode to the semiconductor base region, and a first conductive type drain region formed in the semiconductor base region. A low resistance region formed on the second main surface side opposite to the main surface side, and a conduction region for conducting the low resistance region and the high-concentration first conductivity type drain region with low resistance, Gate electrode, said high concentration A cell having a lateral MOSFET structure in which a source electrode connected to a conductive type source region and a drain electrode connected to the high-concentration first conductive type drain region are provided on the first main surface side is the same chip A plurality of cells are arranged on the substrate, and the planar arrangement pattern of the plurality of cells is such that a source cell region corresponding to the source opening and a drain cell region corresponding to the drain opening are regularly arranged at a predetermined pitch. In one cell, a plurality of source cell regions are adjacent to each other in two or more rows around one drain cell region arranged in the center.
And a high-concentration first conductivity type region is formed on the first main surface side of the semiconductor base region between each of the adjacent second conductivity type base regions. Is the gist.

【0009】請求項2記載の発明は、ドレイン領域とな
る第1導電型の半導体基体領域の第1主面側にゲート絶
縁膜を介して形成されたゲート電極と、該ゲート電極に
設けられたソース開口部からの二重拡散により形成され
た第2導電型ベース領域及び該第2導電型ベース領域内
に形成された高濃度第1導電型ソース領域と、前記ゲー
ト電極に設けられたドレイン開口部から前記半導体基体
領域に電気的に導通をとるために形成された高濃度第1
導電型ドレイン領域と、前記半導体基体領域における前
記第1主面側とは反対側の第2主面側に形成された低抵
抗領域と、該低抵抗領域と前記高濃度第1導電型ドレイ
ン領域とを低抵抗で導通させる導通領域とを備え、前記
ゲート電極、前記高濃度第1導電型ソース領域に接続さ
れたソース電極及び前記高濃度第1導電型ドレイン領域
に接続されたドレイン電極の各電極が前記第1主面側に
設けられた横型MOSFETの構造を有するセルが同一
チップ上に複数個配置されるとともに、該複数個のセル
の平面的な配置パターンは前記ソース開口部に対応する
ソースセル領域と前記ドレイン開口部に対応するドレイ
ンセル領域とが規則的に所定のピッチで配置されてお
り、かつ1つのセルには中央部に配置された1つのドレ
インセル領域の周りに複数個のソースセル領域が2列以
隣り合って設けられた構成を有する横型パワーMOS
FETにおいて、隣り合う前記第2導電型ベース領域の
各間に対応する前記低抵抗領域上に高濃度第1導電型凸
状領域を形成してなることを要旨とする。
According to a second aspect of the present invention, there is provided a gate electrode formed on a first main surface side of a semiconductor substrate region of a first conductivity type serving as a drain region via a gate insulating film, and provided on the gate electrode. A second conductivity type base region formed by double diffusion from a source opening, a high-concentration first conductivity type source region formed in the second conductivity type base region, and a drain opening provided in the gate electrode High-concentration first portion formed to electrically connect the portion to the semiconductor base region from the portion.
A conductive type drain region, a low resistance region formed on a second main surface side of the semiconductor substrate region opposite to the first main surface side, the low resistance region and the high concentration first conductivity type drain region. And a conduction region that conducts with low resistance between the gate electrode, the source electrode connected to the high concentration first conductivity type source region, and the drain electrode connected to the high concentration first conductivity type drain region. A plurality of cells having a lateral MOSFET structure in which electrodes are provided on the first main surface side are arranged on the same chip, and a planar arrangement pattern of the plurality of cells corresponds to the source opening. A source cell region and a drain cell region corresponding to the drain opening are regularly arranged at a predetermined pitch, and one cell is provided around one drain cell region arranged at a central portion. Lateral power MOS in which a plurality of source cell region has a structure provided to be adjacent to two or more rows
In the FET, a high-concentration first-conductivity-type convex region is formed on the low-resistance region corresponding to each space between adjacent second-conductivity-type base regions.

