JPS63169056A - Lead frame material - Google Patents

Lead frame material

Info

Publication number
JPS63169056A
JPS63169056A JP28087A JP28087A JPS63169056A JP S63169056 A JPS63169056 A JP S63169056A JP 28087 A JP28087 A JP 28087A JP 28087 A JP28087 A JP 28087A JP S63169056 A JPS63169056 A JP S63169056A
Authority
JP
Japan
Prior art keywords
copper layer
plating
wire
copper
iron
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP28087A
Other languages
Japanese (ja)
Inventor
Motohisa Miyato
宮藤 元久
Masumitsu Soeda
副田 益光
Riichi Tsuno
津野 理一
Ryoichi Ozaki
良一 尾崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP28087A priority Critical patent/JPS63169056A/en
Publication of JPS63169056A publication Critical patent/JPS63169056A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Landscapes

  • Lead Frames For Integrated Circuits (AREA)

Abstract

PURPOSE:To stabilize weldability on wire-bonding of a gold wire, by disposing a high-purity copper layer of 0.5mum or more in thickness on a surface of an iron-nickel group alloy. CONSTITUTION:A high-purity copper layer of 0.5mum or more in thickness is disposed on a surface of an iron-nickel group alloy. This copper layer is formed into a soft metal copper material to have internal porosity smaller than a plating material. Therefore, oxidation-proof and corrosion-proof properties in this copper layer are made approximately identical with those in pure copper, and wire-bonding performance of this copper layer is stabilized when a gold wire is pressed thereon by heating under a reducing atmosphere. Further, when the copper layer on the surface of the iron-nickel group alloy is thereafter annealed at a specific temperature, H2 gases and impurities and the like contained on plating are removed and diffused together with reduction of voids, so that surface quality of the layer can be stabilized.

Description

【発明の詳細な説明】 [産業上の利用分9g月 本発明はリードフレーム材料に関し、さらに詳しくは、
トランジスタまたはrC等の半導体やリードフレーム材
料、特にボンディングワイヤの金線或いは銅線を直接接
合することができる半導体のリードフレーム材料に関す
る。
[Detailed Description of the Invention] [Industrial Application 9g/month] The present invention relates to a lead frame material, and more particularly,
The present invention relates to semiconductors such as transistors or RC and lead frame materials, particularly to semiconductor lead frame materials to which gold wires or copper wires of bonding wires can be directly bonded.

[従来技術] 一般に、半導体のリードフレーム材料にはFe−Ni系
合金(42アロイ)や銅合金が使用されており、リード
フレームはシリコン素子が接合されるグイバット部、金
線が接合されて樹脂封止されるインナーリード部および
リード線の役割を果たし、通常半田めっさされているエ
クスターナルリード部の三部分から成っている。
[Prior art] In general, Fe-Ni alloy (42 alloy) and copper alloy are used as lead frame materials for semiconductors. It consists of three parts: an inner lead part that is sealed and an external lead part that serves as a lead wire and is usually soldered.

そして、グイバット部はシリコン素子がAu−9i、A
g−8i等の共品接合または導電性ペースト剤によ、る
接合或いは半田付けにより取り付けられ、この素子の電
極とインナーリード部をAu線或いはCu線で熱圧着ま
たは超音波併用熱圧着により接合するが、4270イに
おいてAu線或いはCu線を直接接合することは困難で
あり、インナーリード部にはAu或いはAgめっきが施
されるのが常識であった。
The silicon element in the Guibat part is Au-9i, A
It is attached by bonding with G-8i, etc., by bonding with conductive paste, or by soldering, and the electrodes and inner leads of this element are bonded by thermocompression bonding or ultrasonic thermocompression bonding with Au wire or Cu wire. However, it is difficult to directly bond Au or Cu wires in 4270I, and it has been common knowledge that the inner lead portions are plated with Au or Ag.