【0010】請求項3記載の発明は、上記請求項1又は
2記載の横型パワーMOSFETにおいて、前記高濃度
第1導電型領域又は前記高濃度第1導電型凸状領域は、
前記高濃度第1導電型ドレイン領域と、当該高濃度第1
導電型ドレイン領域と対向する前記第2導電型ベース領
域との間には形成せず、かつ前記高濃度第1導電型領域
又は前記高濃度第1導電型凸状領域と前記高濃度第1導
電型ドレイン領域との距離は、前記高濃度第1導電型ド
レイン領域と、当該高濃度第1導電型ドレイン領域と対
向する前記第2導電型ベース領域間の距離以上に形成し
てなることを要旨とする。
According to a third aspect of the present invention, in the lateral power MOSFET according to the first or second aspect, the high-concentration first-conductivity-type region or the high-concentration first-conductivity-type convex region includes:
The high-concentration first conductivity type drain region;
The high-concentration first conductivity-type region or the high-concentration first-conductivity-type convex region is not formed between the second-conductivity-type base region and the second-conductivity-type base region facing the first-conductivity-type drain region. The distance between the high-concentration first-conductivity-type drain region and the second-conductivity-type base region opposed to the high-concentration first-conductivity-type drain region is formed. And

【0011】[0011]

【作用】請求項1記載の発明において、隣り合う第2導
電型ベース領域の各間におけるドレイン領域となる第1
導電型半導体基体領域の第1主面側に高濃度第1導電型
領域を形成することにより、ゲート長をある一定値以上
としても、ゲート電極下方の第1導電型半導体基体領域
自身の第1主面側部分の抵抗が減少して一層オン抵抗を
低減させることが可能となる。
According to the first aspect of the present invention, a first region serving as a drain region between adjacent second conductivity type base regions is provided.
By forming the high-concentration first conductivity type region on the first main surface side of the conductivity type semiconductor substrate region, even if the gate length is set to a certain value or more, the first conductivity type semiconductor substrate region itself below the gate electrode can be used. The resistance of the main surface side portion is reduced, so that the on-resistance can be further reduced.

【0012】請求項2記載の発明において、隣り合う前
記第2導電型ベース領域の各間に対応する低抵抗領域上
に高濃度第1導電型凸状領域を形成することにより、ゲ
ート長をある一定値以上としても、ゲート電極下方の第
1導電型半導体基体領域自身の低抵抗領域側部分の抵抗
が減少して一層オン抵抗を低減させることが可能とな
る。
In the invention according to claim 2, the gate length is increased by forming a high-concentration first-conductivity-type convex region on a low-resistance region corresponding to between each of the adjacent second-conductivity-type base regions. Even when the value is equal to or more than a certain value, the resistance of the first conductive type semiconductor base region below the gate electrode on the low resistance region side is reduced, so that the on-resistance can be further reduced.

【0013】請求項3記載の発明において、高濃度第1
導電型領域又は高濃度第1導電型凸状領域を、高濃度第
1導電型ドレイン領域と、当該高濃度第1導電型ドレイ
ン領域と対向する第2導電型ベース領域との間には形成
せず、かつ高濃度第1導電型領域又は高濃度第1導電型
凸状領域と高濃度第1導電型ドレイン領域との距離を、
その高濃度第1導電型ドレイン領域と、当該高濃度第1
導電型ドレイン領域と対向する第2導電型ベース領域間
の距離以上に形成することにより、ドレイン・ソース間
等の耐圧を低下させることなく、より一層オン抵抗を低
減することが可能となる。
According to the third aspect of the present invention, the high concentration first
A conductive region or a high-concentration first-conductivity-type convex region is formed between the high-concentration first-conductivity-type drain region and the second-conductivity-type base region facing the high-concentration first-conductivity-type drain region. And the distance between the high-concentration first conductivity type region or the high-concentration first conductivity-type convex region and the high-concentration first conductivity-type drain region,
The high-concentration first-conductivity-type drain region;
By forming the conductive region to be longer than the distance between the conductive type drain region and the opposing second conductive type base region, it is possible to further reduce the on-resistance without lowering the breakdown voltage between the drain and the source.

【0014】[0014]

【実施例】以下、本発明の実施例を図面に基づいて説明
する。図1〜図3は、本発明の第1実施例を示す図であ
る。なお、図1〜図3及び後述の各実施例を示す図にお
いて前記図7、図8における部材及び部位と同一ないし
均等のものは、前記と同一符号を以って示し、重複した
説明を省略する。
Embodiments of the present invention will be described below with reference to the drawings. 1 to 3 show a first embodiment of the present invention. In FIGS. 1 to 3 and the drawings showing each embodiment to be described later, the same or equivalent members as those in FIGS. 7 and 8 are denoted by the same reference numerals as those described above, and redundant description is omitted. I do.

【0015】図1に示すように、本実施例では、隣り合
うP型ベース領域5の各間におけるN型ドレイン領域4
の表面側に高濃度N+ 型領域16が形成されている。こ
のような構成とすることによって、ゲート長をある一定
値以上としても、ゲート電極10下方のN型ドレイン領
域4自身の表面側部分の抵抗が減少して一層オン抵抗を
低減することができる。
As shown in FIG. 1, in the present embodiment, an N-type drain region 4 is provided between adjacent P-type base regions 5.
A high concentration N + -type region 16 is formed on the surface side of. With such a configuration, even if the gate length is set to a certain value or more, the resistance of the surface side portion of the N-type drain region 4 below the gate electrode 10 itself is reduced, so that the on-resistance can be further reduced.

【0016】図2は、高濃度N+ 型領域16の形成位置
を平面パターンで示している。同図(a)に示すよう
に、ソースセル領域Sとソースセル領域Sの間(正確に
はP型ベース領域5とP型ベース領域5の間)の領域に
高濃度N+ 型領域16が形成されている。但し、ソース
セル領域Sの周辺でドレインセル領域Dと対向する領域
には高濃度N+ 型領域16は形成していない。また同図
(b)に示されているが、高濃度N+ 型領域16とドレ
インセル領域D(正確には高濃度N+ 型ドレイン領域
8)間の距離aは、高濃度N+ 型領域16が形成されな
い場合と比較してドレイン・ソース間等の耐圧が低下し
ないだけの距離とする。例えば距離aをドレインセル領
域Dとそれに対向するソースセル領域Sとの間の距離b
以上にすれば耐圧の低下は起こらない。
FIG. 2 shows the formation positions of the high-concentration N + -type regions 16 in a plane pattern. As shown in FIG. 3A, a high-concentration N + -type region 16 is provided in a region between the source cell regions S (more precisely, between the P-type base regions 5 and 5). Is formed. However, the high-concentration N + -type region 16 is not formed in a region around the source cell region S and facing the drain cell region D. As shown in FIG. 3B, the distance a between the high-concentration N + -type region 16 and the drain cell region D (more precisely, the high-concentration N + -type drain region 8) is equal to the high-concentration N + -type region. The distance is set such that the breakdown voltage between the drain and the source does not decrease as compared with the case where 16 is not formed. For example, the distance a is the distance b between the drain cell region D and the opposing source cell region S.
By doing so, the breakdown voltage does not decrease.

【0017】ここでソースセル領域Sとソースセル領域
Sの間の領域に高濃度N+ 型領域を形成することがスペ
ース的に又はプロセス的に困難な場合には、図3に示す
ように、4つのソースセル領域Sに囲まれた領域にのみ
高濃度N+ 型領域16aを形成する。この場合も図2の
場合と同様に、高濃度N+ 型領域16aが形成されない
場合と比較して耐圧を低下させない範囲に高濃度N+
領域16aを形成する。このような構造にすることによ
ってもゲート電極10下方のN型ドレイン領域4自身の
表面側部分の抵抗が減少して一層オン抵抗を低減するこ
とができる。
Here, when it is difficult to form a high-concentration N + type region in the region between the source cell regions S in terms of space or process, as shown in FIG. The high-concentration N + -type region 16a is formed only in the region surrounded by the four source cell regions S. Also in this case, as in the case of FIG. 2, the high-concentration N + -type region 16a is formed in a range where the breakdown voltage is not reduced as compared with the case where the high-concentration N + -type region 16a is not formed. Even with such a structure, the resistance of the surface side portion of the N-type drain region 4 below the gate electrode 10 itself is reduced, so that the on-resistance can be further reduced.