しかして、一般にAu線は還元雰囲気において純銅とは
熱圧接が可能であることは知られており、Au或いはA
gめっきの変わりにCuめっきを使用することが考えら
れるが、めっき直後であればCuめっきにAu線の熱圧
接は可能であるが、Cuめっきはポロシティが高く、表
面粗度も0.8〜1.0μmと粗くなるため、短時間で
室温で酸化し、また、Au線との加熱接合中に酸化し易
く、母材の合金成分、特にFeが表面層まで拡散してI
C等の多ピンのリードではピン全数の接合強度が安定し
なくなるという問題がある。
However, it is generally known that Au wire can be thermally welded to pure copper in a reducing atmosphere;
It is possible to use Cu plating instead of G plating, but it is possible to heat pressure weld Au wire to Cu plating immediately after plating, but Cu plating has high porosity and surface roughness of 0.8~ Because the roughness is 1.0 μm, it oxidizes at room temperature in a short time, and is easily oxidized during heat bonding with Au wire, causing alloy components in the base material, especially Fe, to diffuse to the surface layer and cause I
A problem with multi-pin leads such as C leads is that the bonding strength of all the pins becomes unstable.

また、エクスターナルリード部はCuめっきされること
により、外装めっき(錫或いは半田)または半田ディツ
プが容易となるか、42アロイ上に厚さ0.5μm以上
の銅めっきを行なって、その上に錫或いは半田めっきま
たは半田ディツプを行なうと、半導体として必須の15
0℃の温度で1000時間保持後ら錫或いは半田が剥離
することなく密着していることは困難となる。即ち、銅
めっき層と錫或いは半田層との間の表層にη相(Cua
Sns)、その下にε相(CuiSn)が生じ、ε相と
銅めっき層の界面にボイドが発生し、これらのボイドが
連なり剥離を起こすことが判明している。
In addition, by plating the external leads with Cu, it becomes easier to perform exterior plating (tin or solder) or solder dipping, or by plating copper with a thickness of 0.5 μm or more on 42 alloy and then applying tin on top of it. Alternatively, if solder plating or solder dipping is performed, 15
After being held at a temperature of 0° C. for 1000 hours, it becomes difficult for the tin or solder to remain in close contact without peeling off. That is, η phase (Cua
It has been found that an ε phase (CuiSn) is generated under the ε phase (CuiSn), voids are generated at the interface between the ε phase and the copper plating layer, and these voids are connected to cause peeling.

以上説明したことから、グイバット部およびフィンガー
リード部のみにCuめっきを行なうことが考えられるが
、表面粗度が0.8〜1.0μmと粗く、ポロシティが
高いため、ワイヤボンディング中に母材中の合金成分が
表面に拡散してきて、ボンディング性を劣化させるとい
う問題があり、結局Agの局部めっきを行なわなければ
ならないことになる。
From the above explanation, it is conceivable to perform Cu plating only on the Guibat part and the finger lead part, but since the surface roughness is as rough as 0.8 to 1.0 μm and the porosity is high, Cu plating may be applied to the base material during wire bonding. There is a problem that the alloy components diffuse to the surface and deteriorate bonding properties, and eventually local plating of Ag has to be performed.

[発明が解決しようとする問題点] 本発明は上記に説明したように従来の半導体のり一トフ
レーム材料の種々の問題点に鑑み、本発明台が鋭、き研
究を行ない、検討を重ねた結果、ダイパッド部およびフ
ィンガーリード部のみにAgめっきを施すことなく、リ
ードフレームのに直接Au線を信頼性高く、かつ、確実
に接合することができ、また、良好なエクスターナルリ
ード部か得られるリードフレー14材料を開発したので
ある。
[Problems to be Solved by the Invention] As explained above, the present invention is based on various problems of conventional semiconductor glue frame materials, and the present invention has been made through intensive research and repeated consideration. As a result, it is possible to reliably and reliably join the Au wire directly to the lead frame without applying Ag plating only to the die pad and finger leads, and the leads provide good external lead parts. They developed the Flay 14 material.

[問題点を解決するための手段] 本発明に係るリードフレーム材料の特徴とするところは
、鉄−ニッケル系合金の表面に、0.5μm以上の厚さ
の純度の高い銅層を有していることにある。
[Means for Solving the Problems] The lead frame material according to the present invention is characterized by having a highly pure copper layer with a thickness of 0.5 μm or more on the surface of an iron-nickel alloy. It's in being.

本発明に係るリードフレーム材料について以下詳細に説
明する。
The lead frame material according to the present invention will be explained in detail below.