【0018】図4には、本発明の第2実施例を示す。本
実施例では、高濃度N+ 型領域16を形成する領域は第
1実施例の場合と同様であるが、ゲート電極10aに間
隔を設けることで、高濃度N+ 型領域16を高濃度N+
型ドレイン領域8又は高濃度N+ 型ソース領域6と同時
に形成することが可能となる。したがってマスク枚数を
増やすことなく高濃度N+ 型領域16を形成することが
でき、第1実施例と同様の効果が得られる。
FIG. 4 shows a second embodiment of the present invention. In this embodiment, the region for forming the high-concentration N + -type region 16 is the same as that in the first embodiment, but by providing an interval between the gate electrodes 10a, the high-concentration N + -type region 16 is formed. +
It can be formed simultaneously with the type drain region 8 or the high concentration N + type source region 6. Therefore, the high-concentration N + -type region 16 can be formed without increasing the number of masks, and the same effect as in the first embodiment can be obtained.

【0019】図5には、本発明の第3実施例を示す。上
述の第1及び第2の実施例では、高濃度N+ 型領域をN
型ドレイン領域4の表面側に形成したが、本実施例では
高濃度N+ 型凸状領域17をN+ 型埋込み層2上に形成
している。高濃度N+ 型凸状領域17を形成する平面パ
ターン配置上の位置は、図2で示したようにソースセル
領域Sとソースセル領域Sの間の領域や、図3で示した
ように4つのソースセル領域Sに囲まれた領域であり、
高濃度N+ 型凸状領域17を形成することにより耐圧が
低下しないような範囲に形成する。このような構成にす
ることによって、ゲート長をある一定値以上としても、
ゲート電極10下方のN型ドレイン領域4自身のN+
埋込み層2側部分の抵抗が減少して一層オン抵抗を低減
させることができる。
FIG. 5 shows a third embodiment of the present invention. In the first and second embodiments described above, the high-concentration N + type
Although formed on the surface side of the mold drain region 4, in this embodiment, the high-concentration N + -type convex region 17 is formed on the N + -type buried layer 2. The position of the high-concentration N + -type convex region 17 on the plane pattern arrangement may be a region between the source cell regions S as shown in FIG. 2 or a region between the source cell regions S as shown in FIG. Area surrounded by two source cell areas S,
The high-concentration N + -type convex region 17 is formed in a range where the withstand voltage does not decrease. With this configuration, even if the gate length is set to a certain value or more,
The resistance of the N + -type buried layer 2 side portion of the N-type drain region 4 below the gate electrode 10 itself is reduced, so that the on-resistance can be further reduced.

【0020】図6には、本発明の第4実施例を示す。本
実施例は第1実施例と第3実施例を合わせたもので、N
型ドレイン領域4の表面側に高濃度N+ 型領域16を形
成し、これと対向するようにN+ 型埋込み層2上に高濃
度N+ 型凸状領域17を形成したものである。このよう
な構成にすることでさらにオン抵抗を低減することがで
きる。
FIG. 6 shows a fourth embodiment of the present invention. This embodiment is a combination of the first embodiment and the third embodiment.
A high-concentration N + -type region 16 is formed on the surface side of the mold drain region 4, and a high-concentration N + -type convex region 17 is formed on the N + -type buried layer 2 so as to face the high-concentration N + -type region 16. With such a configuration, the on-resistance can be further reduced.

【0021】[0021]

【発明の効果】以上説明したように、請求項1記載の発
明によれば、隣り合う第2導電型ベース領域の各間にお
けるドレイン領域となる第1導電型半導体基体領域の第
1主面側に高濃度第1導電型領域を形成したため、ゲー
ト長をある一定値以上としても、ゲート電極下方の第1
導電型半導体基体領域自身の第1主面側部分の抵抗が減
少して一層オン抵抗を低減させることができる。
As described above, according to the first aspect of the present invention, the first main surface side of the first conductive type semiconductor substrate region serving as the drain region between the adjacent second conductive type base regions. Since the high-concentration first conductivity type region is formed in the first region, even if the gate length is set to a certain value or more, the first region below the gate electrode can be removed.
The resistance at the first main surface side portion of the conductive semiconductor substrate region itself is reduced, so that the on-resistance can be further reduced.

【0022】請求項2記載の発明によれば、隣り合う第
2導電型ベース領域の各間に対応する低抵抗領域上に高
濃度第1導電型凸状領域を形成したため、ゲート長をあ
る一定値以上としても、ゲート電極下方の第1導電型半
導体基体領域自身の低抵抗領域側部分の抵抗が減少して
一層オン抵抗を低減させることができる。
According to the second aspect of the present invention, since the high-concentration first-conductivity-type convex region is formed on the low-resistance region corresponding to each space between the adjacent second-conductivity-type base regions, the gate length is fixed. Even when the value is equal to or more than the value, the resistance of the first conductive type semiconductor substrate region below the gate electrode on the low resistance region side is reduced, so that the on-resistance can be further reduced.

【0023】請求項3記載の発明によれば、高濃度第1
導電型領域又は高濃度第1導電型凸状領域は、高濃度第
1導電型ドレイン領域と、当該高濃度第1導電型ドレイ
ン領域と対向する第2導電型ベース領域との間には形成
せず、かつ高濃度第1導電型領域又は高濃度第1導電型
凸状領域と高濃度第1導電型ドレイン領域との距離は、
高濃度第1導電型ドレイン領域と、当該高濃度第1導電
型ドレイン領域と対向する第2導電型ベース領域間の距
離以上に形成したため、ドレイン・ソース間等の耐圧を
低下させることなく、より一層オン抵抗を低減すること
ができる。
According to the third aspect of the present invention, the high concentration first
The conductive type region or the high-concentration first-conductivity-type convex region is formed between the high-concentration first-conductivity-type drain region and the second-conductivity-type base region facing the high-concentration first-conductivity-type drain region. And the distance between the high concentration first conductivity type region or the high concentration first conductivity type convex region and the high concentration first conductivity type drain region is:
Since the high-concentration first-conductivity-type drain region and the second-conductivity-type base region opposed to the high-concentration first-conductivity-type drain region are formed at a distance equal to or greater than that, the breakdown voltage between the drain and the source can be reduced. The on-resistance can be further reduced.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る横型パワーMOSFETの第1実
施例を示す縦断面図である。
FIG. 1 is a longitudinal sectional view showing a first embodiment of a lateral power MOSFET according to the present invention.

【図2】上記第1実施例におけるドレインセル、ソース
セルの平面パターン配置を示す平面図である。
FIG. 2 is a plan view showing a planar pattern arrangement of a drain cell and a source cell in the first embodiment.

【図3】上記第1実施例におけるドレインセル、ソース
セルの平面パターン配置の他の例を示す平面図である。
FIG. 3 is a plan view showing another example of a planar pattern arrangement of a drain cell and a source cell in the first embodiment.

【図4】本発明の第2実施例を示す縦断面図である。FIG. 4 is a longitudinal sectional view showing a second embodiment of the present invention.

【図5】本発明の第3実施例を示す縦断面図である。FIG. 5 is a longitudinal sectional view showing a third embodiment of the present invention.

【図6】本発明の第4実施例を示す縦断面図である。FIG. 6 is a longitudinal sectional view showing a fourth embodiment of the present invention.

【図7】従来の横型パワーMOSFETを示す縦断面図
である。
FIG. 7 is a longitudinal sectional view showing a conventional horizontal power MOSFET.

【図8】上記従来例におけるドレインセル、ソースセル
の平面パターン配置を示す平面図である。
FIG. 8 is a plan view showing a planar pattern arrangement of a drain cell and a source cell in the conventional example.