本発明に係るリードフレーム材料は、鉄−ニッケル系合
金の表面に0.5μm以上の銅層が設けられており、最
大粗さ0.4μm以下であり、めっき材の0.8〜!、
0μmよりも細かく、めっき材よりも内部のポロシティ
が小さく軟質の金属銅となっているため、耐酸化性およ
び耐蝕性も純銅と略同等であり、その結果、還元性雰囲
気下における金線の加熱圧接によるワイヤボンディング
性も安定した乙のとなる。
The lead frame material according to the present invention has a copper layer of 0.5 μm or more on the surface of an iron-nickel alloy, and has a maximum roughness of 0.4 μm or less, which is 0.8 μm or less than that of the plating material. ,
Because it is a soft metallic copper that is finer than 0 μm and has smaller internal porosity than plating materials, its oxidation resistance and corrosion resistance are almost the same as pure copper, and as a result, it is difficult to heat gold wire in a reducing atmosphere. Wire bonding properties by pressure welding are also stable.

さらに、鉄−ニッケル系合金の表面の銅層は、銅めっき
層を少なくとも10%以上の減面率で冷間圧延すること
により、ぬつき時に保有していたボイドを変化させると
同時に最大粗さを0.4μm以下に調整し、その後40
0〜600℃の温度で少なくとも1秒間の焼鈍を行なう
ことによってボイドを減少させると同時にめっき時に含
まれたIE2ガスおよび不純物等を除去・拡散さ仕て表
面性状を安定さける。
Furthermore, by cold rolling the copper layer on the surface of the iron-nickel alloy with an area reduction of at least 10%, the voids that existed during bonding can be changed and at the same time the maximum roughness can be reduced. was adjusted to 0.4 μm or less, and then 40
By performing annealing at a temperature of 0 to 600° C. for at least 1 second, voids are reduced, and at the same time, IE2 gas and impurities contained during plating are removed and diffused to stabilize the surface quality.

また、本発明に係るリードフレーム材料は、鉄−ニッケ
ル系合金の表面に0.5μm以上の銅層を設けることに
より、400〜600℃の温度における少なくとも1秒
間の焼鈍によって母材中の合金成分、特に、Feか表面
層に現れるのを防止することができる。
In addition, the lead frame material according to the present invention can be produced by providing a copper layer of 0.5 μm or more on the surface of an iron-nickel alloy, and by annealing it at a temperature of 400 to 600°C for at least 1 second to remove the alloy components in the base material. In particular, it is possible to prevent Fe from appearing on the surface layer.

そして、冷間加工時には母材にも局部的に応力が加わる
ため、表面層のCuを軟化させると同時に母材の残留応
力を除去する焼鈍条件は、400〜600℃の温度にお
いて少なくとも1秒間、さらに、生産性の而からは最大
30秒とするのがよい。
Since stress is locally applied to the base material during cold working, the annealing conditions for softening the Cu surface layer and simultaneously removing residual stress in the base material are: at a temperature of 400 to 600°C for at least 1 second; Furthermore, from the viewpoint of productivity, it is preferable to set the time to a maximum of 30 seconds.

また、エクスターナルリード材において乙、半田1付は
後150℃の温度で1000時間保持後も半田は剥離を
生じることがなく、このことは銅層が軟質の金属銅とな
り、めっき時のボイドか減少したためである。
In addition, the external lead material with solder 1 does not peel off even after being held at a temperature of 150°C for 1000 hours. This means that the copper layer becomes soft metallic copper, reducing voids during plating. This is because.

[実 施 例] 本発明に係るリードフレーム材料の実施例を説明する。[Example] Examples of lead frame materials according to the present invention will be described.

実施例 Fe−42wt%N1(42アロイ)のH/2材、板厚
0.15mmの材料に銅めっきを行ない、銅めっき厚さ
、スキンパス圧延後の減面率、焼鈍条件およびAu線に
よるワイヤボンディング性、湿潤試験(温度40℃、湿
度95%以上、時間4時間)による耐蝕性、さらに、半
田付け(Pb−9n共品半田、フラックスはアルファ1
00、温度230℃、浸漬時間5秒間)後に150℃の
温度でtoo。
Example Fe-42 wt% N1 (42 alloy) H/2 material, plate thickness 0.15 mm, was plated with copper, copper plating thickness, area reduction after skin pass rolling, annealing conditions, and wire made of Au wire Bonding property, corrosion resistance by moisture test (temperature 40℃, humidity 95% or more, time 4 hours), soldering (Pb-9n solder, flux is Alpha 1)
00, temperature 230°C, immersion time 5 seconds) and then too at a temperature of 150°C.