【符号の説明】[Explanation of symbols]

2 N+ 型埋込み層(低抵抗領域) 4 N型ドレイン領域(N型半導体基体領域) 5 P型ベース領域 6 高濃度N+ 型ソース領域 7 高濃度N+ 型ドレイン取り出し領域(導通領域) 8 高濃度N+ 型ドレイン領域 9 ゲート絶縁膜 10 ゲート電極 12 ソース電極 13 ドレイン電極 16 高濃度N+ 型領域 17 高濃度N+ 型凸状領域2 N + -type buried layer (low-resistance region) 4 N-type drain region (N-type semiconductor substrate region) 5 P-type base region 6 High-concentration N + -type source region 7 High-concentration N + -type drain extraction region (conduction region) 8 High-concentration N + -type drain region 9 Gate insulating film 10 Gate electrode 12 Source electrode 13 Drain electrode 16 High-concentration N + -type region 17 High-concentration N + -type convex region

フロントページの続き (56)参考文献 特開 昭57−37875(JP,A) 特開 平2−36561(JP,A) 特開 平3−87070(JP,A) 特開 平3−257969(JP,A) 特開 平5−82782(JP,A) 特開 平4−258173(JP,A) 特開 昭59−217368(JP,A) 特開 昭60−249366(JP,A) 特開 平6−120510(JP,A) (58)調査した分野(Int.Cl.7,DB名) H01L 29/78 H01L 21/336 Continuation of the front page (56) References JP-A-57-37875 (JP, A) JP-A-2-36561 (JP, A) JP-A-3-87070 (JP, A) JP-A-3-257969 (JP) JP-A-5-822782 (JP, A) JP-A-4-258173 (JP, A) JP-A-59-217368 (JP, A) JP-A-60-249366 (JP, A) 6-120510 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) H01L 29/78 H01L 21/336

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 ドレイン領域となる第1導電型の半導体
基体領域の第1主面側にゲート絶縁膜を介して形成され
たゲート電極と、該ゲート電極に設けられたソース開口
部からの二重拡散により形成された第2導電型ベース領
域及び該第2導電型ベース領域内に形成された高濃度第
1導電型ソース領域と、前記ゲート電極に設けられたド
レイン開口部から前記半導体基体領域に電気的に導通を
とるために形成された高濃度第1導電型ドレイン領域
と、前記半導体基体領域における前記第1主面側とは反
対側の第2主面側に形成された低抵抗領域と、該低抵抗
領域と前記高濃度第1導電型ドレイン領域とを低抵抗で
導通させる導通領域とを備え、前記ゲート電極、前記高
濃度第1導電型ソース領域に接続されたソース電極及び
前記高濃度第1導電型ドレイン領域に接続されたドレイ
ン電極の各電極が前記第1主面側に設けられた横型MO
SFETの構造を有するセルが同一チップ上に複数個配
置されるとともに、該複数個のセルの平面的な配置パタ
ーンは前記ソース開口部に対応するソースセル領域と前
記ドレイン開口部に対応するドレインセル領域とが規則
的に所定のピッチで配置されており、かつ1つのセルに
は中央部に配置された1つのドレインセル領域の周りに
複数個のソースセル領域が2列以上隣り合って設けられ
た構成を有する横型パワーMOSFETにおいて、隣り
合う前記第2導電型ベース領域の各間における前記半導
体基体領域の第1主面側に高濃度第1導電型領域を形成
してなることを特徴とする横型パワーMOSFET。
A gate electrode formed on a first main surface side of a semiconductor substrate region of a first conductivity type serving as a drain region via a gate insulating film; A second conductive type base region formed by heavy diffusion, a high-concentration first conductive type source region formed in the second conductive type base region, and a semiconductor substrate region from a drain opening provided in the gate electrode; A high-concentration first-conductivity-type drain region formed for electrical conduction to the semiconductor substrate region; and a low-resistance region formed on a second main surface side of the semiconductor substrate region opposite to the first main surface side. And a conduction region for conducting the low-resistance region and the high-concentration first-conductivity-type drain region with low resistance, wherein the gate electrode, a source electrode connected to the high-concentration first-conductivity-type source region, and High concentration first conductivity type Each of the drain electrodes connected to the drain region has a horizontal MO provided on the first main surface side.
A plurality of cells having the structure of the SFET are arranged on the same chip, and a planar arrangement pattern of the plurality of cells is a source cell region corresponding to the source opening and a drain cell corresponding to the drain opening. Regions are regularly arranged at a predetermined pitch, and in one cell, a plurality of source cell regions are provided adjacent to each other in two or more rows around one drain cell region arranged in the center. In the lateral power MOSFET having the above configuration, a high-concentration first conductivity type region is formed on the first main surface side of the semiconductor base region between the adjacent second conductivity type base regions. Horizontal power MOSFET.
【請求項2】 ドレイン領域となる第1導電型の半導体
基体領域の第1主面側にゲート絶縁膜を介して形成され
たゲート電極と、該ゲート電極に設けられたソース開口
部からの二重拡散により形成された第2導電型ベース領
域及び該第2導電型ベース領域内に形成された高濃度第
1導電型ソース領域と、前記ゲート電極に設けられたド
レイン開口部から前記半導体基体領域に電気的に導通を
とるために形成された高濃度第1導電型ドレイン領域
と、前記半導体基体領域における前記第1主面側とは反
対側の第2主面側に形成された低抵抗領域と、該低抵抗
領域と前記高濃度第1導電型ドレイン領域とを低抵抗で
導通させる導通領域とを備え、前記ゲート電極、前記高
濃度第1導電型ソース領域に接続されたソース電極及び
前記高濃度第1導電型ドレイン領域に接続されたドレイ
ン電極の各電極が前記第1主面側に設けられた横型MO
SFETの構造を有するセルが同一チップ上に複数個配
置されるとともに、該複数個のセルの平面的な配置パタ
ーンは前記ソース開口部に対応するソースセル領域と前
記ドレイン開口部に対応するドレインセル領域とが規則
的に所定のピッチで配置されており、かつ1つのセルに
は中央部に配置された1つのドレインセル領域の周りに
複数個のソースセル領域が2列以上隣り合って設けられ
た構成を有する横型パワーMOSFETにおいて、隣り
合う前記第2導電型ベース領域の各間に対応する前記低
抵抗領域上に高濃度第1導電型凸状領域を形成してなる
ことを特徴とする横型パワーMOSFET。
2. A gate electrode formed on a first main surface side of a semiconductor substrate region of a first conductivity type serving as a drain region with a gate insulating film interposed therebetween, and a gate electrode formed on a source opening provided in the gate electrode. A second conductive type base region formed by heavy diffusion, a high-concentration first conductive type source region formed in the second conductive type base region, and a semiconductor substrate region from a drain opening provided in the gate electrode; A high-concentration first-conductivity-type drain region formed for electrical conduction to the semiconductor substrate region; and a low-resistance region formed on a second main surface side of the semiconductor substrate region opposite to the first main surface side. And a conduction region for conducting the low-resistance region and the high-concentration first-conductivity-type drain region with low resistance, wherein the gate electrode, a source electrode connected to the high-concentration first-conductivity-type source region, and High concentration first conductivity type Each of the drain electrodes connected to the drain region has a horizontal MO provided on the first main surface side.
A plurality of cells having the structure of the SFET are arranged on the same chip, and a planar arrangement pattern of the plurality of cells is a source cell region corresponding to the source opening and a drain cell corresponding to the drain opening. Regions are regularly arranged at a predetermined pitch, and in one cell, a plurality of source cell regions are provided adjacent to each other in two or more rows around one drain cell region arranged in the center. In the lateral power MOSFET having the configuration described above, a high-concentration first-conductivity-type convex region is formed on the low-resistance region corresponding to between each of the adjacent second-conductivity-type base regions. Power MOSFET.
【請求項3】 前記高濃度第1導電型領域又は前記高濃
度第1導電型凸状領域は、前記高濃度第1導電型ドレイ
ン領域と、当該高濃度第1導電型ドレイン領域と対向す
る前記第2導電型ベース領域との間には形成せず、かつ
前記高濃度第1導電型領域又は前記高濃度第1導電型凸
状領域と前記高濃度第1導電型ドレイン領域との距離
は、前記高濃度第1導電型ドレイン領域と、当該高濃度
第1導電型ドレイン領域と対向する前記第2導電型ベー
ス領域間の距離以上に形成してなることを特徴とする請
求項1又は請求項2記載の横型パワーMOSFET。
3. The high-concentration first-conductivity-type region or the high-concentration first-conductivity-type convex region includes the high-concentration first-conductivity-type drain region and the high-concentration first-conductivity-type drain region. A distance between the high-concentration first conductivity-type region or the high-concentration first conductivity-type convex region and the high-concentration first conductivity-type drain region is not formed between the second conductivity-type base region and the high-concentration first conductivity-type convex region. 2. The high-concentration first-conductivity-type drain region and the second-conductivity-type base region facing the high-concentration first-conductivity-type drain region. 2. The lateral power MOSFET according to 2.
JP12783395A 1995-05-26 1995-05-26 Horizontal power MOSFET Expired - Lifetime JP3301271B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12783395A JP3301271B2 (en) 1995-05-26 1995-05-26 Horizontal power MOSFET