時間の恒温保持試験を行ない半田の密着性を調べた。A constant temperature holding test was conducted to examine the solder adhesion.

また、いずれの材料も予めニス力による表面分析を行な
った。
In addition, all materials were subjected to surface analysis based on varnish force in advance.

第1表にその結果を示す。Table 1 shows the results.

ワイヤボンディング試験 熱圧着式ワイヤボンダーのホルダーにリードフレーム材
料を装着し、1100ppのH,ガスを含むN、ガスで
シールドし、ステージ温度を250℃、接圧荷重100
gの条件下で、直径30μlのAuワイヤでウェッジボ
ンディングを行ない、プルテスタで破断部および破断荷
重を測定した。
Wire bonding test The lead frame material was mounted on the holder of a thermocompression wire bonder, shielded with 1100 pp of H, N containing gas, and gas, the stage temperature was set to 250°C, and the contact pressure load was 100.
Wedge bonding was performed using an Au wire with a diameter of 30 μl under the conditions of 30 g, and the breakage point and breakage load were measured using a pull tester.

第1表において、NO,1〜No、5は本発明に係るリ
ードフレーム材料であり、銅めっき後の表面粗さが0.
8〜1.071m、めっき層厚さ1.0〜5.0μmで
あり、スキンパス加工で厚さ0.55〜4,0μmに表
面加工を行なうことによって表面粗さ0.3〜0.4μ
mとなり、さらに、400〜600℃の温度で1秒以上
の熱処理を行なうことによって、耐蝕性と半日1の15
0℃の温度で1000時間における密着性が向上するこ
とは明らかである。
In Table 1, No. 1 to No. 5 are lead frame materials according to the present invention, and the surface roughness after copper plating is 0.
The plating layer thickness is 1.0 to 5.0 μm, and the surface roughness is 0.3 to 0.4 μm by skin pass processing to a thickness of 0.55 to 4.0 μm.
m, and further heat treatment at a temperature of 400 to 600°C for 1 second or more improves corrosion resistance and improves the corrosion resistance by half a day.
It is clear that the adhesion after 1000 hours is improved at a temperature of 0°C.

ボンディング強さはめっき材のままでら、その後引き続
いて行なわれる圧延+焼鈍材でも10g以上の値を示し
、破断部において剥離は無く合格ラインにある。
The bonding strength shows a value of 10 g or more even in the plated material as it is and in the subsequently rolled and annealed material, and there is no peeling at the fractured part and it is on the acceptable line.

しかし、耐蝕性を考慮すると銅めっきのままでは表面が
活性化されたままで非常に変色し易いため、比較材料の
No、6〜No、8に示すように表面特性が不安定であ
り、ボンディング性の経時的な劣化が回避できないこと
を示している。
However, considering corrosion resistance, if copper plating is used as it is, the surface remains activated and discolors very easily, resulting in unstable surface properties and poor bonding properties, as shown in comparative materials No. 6 to No. 8. This indicates that deterioration over time cannot be avoided.

[発明の効果] 以上説明したように、本発明に係るリードフレーム材料
は、鉄−ニッケル系合金表面に0.5μm以上の厚さの
銅の層を有するものであるから、これを熱処理すること
により銅層中のボイドを減少し、tlガスの除去、母材
のスキンパスにより生じた局部応力を除去でき、従って
、銅層の表面粗さが細かくなり、金線のワイヤボンディ
ング時の接合性が安定し、外部リード部の半田の剥離も
なく、さらに、銅層が設けられているので電気伝導性お
よび熱伝導性が向上し、特に銀等に比べて圧延と焼鈍に
よってポロシティを減少できるので銅層を薄くすること
ができ、めっき時間の短縮による生産性と品質の向上を
図れるので半導体産業への貢献度は多大であるという優
れた効果を有しているものである。
[Effects of the Invention] As explained above, since the lead frame material according to the present invention has a copper layer with a thickness of 0.5 μm or more on the surface of the iron-nickel alloy, it is not necessary to heat-treat the lead frame material. This reduces voids in the copper layer, removes TL gas, and removes local stress caused by the skin pass of the base metal, resulting in finer surface roughness of the copper layer and improved bonding properties during wire bonding of gold wires. It is stable, there is no peeling of the solder on the external lead part, and the copper layer improves electrical and thermal conductivity.Especially compared to silver, copper can reduce porosity through rolling and annealing. It has the excellent effect of making a large contribution to the semiconductor industry because the layer can be made thinner and productivity and quality can be improved by shortening the plating time.