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12783395A JP3301271B2 (en) 1995-05-26 1995-05-26 Horizontal power MOSFET

Publications (2)

Publication Number Publication Date
JPH08321606A JPH08321606A (en) 1996-12-03
JP3301271B2 true JP3301271B2 (en) 2002-07-15

Family

ID=14969797

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12783395A Expired - Lifetime JP3301271B2 (en) 1995-05-26 1995-05-26 Horizontal power MOSFET

Country Status (1)

Country Link
JP (1) JP3301271B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4526179B2 (en) * 2000-11-21 2010-08-18 三菱電機株式会社 Semiconductor device
JP2008305881A (en) * 2007-06-06 2008-12-18 Nec Electronics Corp Semiconductor device
JP5739657B2 (en) * 2010-12-24 2015-06-24 新電元工業株式会社 Manufacturing method of semiconductor device

Also Published As

Publication number Publication date
JPH08321606A (en) 1996-12-03

Similar Documents

Publication Publication Date Title
JP2597412B2 (en) Semiconductor device and manufacturing method thereof
JP2585331B2 (en) High breakdown voltage planar element
JP2766239B2 (en) High voltage semiconductor device
JPH07221192A (en) Power mosfet
JP3417013B2 (en) Insulated gate bipolar transistor
JPS61102068A (en) Vertical type double diffusion mos device
JP3203858B2 (en) High breakdown voltage MIS field-effect transistor
US10340147B2 (en) Semiconductor device with equipotential ring contact at curved portion of equipotential ring electrode and method of manufacturing the same
JP2001127285A (en) Vertical field-effect transistor
US6703665B1 (en) Transistor
KR100360416B1 (en) Power semiconductor device having high breakdown voltage and method for fabricating the same
JP2800884B2 (en) Semiconductor device having lateral DSA power MOSFET
JP3301271B2 (en) Horizontal power MOSFET
JP2882291B2 (en) High breakdown voltage diode and method of manufacturing the same
JP3346076B2 (en) Power MOSFET
JPH06169090A (en) Power mosfet
JPH09129878A (en) Semiconductor device
JPH07142731A (en) Power device and method for forming it
JP3275606B2 (en) Horizontal power MOSFET
JPH11307768A (en) Silicon carbide semiconductor device and manufacture thereof
JP2629437B2 (en) Lateral insulated gate bipolar transistor
JPH01290265A (en) Mos type semiconductor device
JPH02198174A (en) Lateral dsa-mosfet
JP2000294779A (en) Semiconductor device and manufacture thereof
KR20020068155A (en) Field transistor for electrostatic discharge protection and method for fabricating the same

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090426

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090426

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100426

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110426

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120426

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130426

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130426

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140426

Year of fee payment: 12

EXPY Cancellation because of completion of term