Claims (1)

【特許請求の範囲】[Claims] 鉄−ニッケル系合金の表面に、0.5μm以上の厚さの
純度の高い銅層を有していることを特徴とするリードフ
レーム材料。
A lead frame material characterized by having a highly pure copper layer with a thickness of 0.5 μm or more on the surface of an iron-nickel alloy.
JP28087A 1987-01-05 1987-01-05 Lead frame material Pending JPS63169056A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28087A JPS63169056A (en) 1987-01-05 1987-01-05 Lead frame material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28087A JPS63169056A (en) 1987-01-05 1987-01-05 Lead frame material

Publications (1)

Publication Number Publication Date
JPS63169056A true JPS63169056A (en) 1988-07-13

Family

ID=11469492

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28087A Pending JPS63169056A (en) 1987-01-05 1987-01-05 Lead frame material

Country Status (1)

Country Link
JP (1) JPS63169056A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03167852A (en) * 1989-11-27 1991-07-19 Kyocera Corp Package for semiconductor-element
JPH03167850A (en) * 1989-11-27 1991-07-19 Kyocera Corp Package for semiconductor-element
US5221859A (en) * 1990-02-26 1993-06-22 Hitachi, Ltd. Lead frame for semiconductor device
US8110927B2 (en) * 2006-11-23 2012-02-07 Siemens Aktiengesellschaft Explosion-proof module structure for power components, particularly power semiconductor components, and production thereof
JP2012049461A (en) * 2010-08-30 2012-03-08 Sumitomo Metal Mining Co Ltd Bonding wire

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03167852A (en) * 1989-11-27 1991-07-19 Kyocera Corp Package for semiconductor-element
JPH03167850A (en) * 1989-11-27 1991-07-19 Kyocera Corp Package for semiconductor-element
US5221859A (en) * 1990-02-26 1993-06-22 Hitachi, Ltd. Lead frame for semiconductor device
US8110927B2 (en) * 2006-11-23 2012-02-07 Siemens Aktiengesellschaft Explosion-proof module structure for power components, particularly power semiconductor components, and production thereof
JP2012049461A (en) * 2010-08-30 2012-03-08 Sumitomo Metal Mining Co Ltd Bonding wire

Similar Documents

Publication Publication Date Title
JP2004014884A (en) Bonding wire
JPS63169056A (en) Lead frame material
JPS584955A (en) Package of gold-plated electronic parts
JPH01257356A (en) Lead frame for semiconductor
JPH1074879A (en) Lead frame of semiconductor device
KR20050083325A (en) A lead frame and the method for manufacturing semiconductor package comprising the same
JP5465874B2 (en) Copper bonding wire manufacturing method and copper bonding wire using the manufacturing method
JPS6218744A (en) Lead frame
TWI429769B (en) Palladium mesh alloy wire without plating thereon and method manufacturing the same
JPH01135057A (en) Lead frame material and manufacture thereof
JPS639957A (en) Semiconductor lead frame
JPH0674496B2 (en) Lead frame material manufacturing method
JPH09116064A (en) Lead frame material
JP2721259B2 (en) Wire bonding method and copper-based lead frame used therefor
JPH08204081A (en) Lead frame for semiconductor device, semiconductor device, and manufacturing method thereof
JPS60218863A (en) Semiconductor lead frame
JPS6353958A (en) Lead frame material
JPH05209256A (en) Reed frame material and its production
JPS568851A (en) Lead wire connecting method of semiconductor device
JPS62291951A (en) Lead frame with oxidation resistant nickel plating resistant to release of solder
JPH08153843A (en) Lead frame for semiconductor chip mounting
JPS6240753A (en) Semiconductor lead frame
JPH04366A (en) Lead frame material for semiconductor and production thereof
JPS6180844A (en) Basic wire for semiconductor lead frame
JPH04238692A (en) Brazing filler metal